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ABSTRACT

Along with the blossom of open source projects comes the
convenience for software plagiarism. A company, if less
self-disciplined, may be tempted to plagiarize some open
source projects for its own products. Although current pla-
giarism detection tools appear sufficient for academic use,
they are nevertheless short for fighting against serious pla-
giarists. For example, disguises like statement reordering
and code insertion can effectively confuse these tools. In this
paper, we develop a new plagiarism detection tool, called
GPLAG, which detects plagiarism by mining program depen-
dence graphs (PDGs). A PDG is a graphic representation of
the data and control dependencies within a procedure. Be-
cause PDGs are nearly invariant during plagiarism, GPLAG
is more effective than state-of-the-art tools for plagiarism de-
tection. In order to make GPLAG scalable to large programs,
a statistical lossy filter is proposed to prune the plagiarism
search space. Experiment study shows that GPLAG is both
effective and efficient: It detects plagiarism that easily slips
over existing tools, and it usually takes a few seconds to
find (simulated) plagiarism in programs having thousands
of lines of code.
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1. INTRODUCTION

Along with the blossom of open source projects comes
the convenience for software plagiarism. Suppose a com-
pany needs to implement a large software product, which,
if done from the scratch, could be time-consuming. The
developers, if less self-disciplined, may be tempted to find
a counterpart in some open source projects, rip off the in-
terface components, like I/O and Graphical User Interfaces
(GUIs), and finally fit the essential components (i.e., core
parts) into their own project with serious disguises. Be-
cause only core parts are plagiarized, which accounts for a
small portion of the whole project, and heavy disguises are
applied, the plagiarism, which we call core-part plagiarism,
is hard to notice. In this paper, we study how to detect
core-part plagiarism both accurately and efficiently. In the
above example, the open source project from which code is
copied is the original program, and the company’s project is
called a plagiarism suspect.

A quality plagiarism detector has strong impact to law-
suit prosecution. It reveals where are the plagiarized parts
and what plagiarism operations are applied, which may oth-
erwise be hard for human beings to identify due to the large
code size and tricky disguises.

Although current plagiarism detection tools appear suffi-
cient for academic use, like finding copied programs in pro-
gramming classes, they are nevertheless short for fighting
against serious plagiarists. These tools are mainly based on
program token strings, which, as will be explained in Sec-
tion 3.2, are fragile to some disguises that can be done auto-
matically. For example, disguises like statement reordering,
replacing a while loop with a for loop, and code insertion
can effectively confuse these tools. Therefore, more robust
detection algorithms are well needed.

From a knowledge discovery point of view, the detection
of core-part plagiarism is actually an interesting data min-
ing problem. In the first place, plagiarism detection is in
essence to find from source code interesting patterns that
uncover disguised code changes. These patterns should be
an intrinsic representation of programs such that they are
hardly overhauled in plagiarism. In the second place, be-
cause the plagiarized core parts only account for a small
portion of the entire program, finding these real plagiarized
parts is like anomaly detection. For example, the detec-



tion is expected to be low at false positive rate. Finally,
for practical concern, the detection algorithm should scale
to large programs in both accuracy and efficiency. These
three factors altogether make core-part plagiarism detection
a challenging, as well as interesting, data mining problem.

We examined those disguises that are effective in confus-
ing current plagiarism detection tools, and found that they
are nearly futile to the program dependence graph (PDG):
PDGs almost stay the same even when the source code is
significantly altered. A PDG is a graph representation of
the source code of a procedure, where statements are rep-
resented by vertices, and data and control dependencies be-
tween statements by edges (details in Section 2). Intuitively,
PDGs encode the program logic, and in turn reflect develop-
ers’ thinking when code is written. Code changes regardless
of dependencies are prone to errors, and a plagiarist who
wants to alter PDGs through code changes should under-
stand the program first. Thus, a plagiarist can freely modify
the code, but as long as the program correctness is preserved,
the dependence graph is hardly overhauled. Although an ex-
traordinarily creative and diligent plagiarist may correctly
overhaul the PDGs, the cost is likely higher than rewriting
her own code, which contradicts with the incentive of plagia-
rism. After all, plagiarism aims at code reuse with disguises,
which requires much less effort than writing one’s own.

We develop a PDG-based plagiarism detection algorithm,
which exploits the invariance property of PDGs. Suppose
the original program P and the plagiarism suspect P’ each
have n and m procedures, then the two programs are repre-
sented by two PDG sets G and G, respectively, and |G| = n
and |G'| = m. Then the problem of plagiarism detection
boils down to two sub-problems: First, given g € G and
g € G', how can we decide whether ¢’ is a plagiarized PDG
of g7 Second, how to efficiently locate real plagiarized PDG
pairs, while in principle n * m pairs are to be checked?

We approach the first problem through relaxed subgraph
isomorphism testing: Whenever g is ~y-isomorphic to ¢,
(g9,9") is regarded as a plagiarized PDG pair, where « is
the relaxation parameter. Although subgraph isomorphism
testing is in general NP-complete, it is totally tractable in
this application. In the first place, PDGs cannot be arbitrar-
ily large as procedures are designed to be of reasonable size
for developers to manage. Secondly, PDGs are not general
graphs, and their peculiarity, like varieties of vertex types,
makes backtrack-based isomorphism algorithm efficient. Fi-
nally, different from conventional isomorphism testing, we
are satisfied as long as one, rather than all, isomorphism
between g and g’ is found. These three factors make iso-
morphism testing efficient, although it appears formidable
at the first glance.

As to the second problem, we notice that only a small
portion of the entire n * m PDGs pairs need isomorphism
testing. Most PDGs pairs can be excluded from detailed
isomorphism testing because they are dissimilar even with
a high-level examination. Therefore, we design a lossy filter
to prune these dissimilar PDG pairs. Different from con-
ventional similarity measurement that usually is based on a
certain distance metric, this filter follows a similar reasoning
to hypothesis testing: A PDG pair (g,g’) is preserved until
enough evidence is collected against the similarity between
g and ¢’. In comparison with distance-based methods, this
approach avoids the difficulty of proper parameter setting,
and it also provides a statistical estimation of the false nega-

tive rate. In experiments, the lossy filter, collaborating with

another lossless filter, usually prunes about nine tenths of

the original search space.

Based on the above design, we implemented a PDG-based
plagiarism detection tool, called GPLAG. Experimental re-
sults indicate that GPLAG is both effective and efficient: It
accurately catches plagiarism that slips over current state-
of-the-art detection tools, and it takes a few seconds to find
(simulated) core-part plagiarism in programs having thou-
sands of lines of code.

In summary, we makes the following contributions in this
study:

1. We design and implement a PDG-based plagiarism detec-
tion tool, called GPLAG, which conducts plagiarism anal-
ysis on the program dependence graphs. Because PDGs
are robust to the disguises that confuse current state-of-
the-art tools, GPLAG is more effective, and hence more
suitable for industrial use.

2. In order to make GPLAG scalable to large programs, and
suitable for core-part plagiarism detection, we design a
statistical lossy filter, which, when collaborating with a
lossless filter, significantly prunes the search space. This
makes GPLAG efficient for large programs.

3. Finally, this study introduces PDGs, a new kind of graphs,
to the data mining community. Graphs have been used
for data modeling in many domains. Here PDGs are in-
troduced as a graphic modeling for program source code.
This paper exemplifies that proper mining of PDGs can
lead to more effective plagiarism detection algorithm.

The rest of the paper is organized as follows. Section 2 intro-
duces the program dependence graph and related graph ter-
minologies. We review previous plagiarism detection tech-
niques in Section 3. The details of PDG-based plagiarism
detection and its implementation are discussed in Sections
4 and 5. The experimental evaluations are presented in Sec-
tion 6. Section 7 discusses the related work and the potential
implications of the GPLAG approach to software industry.
Finally, Section 8 concludes this study.

2. BACKGROUND

A program dependence graph (PDG) is a graph representa-
tion of the source code of a procedure [4]. Basic statements,
like variable declarations, assignments, and procedure calls,
are represented by program vertices in PDGs. Each vertex
has one and only one type, and several important types are
listed in Table 1, which also illustrates how source code is
decomposed and mapped to program vertices. The data and
control dependencies between statements are represented by
edges between program vertices in PDGs.

DEFINITION 1 (CONTROL DEPENDENCY EDGE). There
is a control dependency edge from a “control” vertexr to a
second program vertex if the truth of the condition controls
whether the second vertex will be executed.

DEFINITION 2 (DATA DEPENDENCY EDGE). There is a
data dependency edge from program vertex vi to ve if there
is some variable var such that:

e v may be assigned to var, either directly or indirectly
through pointers.

e vy may use the value in var, either directly or indirectly
through pointers.



oo oy oo >
Crearen 175 Crassgmen D> S ssamen sim= s>

10: call-site, add(sum, array([i]

(a) Program Dependence Graph of the Procedure sum

3: declaration, int array[]

int sum(int array[], int count)
{
int i, sun;
sun = 0;
for(i =0; i < count; i++H){
sum = add(sum, arrayl[i]);
}
retum sum;
}

int add(int a, int b)
{

retum a + b;
}

(b) Summation over an Array

Figure 1: An Illustrative Example for Program Dependence Graphs

e There is an execution path in the program from the code
corresponding to v1 to the code corresponding to va along
which there is no assignment to var.

DEFINITION 3  (PROGRAM DEPENDENCE GRAPH). The
program dependence graph G for a procedure P is a 4-tuple
element G = (V, E, u, ), where
o V is the set of program vertices in P
e ECV xV is the set of dependency edges, and |G| = |V|
o 1V — S is a function assigning types to program ver-

tices,

e 0 : E — T is a function assigning dependency types, either
data or control, to edges.

Therefore, a program dependence graph is a directed, la-
belled graph, which represents the data and control depen-
dencies within one procedure. It depicts how the data flows
between statements, and how statements control or are con-
trolled by other statements.

Figure 1 provides an example to illustrate program depen-
dence graph. Figure 1(a) depicts the PDG of the procedure
sum whose code is on the right in Figure 1(b). Data and
control dependencies are plotted in solid and dashed lines
respectively. Specifically, the text inside each vertex gives
its vertex id, vertex type, and corresponding source code.
The edges are explained by Definitions 1 and 2.

Because we will use graph isomorphism to detect plagia-
rism, related terminologies are defined below.

DEFINITION 4  (GRAPH ISOMORPHISM). A bijective func-
tion f : V. — V' is a graph isomorphism from a graph
G = (V,E,u,06) to a graph G' = (V' E' 1/, 8") if
o (o) = u'(F(v)).

o Ve = (vi,v2) € E,Je’ =

d(e) = (),

o Ve' = (vi,v3) € E',3e =
that §(e’) = &(e)

(f(v1), f(v2)) € E' such that

(F71 (1), f1(vh)) € E such

DEFINITION 5  (SUBGRAPH ISOMORPHISM). An injective
function f : V. — V' is a subgraph isomorphism from G to
G' if there exists a subgraph S C G’ such that f is a graph
isomorphism from G to S.

DEFINITION 6  (v-ISOMORPHIC). A graph G is y-isomorphic
to G’ if there exists a subgraph S C G such that S is subgraph
isomorphic to G', and |S| > |G|, v € (0,1].

Type Description
call-site Call to procedures.
control If, switch, while, do-while, or for.
declaration | Declaration for a variable or formal parameter.
assignment | Assignment expression.
increment ++4 or —— expression
return Function return expression.
expression | General expression except the above three,
like one with ? operator
jump Goto, break, or continue
label Program labels
switch-case | Case or Default

Table 1: Program Vertex Types

3. SOFTWARE PLAGIARISMDETECTION

This section reviews existing plagiarism detection algo-
rithms. We first illustrate common plagiarism disguises through
an example in Section 3.1, and then analyze the shortcom-
ings of existing techniques for plagiarism detection in Section
3.2.

3.1 Plagiarism Disguises

Figure 2 shows an example of plagiarism. The left proce-
dure make_blank is the original code, and is excerpted from
a program join. This join program joins lines of two files on
a common field, and it is shipped with all Linux and Unix
distributions. It has 667 lines of C code, excluding blanks
and comments, and the procedure make blank is one of the
entire 17 procedures. On the right is a plagiarized version of
the procedure, prepared by the authors. It exemplifies typ-
ical disguises that are commonly employed in plagiarism.
From trivial to complicated, they are
1. Format alteration (FA): Insert and remove blanks
and/or comments.

2. Identifier Renaming (IR): Identifier names can be
consistently changed without violating program correctness.
For example, in Figure 2, the procedure name make_blank
is changed to fill_content, variable blank is changed to
£ill, buf to store, etc. Identifier renaming can confuse hu-
man beings, but is almost futile to detection tools.

3. Statement reordering (SR): Some statements can be
reordered without causing program errors. For example, the



01 static wvoid

02 make blank (struct line *blank, int count)
03 {

04 int i;

05 unsigned char *buffer;

06 struct field *fields;

08 blank—>buf.size = blank—>buf.length = count + 1;

09 blank—>buf.buffer = (char*) xmalloc (blank—>buf.size);

10 buffer = (unsigned char *) blank—>buf.buffer;

11 blank—>fields = fields = »
(struct field *) xmalloc (sizeof (struct field) * count),

for (i = 0; i < count; i++){

}
}

Original Code

Ol static void
02 fill content (int rum, struct line* £ill)
03 {
04 (*£ill) .store.size = fill—>store.length = rmm + 1;
05 struct field *tabs;
06 }*f:.‘l.‘l.) .fields = tabs = (struct field *)
K xmalloc (sizeof (struct field) * rmum);
07/ (*£ill) .store.buffer = (char*) xmalloc (fill->store.size);

08-» (*fill) .ntabs = rum;
/"09 unsigned char *pb;

10 o = (unsigned char *) (*fill) .store.buffer;

11 int idx = O;
12 while(idk < mum){ // £fill in the storage

14 for(int j = 0; j < idkx; FH)

Plagiarized Code

Figure 2: Original and Plagiarized Code

three declarations at lines 4 to 6 in the original code are re-
ordered and scattered in the plagiarized code. Moreover, the
statements on lines 7 and 11 are also reordered, as indicated
by the dotted lines. In contrast, the statements from lines
8 to 10 cannot be reordered due to their sequential depen-
dencies.

4. Control Replacement (CR): A for loop can be equiv-
alently replaced by a while loop, or by an infinite while loop
with a break statement, and vice versa. An if (a){A}else{B}
block can be replaced by if ('a){B}else{A} for the same
logic. In Figure 2, the for loop from lines 12 to 14 in the
original code is replaced by a while loop on the right.

5. Code Insertion (CI): Immaterial code can be inserted
to disguise plagiarism, provided the inserted code does not
interfere with the original program logic. In the plagiarized
code, a for loop is inserted at lines 14 and 15.

3.2 Review of Plagiarism Detection

We now review existing techniques for plagiarism detec-
tion and examine how each of them is robust to the above
five kinds of disguises. Roughly, these techniques fall into
the following three categories.

1. String-based: Each statement is treated as a string, and
a program is represented as a sequence of strings. Two pro-
grams are compared to find sequences of same strings [1].
Because blanks and comments are discarded, this kind of
algorithms are robust to format alteration, but fragile to
identifier renaming.

2. AST-based: A program is first parsed into an abstract
syntax tree (AST) with variable names and literal values
discarded. Then duplicate subtrees are searched between
two programs, and code corresponding to duplicate sub-
trees are labelled as plagiarism [2,11]. Because this ap-
proach disregards the information about variables (in order
to make codes differing on variables names appear the same
on ASTs), it ignores data flows, and is in consequence frag-
ile to statement reordering. In addition, it is also fragile to
control replacement.

3. Token-based: In this approach, program symbols, like
identifiers and keywords, are first tokenized. A program
is then represented as a token sequence, and duplicate to-
ken subsequences are searched for plagiarism between two
programs [9,17,18]. Because variables of the same type are
mapped into the same token, this approach is robust to iden-

tifier renaming. However, since this approach relies on se-
quential analysis, it is generally fragile to statement reorder-
ing, and code insertion: A reordered or inserted statement
can break a token sequence which may otherwise be regarded
as duplicate to another sequence. This fragility can be par-
tially remedied through fingerprinting [18], but it does not
fundamentally save token-based algorithms. Finally, token-
based methods are also fragile to control replacement be-
cause for and while loops render different token sequences:
Not only are the keywords changed, but the code for itera-
tion indexing and condition checking is also moved around.
Two representatives of token-based algorithms, Moss [18]
and JPLAG [17], are the two most commonly used tools
for plagiarism detection in practice. They prove effective
in detecting plagiarism in programming classes. However,
since they are token-based, experienced plagiarist can con-
fuse them through disguises, such as statement reordering
and code insertion. Therefore, an approach that is robust
(at least) to the five kinds of disguises are expected, and
PDG-based algorithms turn out to be a suitable choice. In
summary, the robustness of algorithms based on different
representation of programs is compared in Table 2

| String | AST | Token | PDG |

Format Alt. Yes Yes Yes Yes
Id Rename No Yes Yes Yes

Stmt Reorder No No Partial | Yes
Ctrl Replace No No Partial Yes
Code Insert No No No Yes

Table 2: Robustness Comparison

4. PDG-BASED PLAGIARISMDETECTION

In this section, we discuss PDG-based plagiarism detec-
tion. We first formulate the problem in Section 4.1, where
we decompose the problem of plagiarism detection into two
sub-problems. We then address the two sub-problems in
Sections 4.2 and 4.3, respectively. Finally, Section 4.4 dis-
cusses the computation feasibility.

4.1 Problem Formulation

Given an original program P, and a plagiarism suspect P’,
plagiarism detection tries to search for duplicate structures



0:assign,

13: assign,
i=0

1:assign,
tabs =
(struct ...

10:assign, buffer
= (unsigned)...

6: callsite, 11: decl., 15: control
har* buffe Py
xmeteed

(a) PDG of the Original Code

2: callsite,
xmalloc()

3:decl.,
line* fill

12:decl.,
intidx

16:decl.,
intj

(“field) fields
=tab=...

(ill.store.buf
=(char*)...

5:decl.,
struct field*
tabs
2: call-site,
xmalloc()

8:decl.,
int num

7:assign,
(“fill).ntabs =
num

assign, 9:assign,
(*fill).store.siz
e=...

13:assign,
idx=0

17:assign,
j=0

10:assign, pb
= (unsigned
char®) (“fill...

6: call-site, 11:decl., 15: control
xmalloc() char* pb while(idx < num)

(b) PDG of the Plagiarized Code

19: control
j<idx

Figure 3: Program Dependence Graphs of the Original and Plagiarized Code in Figure 2

between P and P’ in order to prove or disprove the existence
of plagiarism. By representing a program as a set of PDGs,
the search for duplicates are performed on PDGs.

Suppose P and P’ each have n and m procedures, then
they are represented by two PDG sets G and G’ respectively,
and |G| = n and |G| = m. Then the problem of plagiarism
detection consists of the following two sub-problems:

1. Given g € G and ¢’ € G, how to judge whether the corre-
sponding procedure of ¢’ is plagiarized from that of ¢g? If it
is, (g,4") is called a plagiarized pair, or a match for short.
2. Given G and G’, how to locate most, if not all, plagiarism
pairs both accurately and efficiently?

Since we are in particular interested in detecting core-part
plagiarism, where only a small number of procedures in P’
are plagiarized from P if plagiarism does exist, the solution
to the second problem is critical for the algorithm to be used
in practice. We address these two problems in the following
two subsections respectively.

4.2 Plagiarism as Subgraph Isomorphism

A detailed examination of the five kinds of disguises in
Section 3.1 reveals that while the disguises can significantly
alter the source code and the induced token strings, they
only insubstantially affect the PDGs. Especially, these dis-
guises will result in a PDG to which the original PDG is
subgraph isomorphic. We hence have the following claim
for plagiarism detection.

CLAM 1. Restricted to the five kinds of disguises, if g (g €
G) is subgraph isomorphic to g' (¢’ € G'), the corresponding
procedure of g’ is regarded plagiarized from that of g.

This claim is validated by examining how each of the five
kinds of disguises affects the dependence graph. For easy
understanding, the PDGs for the original and the plagiarized
code in Figure 2 are plotted in Figure 3. Immediately, one
can figure out that the left PDG is subgraph isomorphic to
the right one. We check how the applied disguises reflect on
the PDGs. For clarity in what follows, we use g and g’ to
denote the PDGs before and after a certain kind of disguises.
e Format alteration and identifer renaming do not

alter the PDG because neither of them affects the depen-
dencies, so ¢’ is identical to g. For example, although
more than twenty format alterations and renamings are
applied in Figure 2, the PDG of the original code is pre-
served.

e Statement reordering also leaves the PDG untouched.
Two or more statements can be reordered only when they
are not bounded by dependencies. Otherwise, reordering
could break dependencies, and in consequence cause pro-
gram errors. As one can see, the statement reordering in
Figure 2 is invisible in Figure 3.

e Control replacement generally leaves ¢’ identical to g.
However, when a while or a for loop is replaced by an
infinite loop with a break statement, a new program ver-
tex of type “jump” is added to g’. But since the new
vertex does not break any existing dependencies, g is still
subgraph isomorphic to ¢’. For example, the two squares
in solid lines denote the original for and the plagiarized
while loop. As one can see, the PDG structure is un-
changed.

e Code insertion introduces new program vertices and/or
dependencies into g’, depending on what the inserted code
does. For program correctness, the inserted code is not
supposed to interfere with existing dependencies. There-
fore, even though ¢’ can be significantly larger than g
(due to code insertion), g is still subgraph isomorphic to
g'. For example, the four vertices inside the dotted square
in Figure 3(b) correspond to the inserted for loop in Fig-
ure 2.

Therefore, the five kinds of disguises do not hamper the
essential part of the original PDG, although they can sig-
nificantly alter the code appearance and the induced token
strings. Since Figure 3(a) is subgraph isomorphic to Figure
3(b), the code in Figure 2 is regarded as plagiarism according
to CLAIM 1. In fact, the subgraph isomorphism just uncovers
what disguises are applied, for example, the variable count
is renamed as num, and the for loop is replaced by a while
loop, etc. In comparison, we feed the two segments of code
into both Moss and JPLAG, and neither of them recognizes
the similarity. This indicates that PDG-based analysis can
detect tricky plagiarism that confuses the state-of-the-art
tools.

In this way, restricted to the five kinds of disguises, plagia-
rism detection can be accomplished through checking sub-
graph isomorphism. However, requiring full subgraph iso-
morphism may restrict the detection power in practice be-
cause trickier disguises beyond the five kinds do exist, and
some of them, even though very trivial, can easily confuse



PDG-based detection when full subgraph isomorphism is re-
quired. For example, suppose there are two integers, i and
j, which serve as the iteration index in two independent
loops, then one can be removed and replaced by the other.
Reflected on the PDG, the variable removal merges two ver-
tices, and in consequence, the original PDG is no longer
subgraph isomorphic to the plagiarized one. Therefore, for
robustness to unseen and unanticipated attacks, we relax
CLAIM 1 into the following.

CLaM 2. If g (g € G) is y-isomorphic (0 < v < 1) to
g (9 € G'), the corresponding procedure of g' is regarded
plagiarized from that of g', where v is the mature rate for
plagiarism detection.

The mature rate -y is set based on one’s belief in what pro-
portion of a PDG will stay untouched in plagiarism. We set
it 0.9 in experiments because overhauling (without errors)
10% of a PDG of reasonable size is almost equivalent to
rewriting the code. Nevertheless, one needs to understand
the code before breaking dependencies.

4.3 Pruning Plagiarism Search Space

In order to find plagiarized PDG pairs, n * m pair-wise
(relaxed) subgraph isomorphism testings are needed in prin-
ciple. However, since most pairs can be excluded through
a rough examination, the following two subsections discuss
how the search space can be pruned.

431 LosslessFilter

First, PDGs smaller than an interesting size K are ex-
cluded from both G and G’. For plagiarism detection, we
only need to locate PDG pairs of non-trivial sizes, which,
if found, can provide enough evidence for proving plagia-
rism. Second, based on the definition of y-isomorphism, a
PDG pair (g,9'), g € G and ¢’ € G', can be excluded if
lg'| < v|g]- These two forms of pruning are lossless in the
sense that no PDG pairs worthy of isomorphism testing are
falsely excluded.

4.3.2 LossyFilter

Even through the above two-stage pruning, for any g €
G, there are still multiple ¢’ € G’, to which g should be
checked for (relaxed) subgraph isomorphism. However, since
matched PDGs tend to look similar, pairs of dissimilar PDGs
can be excluded. This filter is lossy in that some interesting
PDG pairs may be falsely excluded.

The similarity measurement must be light-weighted for it
to be cost-effective; otherwise, direct isomorphism testing
may be more efficient. We therefore take the vertex his-
togram as a summarized representation of each PDG. Specif-
ically, the PDG g is represented by h(g) = (n1,n2, -+ ,nk),
where n; is the frequency of the ith kind of vertices, and the

PDG ¢’ € G’ is similarly presented by h(g') = (m1,ma,- - ,mg).

We measure the similarity between g and g’ in terms of their
vertex histograms. A hypothesis-testing based approach is
developed in the following, whose advantages over conven-
tional distance-based measurement are discussed in Section
4.3.3.

The major idea is that we first estimate a k-dimensional
multinomial distribution P, (61,62, ,6kx) from h(g), and
then consider whether h(g’) is likely to be an observation
from P,. If it is, (g,g’) should be checked; otherwise, it is
excluded. This judgement is based on a log likelihood ratio
test, as outlined below.

The multinomial distribution Py () for g is estimated with
n; 1 ,
0i=(1- 48> (i=1,2,-,k), 1
G-H%pr G NG

where n = Zle n;, and 0 is a smoothing parameter, and is
commonly set as 0.05. We now examine how likely h(g’) is
an observation from Pg4(6). For clarity in what follows, we
use X = (m1,ma, -+ ,my) to denote h(g').

We formulate a hypothesis testing problem:

Ho: X ~ Py(0) vs. Hi: X = Py(0). (2)
Then the generalized likelihood ratio with the observation
X is
SUPgeH, UHo L(0]1X)

A = irer LX)

3)

Because under Hyp, the model for X is fixed, then

k
m! .

0€Ho i=1 "M 52

The nominator, on the other hand, achieves its maximum
when 0 assumes the maximum likelihood estimate, namely,

k
~ m;
., m ;m (4)

Therefore, the likelihood ratio is

Let T(X) = 2log(A(X)),
k e
T(X) = 22 malog - o~ Xia, (5)

where T'(X) is the test statistic for G-Test, and asymptoti-
cally conforms to x3_; under Ho. A rigid derivation for the
asymptotical approximation can be found in [19].

Given a significance level a, we then check whether T'(X) >
Xi_1(c), where x7_(a) is the upper a * 100 percentile of
the x7_, distribution. If it is, Ho is rejected, which means
that ¢ is dissimilar to g under the significance level . In
consequence, the PDG pair (g,g’) is excluded from isomor-
phism testing. The underlying rationale is that (g, g’) by de-
fault should be checked unless sufficient evidence is collected
against their similarity, and hence against their chance to be
an isomorphic pair. In this sense, this hypothesis testing-
based filter is conservative, having a low false negative rate.

In fact, the false negative rate can be estimated in the
framework of hypothesis testing. According to the interpre-
tation of the Type I error, a*100% of all PDG pairs worthy
of isomorphism checking are falsely excluded on average.
For plagiarism detection, false negatives are not a serious
problem because as long as some (but not necessarily all)
nontrivial plagiarism pairs are found, it is sufficient to sup-
port convictions of plagiarism. On the other hand, people
who are not comfortable with false negatives can neverthe-
less lower down the significance level . When a = 0, there
are no false negatives, but no further pruning either. The
value of the lossy filter is its ability to prune spurious PDG
pairs that would otherwise waste much time in isomorphism
checking. Therefore, this is a tradeoff between efficiency



and false negatives, and efficiency is usually preferred for
plagiarism detection.

4.3.3 Alternatives

There are other alternatives to the above G-test based
filtering. For example, one can adopt a distance-based ap-
proach: a PDG pair (g,g’) is excluded if the distance be-
tween h(g) and h(g') is larger than a preset threshold &.
But in general, no guidance is available for a proper set-
ting of £&. Moreover, a proper setting of £ for a particular
pair of programs does not generalize to other programs. In
comparison, for the hypothesis testing-based filter, the only
parameter « is application independent, and can be set in
a meaningful way: it balances the pruning power and the
false negative rate.

Secondly, people may wonder why the popular Pearson’s
x? test [13] is not used, given hypothesis testing-based prun-
ing is better than distance-based ones. The reason is that
Pearson’s x? test is appropriate only when no frequencies in
the vertex histogram is near zero because its validity relies
on an approximation from a multinomial to a multivariate
normal distribution. In our case, since certain m;’s can be
or close to 0, Pearson’s x? test is thus inappropriate. In
comparison, G-test is much more robust than Pearson’s x?2
test [13], and is hence chosen here.

Finally, people may want to fingerprint PDGs with fea-
tures other than vertex frequencies. We choose vertex his-
togram just because it is cheap to collect, and performs well.
People can index PDGs with structural features, like paths
or frequent subgraphs, but this would be computationally
expensive, and hence not cost-effective.

4.4 Computational Feasibility

Because our PDG-based plagiarism detection involves sub-
graph isomorphism testing, we discuss the computation fea-
sibility in this subsection.

Although subgraph isomorphism is NP-complete in gen-
eral [5], research in the past three decades has shown that
some algorithms are reasonably fast on average and become
computationally intractable only in a few cases [6] [7]. For
example, algorithms based on backtracking and look-ahead,
e.g., Ullmann’s algorithm [20] and VF [8] are comfortable
with graphs of hundreds or thousands of vertices.

Besides the general tractability, the peculiarity of PDGs
and the needs for plagiarism detection also lower down the
computation workload. In the first place, PDGs cannot be
arbitrarily large as procedures are designed to be of reason-
able size for developers to manage. Secondly, PDGs are not
general graphs, and their peculiarity, like varieties of vertex
types, and incompatibility between different types, makes
backtrack-based isomorphism algorithm efficient. Lastly,
but not the least, for plagiarism detection, the first iso-
morphism between g and ¢’ suffices, while the conventional
isomorphism testing finds all isomorphism functions. These
three factors make the isomorphism testing on PDGs tractable,
and efficient in practice.

Finally, the lossless and lossy filters can effectively toss
away spurious PDG pairs from detailed isomorphism testing.
In consequence, only a small portion of PDG pairs are really
checked. Therefore, our PDG-based plagiarism detection is
computationally efficient, although it appears formidable at
the first glance.

5. IMPLEMENTATION OF GPLAG

Algorithm 1 GPrAG(P, P/, K, v, «)

Input: P: The original program
P’: A plagiarism suspect
K: Minimum size of nontrivial PDGs, default 10
~: Mature rate in isomorphism testing, default 0.9
a: Significance level in lossy filter, default 0.05
Output: F: PDG pairs regarded to involve plagiarism

1: G = The set of PDGs from P

2: G’ = The set of PDGs from P’
3: G = {glg € G and |g| > K}

4: G ={g'lg’ € G and |¢'| > K}
5: for each g € Gi

6:  let Gk, = {d'lg' € Gk,|9'| = 7lgl, (g,9") passes filter}
7 for each ¢’ ¢ g}<,g

8 if g is y-isomorphic to g’
9: F=FUl(g.9)

10: return F;

Algorithm 1 outlines the work-flow of GPLAG, a PDG-
based plagiarism detection tool. It takes as input an original
program P and a plagiarism suspect P’, and outputs a set
of PDG pairs that are regarded as involving plagiarism. In
the end, people need to examine these returned PDG pairs,
confirming plagiarism and/or eliminating false positives.

At lines 1 and 2, PDGs of the two programs are col-
lected. We wrote a Scheme program to derive and simplify
the PDGs from CodeSurfer! via its provided APIs. Espe-
cially, control dependencies are excluded from consideration
in the current implementation for efficiency concerns. Then
at lines 3 and 4, PDGs smaller than K are excluded. Fi-
nally, from lines 5 to 10, GPLAG searches for plagiarism
PDG pairs. For each g that belongs to the original pro-
gram, line 6 obtains all g’’s that survive both the lossless
and the lossy filters. And line 8 performs the y-isomorphism
testing. The process from lines 5 to 10 was implemented in
C++ based on the VFLib%. By default, K = 10, v = 0.9,
and o = 0.05 unless otherwise stated. The time reported in
the following experiments is the time cost from lines 5 to 10,
and is in seconds.

6. EXPERIMENT EVALUATION

In this section, we evaluate the effectiveness and efficiency
of GPLAG through experiments. Section 6.1 describes the
experiment design and setup, and the following subsections
discuss the experimental results in detail.

6.1 Experiment Design and Setup

| Subjects | LOC | |G| | |G10] | Description |
join 667 | 17 | 6
be 8,526 | 135 | 56
less 15,737 | 386 | 107
tar 18,166 | 244 83

text join tool

calculator

text viewer

archive tool

Table 3: Characteristics of Subject Programs

We chose four subject programs for experiments, whose
characteristics are listed in Table 3. The number of lines of

"http:/ /www.grammatech.com/
Zhttp://amalfi.dis.unina.it /graph/



code (LOC) is measured with the tool sloccount®, which
excludes both blanks and comments. The third and fourth
columns list how many procedures each program has, and
how many of them are left with K = 10. Finally, the fifth
column concisely describes the subject programs.

The join program is mainly used for effectiveness evalu-
ation. We spent two hours plagiarizing it such that both
Moss and JPLAG were confused. In comparison, we show
that GPLAG successfully detects the plagiarism (details in
Section 6.2). Section 6.3 then focuses on efficiency study,
where the three large programs, bc, less, and tar are used.
It examines the pruning power of the lossless and the lossy
filters, and their implications to the ultimate time cost. Fi-
nally, in Section 6.4, we simulate six core-part plagiarism
cases with the four subject programs, and evaluate GPLAG’s
performance in detecting core-part plagiarism. All experi-
ments were carried out on a Pentium 4 PC with 1GB phys-
ical memory, running Fedora Core 2. The compiler is gcc-
3.3.3 with no optimizations.

6.2 Effectiveness of GPLAG

We compare GPLAG with Moss and JPLAG for effective-
ness evaluation. We plagiarize the program join according
to the following recipe. Because all the three tools are ro-
bust to format alteration and identifier renaming, these two
kinds of disguises were skipped.

Plagiarism Recipe:
1. Whenever m (usually 2 to 4) consecutive statements are
not bounded by dependencies, reorder them.

2. Replace a while loop with an equivalent for loop, and
vice versa. Occasionally, a for loop is replaced by an
infinite while loop with a break statement.

3. Replace if (a){A} with if (! (ta)){A}, and if (a) {A}else{B}

with if (1a){B}else{A}; recurse if nested if block is en-
countered. Finally, apply DeMorgan’s Rule if the boolean
expression a is complex.

4. Run both Moss and JPLAG. For any places that they
are not confused, insert a statement or a label. Because
inserted code breaks the recognized token sequence, code
insertion is always effective in confusing token-based al-
gorithms.

5. Finally, run test scripts, and ensure that correctness is
preserved during plagiarism.

Although the above recipe suffices to confuse both Moss
and JPLAG, in order to test GPLAG’s robustness to tricky
attacks, we tried to eliminate redundant code, but finally
failed to find any redundant code. In general, we expect
that few redundancies exist in mature programs, like join.

The above plagiarism took us about two hours, which sug-
gested that nontrivial work is needed to confuse token-based
detections manually. However, we notice that the above pla-
giarism is mechanical to apply, and with some efforts, the
plagiarism can be (at least partially) automated. In con-
sequence, confusing token-based algorithms is not laborious
any more. This possibility underlines the need for new de-
tection tools that are more robust than token-based ones.
Finally, we note that although it sounds irrational to spend
two hours plagiarizing a program of 667 LOC, writing a sim-
ilar program as mature as join will take even much longer.

3http://www.dwheeler.com/sloccount /

Plagiarism Operations
Procedure Stmt Reorder | Ctrl Replace | Code Insert

xfields 4 9 0
keycmp 11 7 0
prjoin 12 10 0
join 10 19 2
add_field_list 5 3 0
make_blank 7 1 0

Table 4: Detected Plagiarism Procedures

There are totally 17 procedures in the program. The pro-
cedures main and usage are excluded because interface pro-
cedures like them are always ripped off and rewritten in
“professional” plagiarism. Among the rest 15 procedures, 9
procedures are filtered out due to their small sizes. Finally,
six procedures are left in both the original and the plagia-
rized versions. Table 4 lists the six procedures, together
with what disguises are applied to each of them.

Although these disguises succeeded in confusing both Moss
and JPLAG, the plagiarism was detected by GPLAG in less
than 0.1 second. Specifically, it finds six isomorphic pairs,
each of which corresponds to one plagiarized procedure. This
indicates that plagiarism that slips over token-based check-
ing can be easily detected by PDG-based algorithm, which
reaffirms the comparison in Table 2.

6.3 Efficiency of GPLAG

In this subsection, we evaluate the efficiency of GPLAG
with the three large programs, bc, less, and tar. Specifically,
we take an exact copy of the original program as a pla-
giarized version. Because PDGs are insensitive to identifier
renaming, statement reordering and control replacement, an
exact copy is equivalent to a program intensively plagiarized
with the aforementioned three kinds of disguises, as far as
GPLAG is concerned. We first examine the pruning power of
the lossless and lossy filters, and then study the implication
of pruning to the ultimate time cost.

] L] @ 4
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Figure 4: Pruning Ratio of Filters
Figure 4 plots the pruning effect of the lossless and the
lossy filters for different programs, when « varies from 0 to
0.1. The y-axis is the pruned ratio, i.e., what percentage
of PDG pairs are excluded from Gk x G%. The horizontal
dotted lines show the pruning effect of the lossless filter on



Subjects No Filter Lossless Only Lossless & Lossy
Tested Pairs Time Matches | Tested Pairs | Time | Matches | Tested Pairs | Time | Matches
be 3,136 251.21 63 1724 251.78 63 293 0.056 60
less 11,449 1171.35 125 6,304 1170.3 125 1,288 7.38 114
tar 6889 853.1 110 3759 850.24 110 722 122.61 89

Table 5: Efficiency of GPLAG

the three programs. Roughly, about one half PDG pairs are
pruned with the lossless filter only. The solid lines plot the
pruning effects when the lossy filter is also employed. The
curve rocketing from o = 0 to @ = 0.01 indicates that a great
proportion of PDG pairs that survive the lossless filter are in
fact quite dissimilar, and do not need isomorphism testing.
When « gets larger, more PDG pairs are pruned, but at a
mild rate.

We now examine how the pruning affects the ultimate
time cost. Table 5 lists the efficiency comparison on the
three subject programs when 1) no filter, 2) only lossless,
and 3) both lossless and lossy filters are applied. For each
of the three kinds of filter application, we record how many
PDG pairs are actually tested, the time cost, and the num-
ber of found matches. The time is capped in the sense that a
timeout of 100 seconds is set for every isomorphism testing.
Timeout is necessary because subgraph isomorphism testing
can still take hours (or even longer) to finish for some cases.
A PDG pair whose isomorphism testing fails to terminate
within 100 seconds is called a time hog, and is regarded un-
matched.

We now examine Table 5 in detail. The first interesting
point it suggests is that the lossless filter alone does not save
much time, although it cuts off about one half of the PDG
pairs (Figure 4). Specifically, the saving is only a few sec-
onds. The explanation is that for PDG pairs pruned by the
lossless filter, the isomorphism testing algorithm also rec-
ognizes the impossibility of isomorphism within a few steps
of search. On the other hand, when the lossy filter is ap-
plied, the time cost significantly shrinks. With a time cap
set as 100 seconds, and most isomorphism testings finish
within tens or hundreds of milliseconds, we know that the
time saving mainly comes from the avoidance of time hogs,
rather than from the pure reduction of PDG pairs. There-
fore, the lossy filter also helps circumvent time hogs while
tossing away spurious PDG pairs.

6.4 Core-Part Plagiarism

Carriers Lossless Only Lossless & Lossy

Orig. | Plag. Time | Matches | Time | Matches
be less | 245.457 10 2.78 8
bc tar 620.394 19 0.267 8
less bc 1069.72 30 224.48 9
less tar 2655.13 45 137.83 7
tar bc 1084.34 14 0.621 9
tar less | 1048.43 11 204.16 7

Table 6: Simulated Core-Plagiarism

In this section, we simulate cases of core-part plagiarism
with the four subject programs, and examine the effective-
ness and efficiency of GPLAG in detecting core-part plagia-
rism. Specifically, we treat the three large programs as car-
rier programs, and embed the original and the plagiarized

versions of the six procedures (listed in Table 4) into two
different carrier programs. GPLAG is expected to find the
six plagiarized procedures both accurately and efficiently.

Table 6 presents the experiment results for the six car-
rier combinations, with and without the lossy filter. The
six matches are all detected in the six carrier program com-
binations. Clearly, with the lossy filter, much fewer false
positives are alarmed. As to the time cost, similar to the
result in Table 5, the lossy filter significantly reduces the
time cost for these simulated core-part plagiarisms. Again,
this time reduction is due to the avoidance of most time
hogs. Therefore, the lossy filter is critical for GPLAG to de-
tect core-part plagiarism in large programs: Not only can
it reduce the false positive rate, but it also makes time cost
acceptable.

7. DISCUSSIONS

In this section, we discuss the related work and potential
industry implications of our work.

7.1 Related Work

This study is closely related to the previous work on pla-
giarism detection. In Section 3.2, we provided an overview
of existing techniques based on different representations of
programs [1,2,9,11,17,18]. We show that GPLAG is more
effective than these methods, both conceptually and experi-
mentally. The program dependence graph, first proposed by
Ferrante et al. [4], has previously been used in the identifi-
cation of duplicated code for the purpose of software main-
tenance [10,12]. In this study, we propose GPLAG as a
PDG-based algorithm for plagiarism detection. Moreover,
for both effectiveness and efficiency, a statistical lossy fil-
ter is developed, which has not been seen in previous stud-
ies [10,12]. However, on the other hand, since GPLAG in-
volves graph analysis, it is nevertheless less efficient than
those based on sequence analysis. But this difference has
only little impact in practice, because GPLAG usually ter-
minates within seconds even when subject programs are of
thousands of lines of code. There are studies on detection of
other kinds of plagiarism, such as plagiarized research pa-
pers, homework answers, and Web pages [3]. The nature
of such plagiarism is rather different from that of software
plagiarism which often requires more sophisticated analysis.

From the data analysis point of view, GPLAG is related to
graph mining. Graphs have been adopted for data modeling
in many domains, and many graph mining algorithms are
developed. However, these algorithms cannot be used for
plagiarism detection because they search for potential can-
didates almost everywhere in a “candidate-generation-and-
check” approach. As an example, given two identical PDGs
with 30 vertices and 43 edges, CloseGraph [21] fails to ter-
minate in two days. This paper proposes an isomorphism-
based approach, which proves both effective and efficient.

Finally, this study falls into an emerging application do-



main in data mining: data mining for software engineer-
ing. Previous research indicates that proper mining of soft-
ware data can produce useful results for software engineers.
Livshits et al. apply frequent itemset mining algorithms to
software revision history, which uncovers programming rules
that developers are expected to conform to [16]. Liu et al.
show that mining program control flow graphs can help de-
velopers find logic errors [14,15]. These cases well exemplify
the promise and usefulness of data mining in software engi-
neering. This study provides yet another such example.

7.2 Implications to Software Industry

Software plagiarism has been an important issue in soft-
ware industry for intellectual property and software license
protection, especially for open source projects. Thus it is
important to develop robust and effective approaches to
software plagiarism detection. Our study shows that pre-
vious approaches that rely on string matching, parse-tree
construction, and tokenization cannot handle sophisticated
control flow alternation and code insertion, and thus cannot
be effective at fighting against “professional” plagiarists.

This study proposes a rather different approach, GPLAG,
which bases the analysis on program dependence graphs.
The study demonstrates its effectiveness at the detection
of sophisticated plagiarism in comparison with the current
state-of-the-art tools. Moreover, our experiments show that
this approach is also scalable to large programs. Even in
practice when software of millions of lines of code is encoun-
tered, GPLAG may be still applicable because one compo-
nent only needs to be compared with its counterpart. Fi-
nally, GPLAG can be easily extended to other programming
languages. What one needs for a new language is merely a
parsing frontend, from which PDGs can be derived. Cur-
rently, the frontends for C, C++ and Java are available and
ready to use. To this extent, GPLAG is not only a program
for idea demonstration but also a practical tool.

One may wonder whether GPLAG can be really used for
lawsuit conviction. In the experiments, we have witnessed
low false positive rate. In general, chances are slim that one
PDG is isomorphic to another by chance. Even for the same
task, two developers will likely come up with different imple-
mentations, and different PDGs in consequence. Therefore,
if GPLAG judges one case as plagiarism, the chance could be
high. However, human participation is nevertheless needed
for result verification and final judgement.

8. CONCLUSIONS

This paper proposes a new plagiarism detection algorithm,
GPLAG, which detects program plagiarism based on the
analysis of program dependence graphs. Experiments have
well demonstrated its effectiveness over existing tools, and
its applicability in practice.
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