
The	Feed	Me	Game	
This	activity	focuses	on	a	more	interesting	program	–	a	greedy	apple-eating	monster	dog	running	
around	and	eating	apples	that	fall	out	of	the	sky!	
	

	
	
Demo	–	you	are	the	apple-eating	monster	dog!	Catch	as	many	apples	as	you	can!	
	
There	are	six	coding	files	in	this	program,	along	with	many	image	and	sound	files	used	in	the	
game.	Here’s	a	summary	of	the	files	used	in	this	game:	
	

• Game.java	–	initializes	a	new	game	and	runs	it	
• SoundEffect.java	–	manages	the	sound	files	used	in	the	game	
• Board.java –	coordinates	all	the	game	pieces	from	start	to	end	
• Sprite.java	–	manages	the	monster	dog,	how	fast	it	moves,	which	direction	it	moves	to	

when	a	specific	arrow	key	is	pressed	
• Drop.java –	manages	a	collection	of	falling	apples	and	determines	where	and	how	

many	apples	are	dropped	from	the	sky	
• Apple.java	–	manages	the	falling	object	

	
• Laser-01.wav, alien-noise-01.wav, cheer-01.wav, Move 

Forward86.wav	–	audio	files	for	sound	effects	and	background	music	
	

• Apple.png, doghappy.png, dogopen.png, sky.png –	image	files	for	the	
objects	and	background	in	the	game	

	



What	You	Have	To	Do	
The	focus	of	the	activities	in	this	game	is	to	help	you	understand	how	2D	graphics	(in	order	
words,	“images”)	and	animation	work	in	a	software	program.	Two	small	activities	are	designed	
for	this	purpose.	

Activity	1:	Falling	Apples	
In	this	activity,	we	will	concentrate	on	the	mechanics	of	a	single	falling	apple.	First,	open	
Apple.java	file.		
	
In	simple	animation	programs,	what	we	usually	have	is	an	image	and	the	program	controls	when	
the	image	is	added	to	the	view	and	when	it	is	removed	from	it.	In	Feed	Me,	that	means	creating	an	
instance	of	the	Apple	object	that	has	an	apple	image	and	making	that	visible	on	the	screen.	When	
the	program	needs	to	remove	the	Apple	object,	the	program	will	first	make	the	object	invisible	
and	then	delete	it	altogether.	

	
The	program	is	also	in	charge	of	managing	how	
fast	an	image	moves	on	the	screen.	Since	the	
screen	is	actually	made	up	of	pixels,	that	means	
our	program	has	to	specify	how	many	pixels	an	
object	moves	each	time.	
	
This	is	the	part	that	we	will	focus	on,	and	it	is	in	
the	move	method	at	the	end	of	the	file.	
	
	
	
	
	

Two	things	need	to	happen	in	the	move	method:		
	

1. First,	the	apple	needs	to	fall.	That	means	you	will	need	to	change	its	y	position	by	the	
FALL_SPEED (of	2	pixels).	These	variables	are	already	defined	in	the	file,	you	just	have	
to	put	them	together	into	an	equation.	
	

2. Second,	if	the	apple	keeps	falling,	it	will	eventually	fall	outside	of	the	boundaries	of	the	
screen.	In	that	case,	we	will	change	the	apple’s	visibility	to	make	it	invisible.	(Another	part	
of	the	program	will	then	remove	the	apple	altogether.)		

	
Here,	the	“screen	size”	of	the	program	is	determined	by	a	variable	in	the	Board	class	
called	BOARD_HEIGHT.	From	the	Apple.java	file	that	we	are	in,	you	need	to	refer	to	
this	variable	as	Board.BOARD_HEIGHT.	

		
Complete	the	following	worksheet	by	filling	in	the	blanks	to	accomplish	these	two	steps.	When	
you	are	done,	copy	the	code	into	the	move	method	(with	correct	capitalization	and	punctuation).	
	
  

	



Coding	Worksheet	#1	for	the	Feed	Me	Game	
	
public void move() 
{ 
  // 1. change the y value so that it has an added FALL_SPEED 
 
  y = ____________________________ ; 
 
  // 2. when the apple moves beyond the board, it becomes invisible 
 
  if( ____________________________ ) 
 
    visible = false; 
} 

Common	Pitfalls	To	Avoid	
• Remember	to	spell	out	the	variables	exactly	the	way	they	are	written	elsewhere	in	the	

code	
	

• In	Math,	we	are	used	to	having	the	geometry	planes	oriented	with	the	origin	at	the	bottom	
left	corner	and	the	y-axis	increasing	upwards.	In	computer	graphics,	the	origin	is	oriented	
at	the	top	left	corner	and	the	y-axis	increases	downwards.	Therefore,	when	the	apple	falls,	
the	FALL_SPEED	must	be	added	to	y	(not	subtracted).	

	

	
	 	



Activity	2:	Eating	Apples	
In	this	activity,	we	will	concentrate	on	the	mechanics	of	two	objects	colliding	with	each	other.	
First,	open	Board.java	file	and	focus	on	the	checkCollision method	near	the	end	of	the	
file.	

	
Every	image	in	the	program	has	a	bounding	box	around	
it.	The	size	of	the	bounding	box	is	defined	by	the	
dimensions	of	the	image.	In	an	animation,	when	two	
objects	collide,	we	would	like	the	program	to	respond	
with	some	reactive	behavior.	In	this	case,	when	an	apple	
collides	with	the	dog,	we	want	to	show	the	effect	of	the	
dog	eating	the	apple	–	thus,	the	apple	disappears	and	the	
dog	becomes	happy.	This	logic	is	handled	by	the	
checkCollision	method.	
	
Q:	How	do	we	express	when	two	objects	collide?		
A:	When	two	bounding	boxes	intersect!	
(Yay!	Geometry	at	work!)	
	
Inside	the	checkCollision		method,	the	program	is	
responsible	of	obtaining	the	monster	dog’s	bounding	box	

(call	this	r1)	and	an	apple’s	bounding	box	(call	this	r2).	If	r1	intersects	with	r2,	then	do	the	
following:	
	

• Make	the	apple	disappear	(because	it	got	eaten)	
• Play	the	“eat”	sound	
• Show	that	the	monster	dog	is	now	happy	
• Increase	the	score	

	
Otherwise,	nothing	happens	and	the	game	continues.	This	logic	is	repeatedly	applied	to	each	
apple	that	is	available	in	the	game.	
	
Your	job	is	to	complete	the	second	worksheet	on	the	next	page	by	filling	in	the	blanks.	A	few	
points	to	note:	
	

• In	addition	to	numbers	and	letters,	Java	can	store	a	basic	type	of	information	called	
booleans.	For	numbers,	the	values	could	be	0,	0.5,	9214,	etc.	For	letters,	the	values	could	
be	a,	b,	c,	etc.	For	booleans,	the	values	must	be	either	true	or	false.	Booleans	are	useful	
when	you	know	that	something	has	only	two	outcomes	(e.g.	visible	vs.	not	visible,	happy	
vs.	not	happy).	
	

• You	don’t	have	to	do	the	math	for	calculating	the	intersection	of	two	rectangles!	Java	has	
the	mechanisms	available	for	bounding	boxes.	In	the	program,	you	need	to	express	as	a	
condition	whether	r1	intersects	with	r2.	

	
Complete	the	following	worksheet	by	filling	in	the	blanks	to	accomplish	these	two	steps.	When	
you	are	done,	copy	the	code	into	the	move	method	(with	correct	capitalization	and	punctuation).	

	



Coding	Worksheet	#2	for	the	Feed	Me	Game	
	
private void checkCollision() 
{ 
  // get bounding box of monster dog 
  Rectangle r1 = monster.getBounds(); 
 
  // get bounding box of each individual apple 
  ArrayList<Apple> food = dropper.getTargets(); 
  for( int i=0; i<food.size(); i++ ) 
  { 
    Apple a = food.get( i ); 
    Rectangle r2 = a.getBounds(); 
 
    // check intersection – if so, monster dog eats apple 
 
    if( ____________________________ ) 
    { 
      // make the apple invisible 
 
      a.setVisible( ______________ ); 
 
      // play the sound effect corresponding to the apple being eaten 
 
      SoundEffect.EAT.play(); 
 
      // indicate that the monster dog is now happy because he ate 
 
      monster.setHappy( ______________ ); 
 
      // increase the score by 1 point 
 
      score = ____________________________ ; 
    } 
  } 
} 

Common	Pitfalls	To	Avoid	
• Each	rectangle	has	a	method	called	intersects	that	takes	another	rectangle	and	checks	

if	the	two	intersect	or	not.	If	you	have	rectangles	X	and	Y,	you	can	accomplish	this	by	
writing:	X.intersects( Y )	or	Y.intersects( X ).	The	result	will	be	either	
true	or	false,	depending	on	whether	there	is	any	intersection.	
	

	


