
Customizing	the	Feed	Me	Game	
This	activity	focuses	on	a	more	interesting	program	–	a	greedy	apple-eating	monster	dog	running	
around	and	eating	apples	that	fall	out	of	the	sky!	
	

	
	
Demo	–	you	are	the	apple-eating	monster	dog!	Catch	as	many	apples	as	you	can!	
	
There	are	six	coding	files	in	this	program,	along	with	many	image	and	sound	files	used	in	the	
game.	Here’s	a	summary	of	the	files	used	in	this	game:	
	

• Game.java	–	initializes	a	new	game	and	runs	it	
• SoundEffect.java	–	manages	the	sound	files	used	in	the	game	
• Board.java –	coordinates	all	the	game	pieces	from	start	to	end	
• Sprite.java	–	manages	the	monster	dog,	how	fast	it	moves,	which	direction	it	moves	to	

when	a	specific	arrow	key	is	pressed	
• Drop.java –	manages	a	collection	of	falling	apples	and	determines	where	and	how	

many	apples	are	dropped	from	the	sky	
• Apple.java	–	manages	the	falling	object	

	
• Laser-01.wav, Move Forward86.wav	–	audio	files	for	sound	effects	and	

background	music	
	

• Apple.png, doghappy.png, dogopen.png, sky.png –	image	files	for	the	
objects	and	background	in	the	game	

	
	
	 	

Ideas	to	Personalize	Your	Game	
	

1. Different	sound	effects!	
• In	SoundEffect.java,	you	will	see	the	following	code:	

EAT(“laser-01.wav”);
SONG(“Move Forward86.wav”);

	
• You	can	change	the	file	names	to	new	.wav	files	so	different	sounds	are	played.	You	

could	also	use	a	program	(such	as	Audacity)	to	modify	sound	files.	
	

• Caution:	use	small	files	because	Java	can’t	handle	large	files.	For	example,	the	
background	music	comes	from	the	song	“Move Forward86.wav”	and	it	is	about	
1.5MB	and	the	eating	noise	comes	from	“laser-01.wav”	which	is	about	12KB.	

2. Different	images!	

• There	are	several	images	used	in	the	program	that	you	may	want	to	change.	If	you	
want	to	modify	an	image,	you	could	use	a	program	(such	as	Paint	or	Gimp).	

	
• In	Board.java,	you	can	change	the	background	image	from	“sky.png”	to	a	new	

image	of	your	choice.	This	is	found	inside	the	constructor	method	where	“setup	
background”	is	done.	Note	that	in	Game.java,	the	size	of	the	entire	game	is	set	to	
1000	pixels	(wide)	x	800	pixels	(tall).	So	depending	on	how	big	your	new	image	is,	you	
may	want	to	adjust	the	size	of	the	overall	game	too.	

	
• In	Apple.java,	you	can	change	the	apple	image	from	“apple.png”	to	a	new	image	

of	your	choice	(even	if	it’s	an	orange	or	a	cat	or	a	meteoroid).	This	is	found	inside	the	
constructor	method	where	“initialize	private	variables”	is	done.	

	
• In	Sprite.java,	you	can	change	the	monster	dog	images	from	“dogopen.png”	

and	“doghappy.png”	to	new	images	of	your	choice.	This	is	found	inside	the	
constructor	method	where	“initialize	private	variables”	is	done.	

	
3. Make	apples	fall	faster!	

• In	Apple.java,	near	the	beginning	of	the	class,	you	will	see	the	comment	
“constants”.	Here,	FALL_SPEED	is	defined	as	follows:	

	
private final int FALL_SPEED = 2;

	
• You	can	change	the	number	to	a	larger	value	so	the	apple	falls	faster!	

	
4. Drop	more	apples!	

• In	Drop.java,	near	the	beginning	of	the	class,	you	will	see	the	comment	
“constants”.	Here,	MAX is	defined	as	follows:	

private final static int MAX = 5;

	

• You	can	change	the	number	to	a	larger	value	so	there	are	more	apples	to	catch!	
	

5. Change	how	quickly	a	new	apple	is	dropped!	
• In	Board.java,	inside	the	constructor	method,	you	will	see	the	line	where	the	

dropper	is	created	like	so:	

dropper = new Drop(3);
	

• This	indicates	that	at	every	3	seconds,	a	new	apple	will	drop	from	the	sky,	until	all	the	
apples	have	been	dropped.	You	can	change	this	time	interval	to	a	different	value	to	
make	new	apples	drop	sooner	or	later.	

	
6. Change	where	the	monster	dog	starts!	

• In	Sprite.java,	using	the	(x,y)	coordinate	system,	the	monster	dog	starts	off	at	
location	(460,700)	as	defined	in	the	constructor	method.	You	can	change	this	starting	
point	to	a	new	location.	

	
7. Make	the	monster	dog	move	faster/slower!	

• Inside	the	constructor	method	in	Sprite.java,	we	see	the	variable	incr	which	
defines	how	many	pixels	the	monster	dog	moves	when	we	press	the	left	and	right	
arrow	keys:	

incr = 5;

	
• You	can	increase	this	value	and	make	the	monster	dog	move	faster	across	the	screen.	

However,	note	that	if	you	make	this	value	too	big,	the	animation	won’t	be	smooth	
anymore,	and	the	monster	dog	will	look	like	it’s	hopping	across	the	screen!	

	
8. Different	ending	credits!	

• Now	that	you	have	personalized	your	game,	you	may	want	to	say	that	you	contributed	
to	it.	In	Board.java,	the	credits	are	written	inside	the	paint	method.	In	this	
method,	you	can	search	for	the	part	that	checks	to	see	if	the	game	is	over	(search	for	
the	structure	“if (gameOver) { ... }”).	

	
• You	will	see	that	the	two	few	lines	set	the	font	attributes	(colour,	font	type	and	size).		

Your	computer	will	have	the	commonly	used	fonts	available.	You	can	try	changing	
these	to	different	values	and	see	how	it	looks!	

	
• Add	your	name	to	the	line	“Game made by Bowen Hui and YOUR NAME”,	or	

change	it	so	it	reads	“Game made by YOUR NAME (based on template from
Bowen Hui)”.	

	
• If	you	use	the	same	background	music	file,	you	will	need	to	leave	the	music	credits	as	

is.	If	you	end	up	changing	the	sound	file,	be	sure	to	check	what	kind	of	copyrights	is	
needed	and	whether	you	have	to	credit	the	artist.	If	you	do,	you	will	need	to	change	the	
music	credits	accordingly.	

9. Change	where	apples	are	dropped!	(ADVANCED)	
• In	Drop.java,	near	the	beginning	of	the	class,	you	will	see	the	comment	

“constants”.	Here,	several	variables	are	defined	as	follows:	

private final static int NUMPOS = 6;
private final static int OFFSET = 90;
private final static int INCR = 150;

	
• These	variables	are	currently	used	in	combination	to	create	a	series	of	6	possible	spots	

that	the	apples	can	de	dropped.	Once	these	spots	have	been	created,	the	program	then	
randomly	picks	one	of	them	to	drop	an	apple.	

	
• Recall	that	the	width	of	the	entire	board	is	1000	pixels	wide.	The	6	possible	spots	

created	are	90,	240,	…,	840,	as	shown	by	the	ruler	below:	

	
• You	can	modify	their	values	so	the	apples	drop	at	different	places!	

	
10. Enable	the	monster	dog	to	fly!	(ADVANCED)	

• In	order	to	make	the	dog	fly	(to	enable	it	to	move	up	and	down),	we	need	to	first	
understand	how	it	currently	moves	left	and	right.	In	Sprite.java,	the	movements	of	
the	monster	dog	is	determined	by	the	arrow	key	presses.	In	particular,	at	the	end	of	
this	file,	there	is	a	keyPressed	method	with	the	general	structure	as	follows:	

if(key == KeyEvent.VK_LEFT) // left arrow key is pressed
{
 ...
}

if(key == KeyEvent.VK_RIGHT) // right arrow key is pressed
{
 ...
}	
	

• How	much	the	monster	dog	should	move	is	defined	by	dx.	In	the	case	when	the	left	
arrow	key	is	pressed,	the	x	position	decrements	to	a	lower	value	–	unless	it	is	already	
at	the	left	edge	of	the	screen,	in	which	case,	dx = 0	so	the	monster	dog	won’t	move.	
Similar,	when	the	right	arrow	key	is	pressed,	the	x	position	increments	to	a	higher	
value	–	unless	it	is	already	at	the	right	edge	of	the	screen,	in	which	case,	dx = 0.	
	

• In	the	keyReleased	method,	some	house	cleaning	is	done	so	to	ensure	that	when	we	
stopped	pressing	the	arrow	keys,	dx	is	reset	back	to	0.	Also,	to	ensure	that	the	monster	
dog	stays	within	the	board,	we	use	the	following	statements:	

	
if(x < 0) x = 0;
if(x > Board.BOARD_WIDTH) x = Board.BOARD_WIDTH;
	

• Now,	to	enable	the	monster	dog	to	move	up	and	down,	we	need	to	do	the	following:	
	

o Add	a	dy	variable	to	keep	track	of	the	change	in	y	movements		
	

o Do	this	in	the	same	way	that	dx	is	defined	at	the	beginning	of	the	class	
	

o Initialize	dy = 0;	
	

o Do	this	in	the	same	way	that	dx	is	initialized	in	the	constructor	method	
	

o In	the	keyPressed	method,	add	two	conditional	statements	to	handle	the	up	
and	down	arrow	keys	respectively:	

	
if(key == KeyEvent.VK_UP)
{
 ...
}

if(key == KeyEvent.VK_DOWN)
{
 ...
}	
	

o Replace	the	“...”	with	conditional	statements	similar	to	those	for	the	left	and	
right	arrows.	
	

o In	the	keyReleased	method,	do	the	same	kind	of	house	cleaning	by	adding	2	
conditional	statements	to	reset	dy	and	2	conditional	statements	to	ensure	y	is	
within	the	screen	size.		

	

