COSC 419: Mobile Educational Game Development

Dr. Bowen Hui University of British Columbia Okanagan

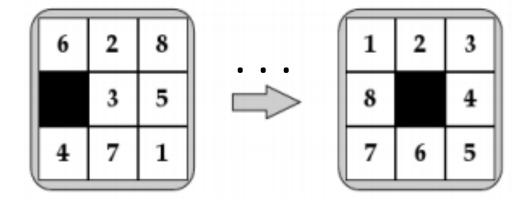
Recall: Al Techniques in Games

- Most common is for controlling non-player characters (NPCs)
- Most common techniques used:
 - Finite state machine (FSM)
 - Search Tree

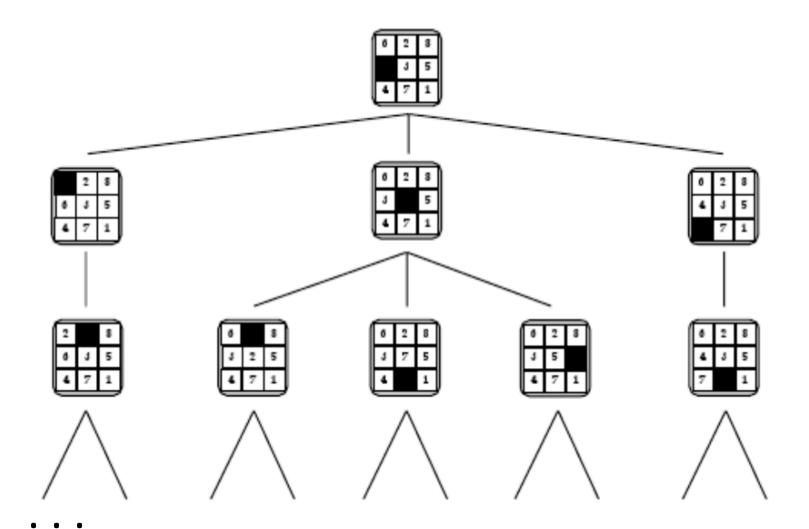
Simple AI techniques

- Relatively predictable behaviour
- Requires min. resources
- Niche area: uses machine learning to adapt behaviour throughout game play
 - Good for developing relationship with player
 - E.g. Petz

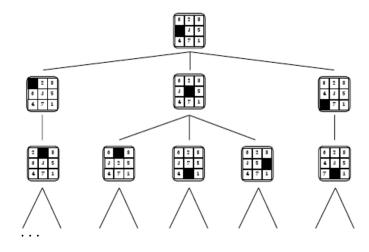
What is a Search Tree


- A tree data structure
- Reduces the problem of finding next move to a graph search
 - Define set of possible states
 - Define possible actions at each state
 - Define goal state (or utility for each end state)
- Brute force search
- Allows look-ahead into the future

Deep Blue beats Kasparav (1997)


Game of Eight Example

 Move squares from initial configuration to (eventually) the final configuration


- Possible actions: move any neighbouring numbered square into empty square (black)
- Each state is a resulting configuration after one move

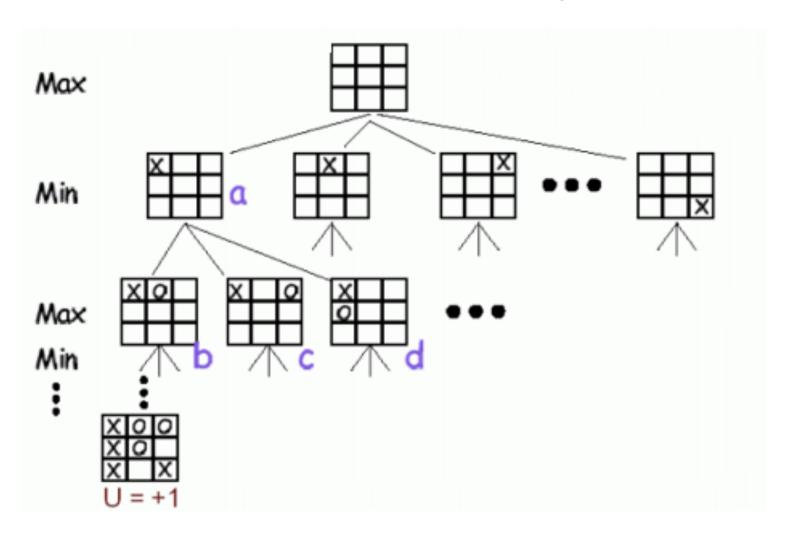
Game of Eight Game Tree

Game of Eight Game Tree

 Enumerate all actionstate combinations until goal state reached

- Take (shortest) path that goes from initial state to goal state
- Illustrates the brute force nature of the solution

Computational Constraints


Action space:

- Number of possible moves per state
- Tree has more branches if more possible actions
- E.g. Two empty squares

State space:

- Number of possible states
- Tree has more depth if more possible states
- E.g. Game of 16
- More complicated when multiple players are involved

Tic Tac Toe Example

Search Algorithms

 Various algorithms developed to find best way to get to a winning goal state

Uninformed search:

- Blind search
- Focus on computational bounds for each strategy

Informed search:

- Directs search to expand less costly nodes
- Applies heuristic function
- Focus on best case results in the general case

Adapting to Player Interaction

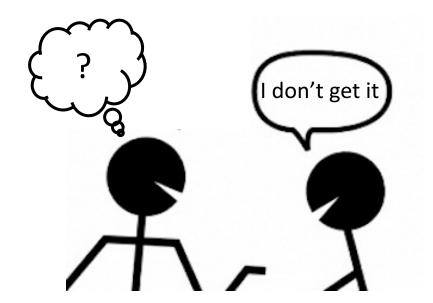
- E.g. game to raise pet
 - Good for developing relationship with player
 - More nurturing leads to more loving pet
 - Pet learns when it can play with you
- Other opportunities?
 - Game difficulty
 - Game play: speed, number of enemies, available weapons, etc.
 - Question to solve (e.g. "4 x 5" vs. "32 x 78")

Motivation

- In 2012, PHYS 112 @ UBCO had:
 - 32% students failed
 - 79% students got < 80%</p>
- Typical in first year STEM courses
 - Explore intelligent tutoring systems as innovative learning strategy
- Third year URA project by Matt Bojey
 - Experience as Physics TA
 - Computer Science & Math Honours student

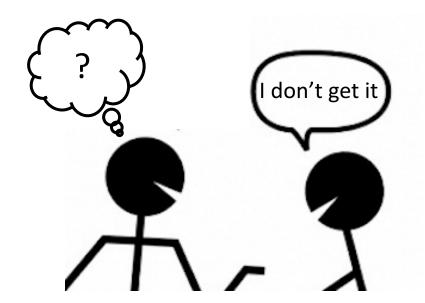
KRIT: Kirchhoff's Rules Intelligent Tutor

- Aimed at teaching PHYS 112 students about Kirchhoff's Rules
 - Basic understanding of the rules
 - Application of the rules
 - Creating new problems
- Project focus
 - Design and implementation
 - Evaluation with Physics students

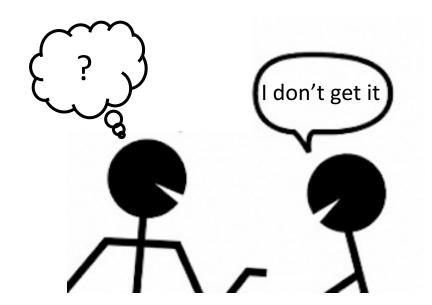

Have You Ever Been ...

 An instructor where a student approached you and said they didn't know what they didn't understand?

 A student who has struggled in a class only to be re-taught things that you already know?

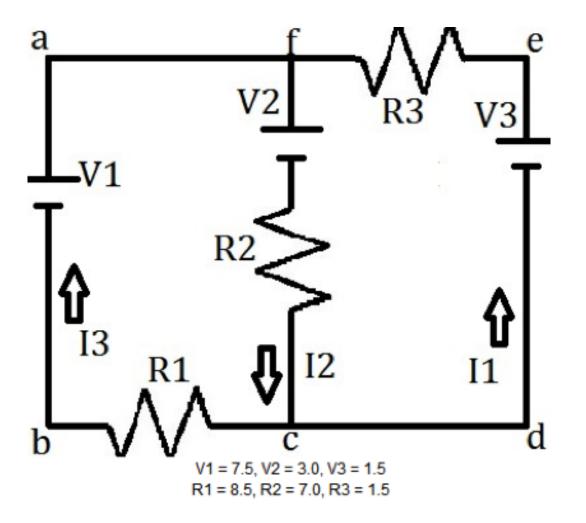

Intelligent Tutoring System (ITS)

- Software that serves as a tutor
- Adapts to student user's needs


Intelligent Tutoring System (ITS)

- Student's current level of understanding?
 - Student's focus, abilities, intentions
 - Student's past successes, mistakes, learning patterns

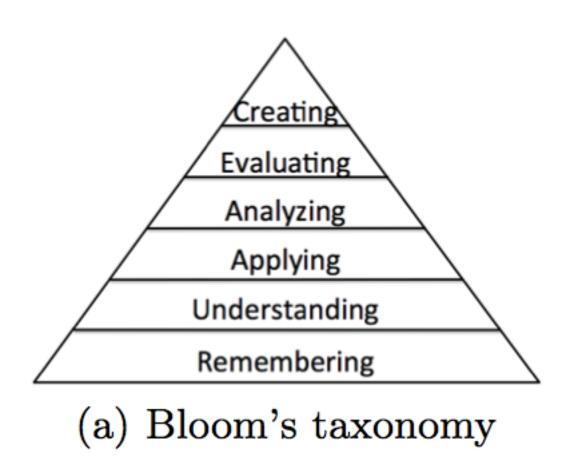
Intelligent Tutoring System (ITS)


- Student's current level of understanding?
- How best to help student?
 - Watch, show similar example, give hint, give complete solution

Goals of the Project

- Identify a student's difficulties
- Offer individualized help
- Improve confidence and become comfortable with Physics
- Increase student performance in first year Physics classes
- Increase engagement

Example Problem

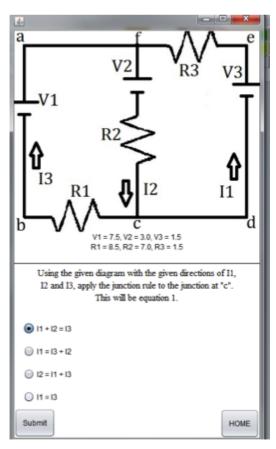


multi-step problem: natural integration for giving feedback

Problem Definition

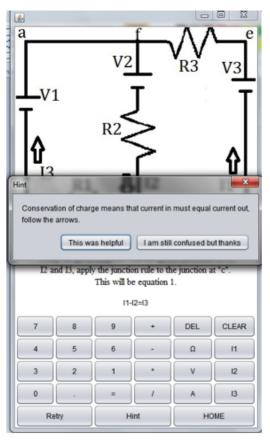
- Circuit complexity:
 - Determined by layout parameters
 - Number of batteries, resistors, junctions
- Objective:
 - Apply Kirchhoff's rules
 - Algebraically solve for one of 3 variables: voltage, resistance, current

Pedagogical Motivation



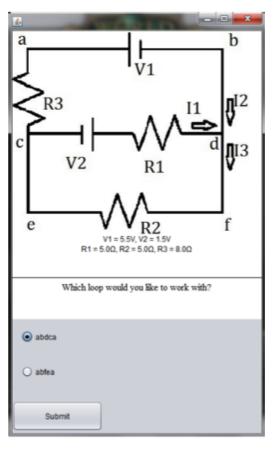
KRIT Difficulty Levels

(b) KRIT Home Screen


Multiple Choice

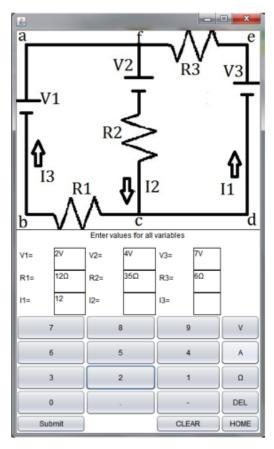
- multi-step problem
- multiple choice question at each step
- immediate feedback at each step

(a) Level 1


Coached Exercises

(b) Level 2

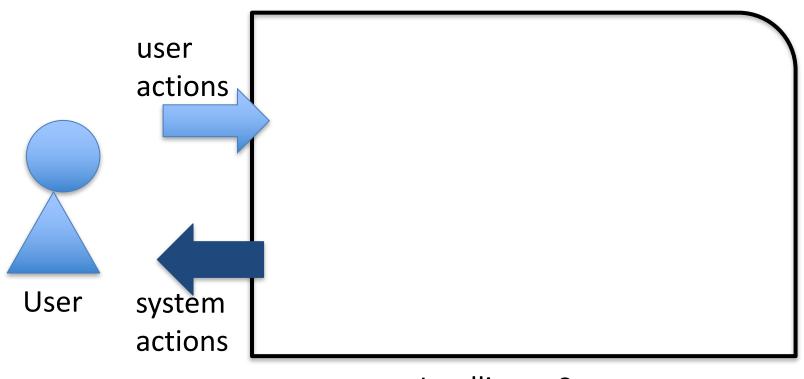
- input complete answer (e.g., 24Ω)
- probabilistic model to estimate student knowledge areas and independent levels
- hints provided when recommended by model


Choice Exercises

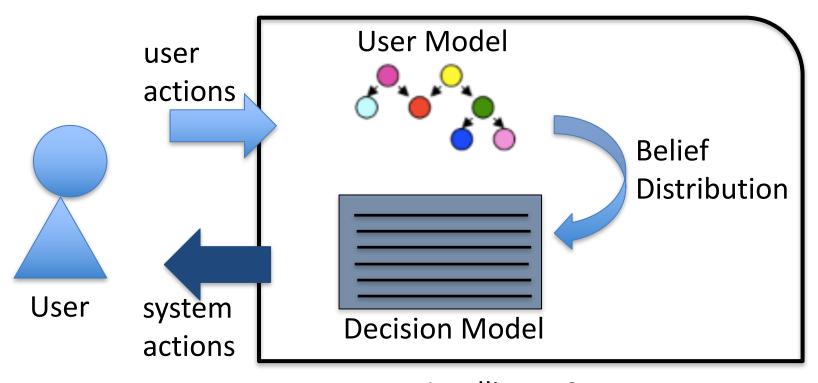
(c) Level 3

- modeled after level 2
- added flexibility
 to choose which
 order of the steps
 to solve problem in
 first
- encourages synthesis
 of procedural
 knowledge at a
 deeper level

Create & Share

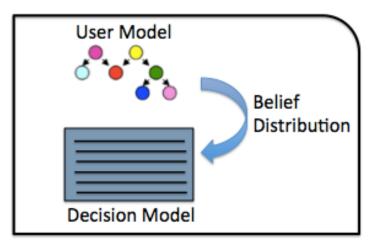

(d) Level 4

- peer learning environment
- total of 4 circuit templates
- custom problems submitted to "Challenge Board"
- student provides
 new question and
 answer (ITS verifies
 answer is correct)


Two Types of Adaptation

- Giving hints:
 - Specific to level 2 ("coached") exercises
- Changing levels of difficulty:
 - Each level has exercises
 - At the end of an exercise, KRIT will suggest the next exercise (level up or level down)
 - Student can also opt out and select their own

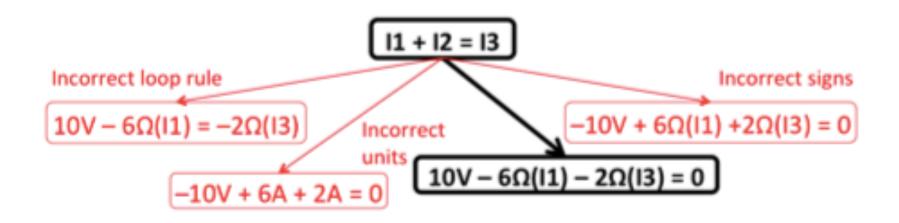
Probabilistic User Modeling and Decision Making


Probabilistic User Modeling and Decision Making

Intelligent System

ITS Architecture

- User Model:
 - Domain Module
 What does the student
 know about the domain?


Intelligent System

- Student Module
 What kind of student are we dealing with?
- Decision Model:
 - Tutor Action Selection Module
 What should the tutor do in response?

Domain Module

- Four circuit templates
 - Varies in difficulty (number of free parameters)
 - Automatically generates new exercises on demand
- Each template has corresponding solution graph
 - Outlines steps needed to be completed
 - Outlines typical student errors at each step

Partial Solution Graph

- Black: step-by-step solution
- Red: common misconceptions at that step

Summary of Domain Module

- Identify the structure of the exercises
- Identify the structure of the solutions needed for each type of exercise
- Create a solution graph for each type of exercise
 - Include common mistakes at each step of solution
 - Include hints for each type of mistake

Student Module

What does the student know about the domain?

How much help does the student need now?

Student Module

- What does the student know about the domain?
 - Physics knowledge (Kirchhoff's rules)
 - Algebra and units
- How much help does the student need now?

Student Module

- What does the student know about the domain?
 - Physics knowledge (Kirchhoff's rules)
 - Algebra and units
- How much help does the student need now?
 - May prefer to learn on their own instead
 - May need more time to internalize material
 - May be a simple slip and don't need help

Must estimate this information!

- User's current and past actions
- Algebra?
- Physics?
- Need help?

- User's current and past actions
- Algebra?
 - Numeric accuracy
- Physics?
- Need help?

- User's current and past actions
- Algebra?
- Physics?
 - Junction rule: currents balanced
 - Loop rule: all voltages zero, sign correct
 - Measurements: units correct
- Need help?

- User's current and past actions
- Algebra?
- Physics?
- Need help?
 - Pause, undos, submit blanks, browse around
 - Receptiveness to help: ask hint, read hint, read answer

Example Relationship

- Algebra Knowledge (A)
 - High, medium, low
- Numerically Correct (NC)
 - 70+% correct in all past attempts,
 30-70% correct in all past attempts,
 - < 30% correct in all past attempts

Algebra

dependency

Numerically
Correct

empts,
Pr(A|NC)

How well you know algebra depends on how many instances you've been correct in the past

Example Relationship (cont.)

 Pr(A|NC) expressed as a conditional probability table (CPT)

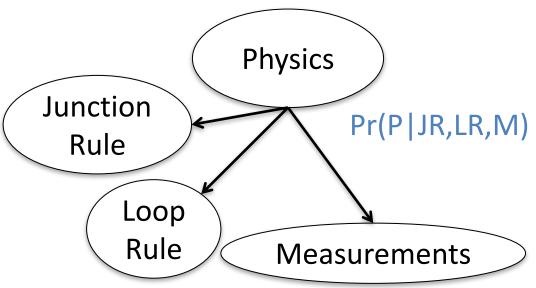
Algebra (A)

Low

0.05

0.15

0.70

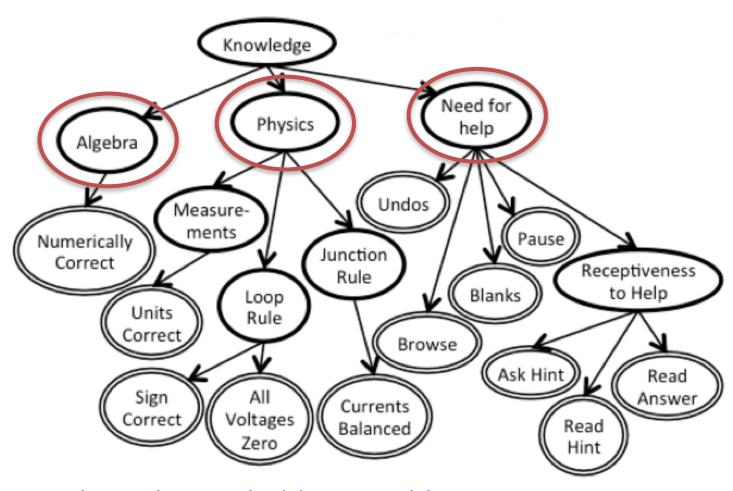

Numerically Sorrect (NC)		High	Medium
	70+%	0.85	0.10
	30-70%	0.25	0.60
	< 30%	0.10	0.20

each row adds up to 1.0

- Pr(A=High | NC=70+%) is 0.85
- Pr(A=Low | NC=70+%) is 0.05

Example Relationship 2

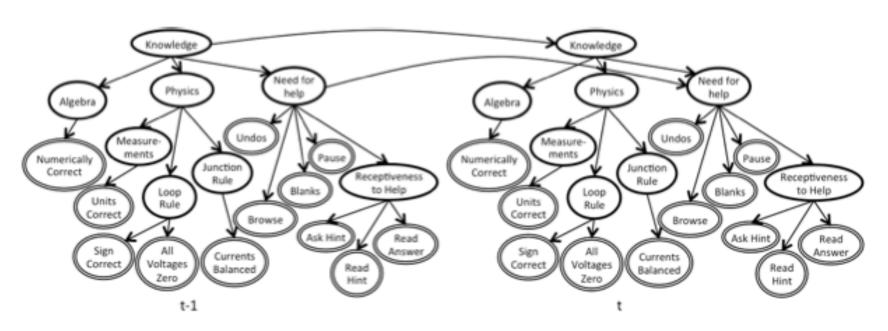
- Physics (P)
 - High, medium, low,
- Junction Rule (JR)
 - High, medium, low
- Loop Rule (LR)
 - High, medium, low
- Measurements (M)
 - High, medium, low


How well you know physics depends on how well you know the junction rule, the loop rule, and measurements

Example Relationship (cont.)

JR	LR	М	High	Medium	Low
High	High	High	0.95	0.04	0.01
High	High	Medium	0.85	0.10	0.05
High	High	Low	0.80	0.15	0.05
High	Medium	High	0.85	0.10	0.05
High	Medium	Medium	0.75	0.15	0.10
High	Medium	Low	0.65	0.20	0.15
High	Low	High	0.70	0.20	0.10
High	Low	Medium	0.50	0.30	0.20
High	Low	Low	0.30	0.40	0.30
Medium	High	High	0.85	0.10	0.05

. . .


Building a Probabilistic Model

Nodes in single circles are hidden variables Nodes in double circles are observations

Student Model

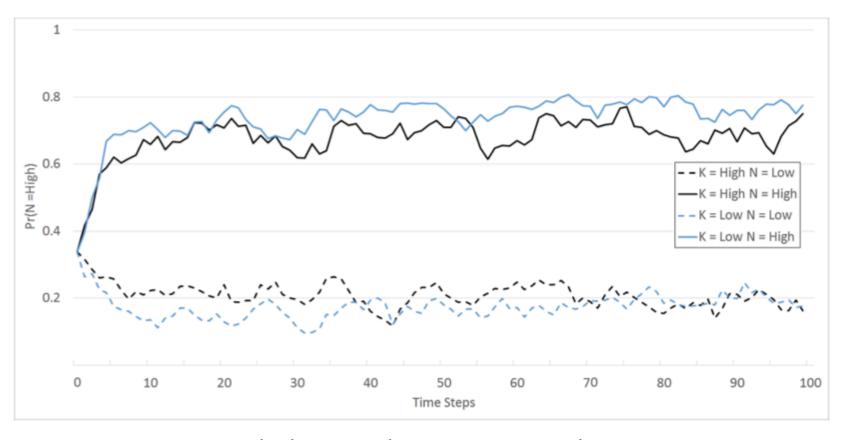
Two-slice Dynamic Bayesian Network (DBN)

New CPTs to model temporal relationships:

- $Pr(K_t \mid K_{t-1})$
- Pr(N_t | N_{t-1})

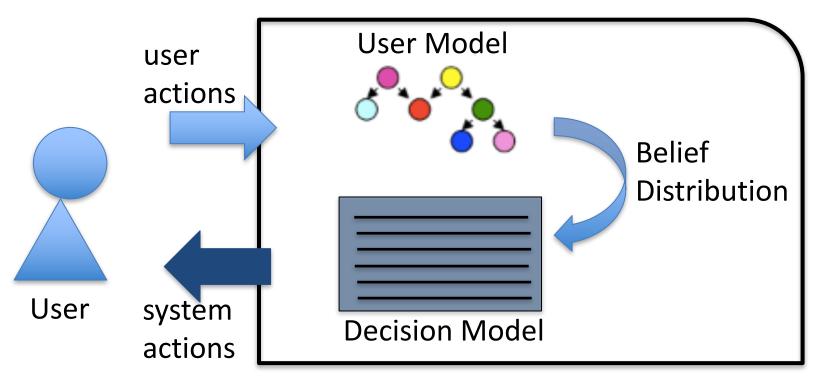

Inference Task

- At each time step:
 - Pr(K_t, N_t | OBS₁, OBS₂, ..., OBS_{t-1}):
 What is the probability of student's knowledge level and the amount of help needed given *all* the observations (OBS) we've observed in the past?
 - Known as the belief monitoring task
 - Belief distribution over K_t and N_t
- Exact inference computed via clique tree algorithm


Simulation Experiments

- Created 4 artificial students with fixed values of K and N (high/low combos)
- Using our DBN:
 - Initialize K and N with the fixed student type
 - Repeatedly:
 - Randomly sample DBN to get observations at time t
 - Compute Pr(K_t, N_t | OBS_{1:t})
 - Compute action with maximum expected utility A_t
 - Record actual induced cost/reward on student

Inference Results



Inference Results

(b)
$$Pr(N = high)$$

Probabilistic User Modeling and Decision Making

Intelligent System

Once we know what type of user we are working with, what should the system do?

Tutor Action Selection Module

- Possible tutor actions at a given time (A_t):
 - Provide a hint
 - Give an explanation with correct answer
 - Do nothing (let student continue working)

Tutor Action Selection Module

- Possible tutor actions at a given time (A_t):
 - Provide a hint
 - Give an explanation with correct answer
 - Do nothing (let student continue working)
- Define expected utility of each action as:
 - $EU(A_t) = U(A_t | K_t, N_t) Pr(K_t, N_t)$

How good is an action in expectation of K_t and N_t

Tutor Action Selection Module

- Possible tutor actions at a given time (A_t):
 - Provide a hint
 - Give an explanation with correct answer
 - Do nothing (let student continue working)
- Define expected utility of each action as:
 - $EU(A_t) = \Sigma_{KtNt}U(A_t | K_t, N_t) Pr(K_t, N_t)$

How good is an action in expectation of K_t and N_t

Take action with maximum expected utility

Adaptive Tutoring Strategy

 Capture student type using joint probability Pr(K_t,N_t)

Adaptive Tutoring Strategy

- Capture student type using joint probability Pr(K_t,N_t)
- Capturing individual behaviour and preferences using U(A_t | K_t, N_t)

Adaptive Tutoring Strategy

- Capture student type using joint probability Pr(K_t,N_t)
- Capturing individual behaviour and preferences using U(A_t | K_t, N_t)
 - Giving hints to student who does not need help induces a cost, and that cost increases if the student's knowledge is high
 Don't interrupt student
 - Giving full explanation to student who does not understand material and needs a lot of help results in a high reward

 Help user get unstuck

Simulation Results with Adaptive Actions

- Same simulation setup as earlier
- Average utility collected at each time step after carrying out an action

K=high			
N	Avg. Utility		
low	-22.14		
medium	-15.24		
high	-6.62		

K=medium		
N	Avg. Utility	
low	-8.20	
medium	6.60	
high	17.80	

K = low		
N	Avg. Utility	
low	9.76	
medium	24.24	
high	37.20	

 Most beneficial for students with low knowledge and high neediness

Adaptive Actions

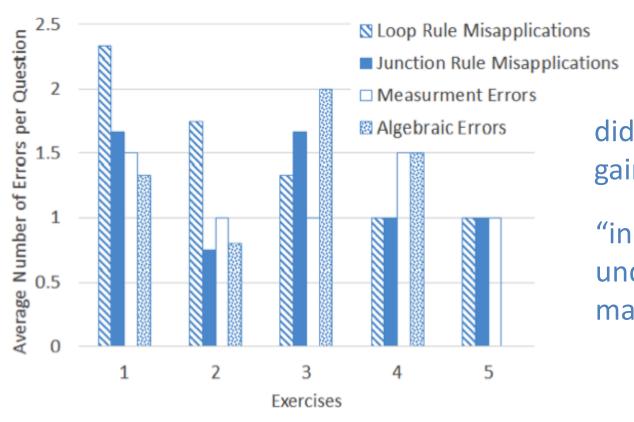
- Within an exercise:
 - Possible tutor actions such as:
 - Provide a hint
 - Give an explanation with correct answer
 - Do nothing (let student continue working)
 - Depending on the user type
- Across exercises:
 - Go to an easier exercise
 - Go to a harder exercise
 - Stay at the same level of exercises

Choosing the Next Exercise

- Simple heuristic:
 - If $Pr(K_t) > \tau_1$ choose an exercise at a higher level of difficulty

Choosing the Next Exercise

- Simple heuristic:
 - If $Pr(K_t) > \tau_1$ choose an exercise at a higher level of difficulty
 - If $Pr(K_t) < \tau_2$ Don't frustrate student choose an exercise at a lower level of difficulty

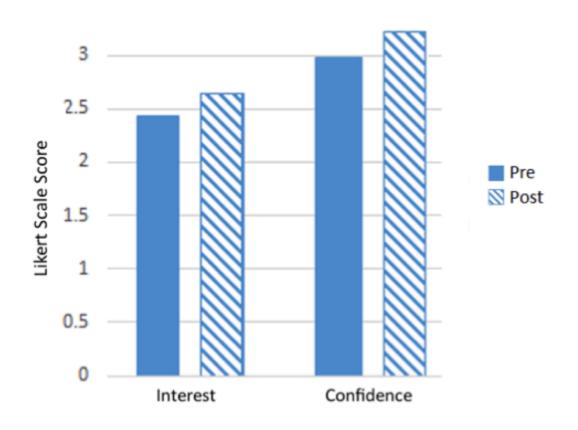

Choosing the Next Exercise

- Simple heuristic:
 - If $Pr(K_t) > \tau_1$ choose an exercise at a higher level of difficulty
 - If $Pr(K_t) < \tau_2$ Don't frustrate student choose an exercise at a lower level of difficulty
 - Else
 Choose an exercise at the same difficulty level
- Thresholds currently set to τ_1 = 0.6 and τ_2 = 0.4

Pilot User Study

- Six first year Physics students
 - Questionnaire on attitudes toward Physics (adapted from Intrinsic Motivation Inventory)
 - Pre-test on Kirchhoff's rules
 - Knowledge pre-test autograded to compute prior for $Pr(K_0)$ in the DBN
 - Use KRIT for 45 min, and optionally 30 min more
 - Post-test on Kirchhoff's rules, questionnaire on attitudes, questionnaire on usability

Study Results



did not expect learning gains in 45 min

"increased their understanding of the material"

(a) Knowledge

Study Results

"more engaging than classroom exercises or homework"

(b) Attitudes

Summary

- Personalized tutoring software for Kirchhoff's rules
- Exercises at 4 levels of difficulty
- Built a probabilistic student model to infer knowledge level and need for help
- Adaptively provide hints, full explanation, or do nothing
- Simulation results showing theoretical value
- Encourage user feedback from pilot study