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Automatic methods of measuring similarity between program code and natural language text pairs have been used for many years to assist 
humans in detecting plagiarism. For example, over the past thirty years or so, a vast number of approaches have been proposed for 
detecting likely plagiarism between programs written by Computer Science students. However, more recently, approaches to identifying 
similarities between natural language texts have been addressed, but given the ambiguity and complexity of natural over program 
languages, this task is very difficult. Automatic detection is gaining further interest from both the academic and commercial worlds given the 
ease with which texts can now be found, copied and rewritten. Following the recent increase in the popularity of on-line services offering 
plagiarism detection services and the increased publicity surrounding cases of plagiarism in academia and industry, this paper explores the 
nature of the plagiarism problem, and in particular summarise the approaches used so far for its detection. I focus on plagiarism detection in 
natural language, and discuss a number of methods I have used to measure text reuse. I end by suggesting a number of recommendations 
for further work in the field of automatic plagiarism detection. 

 
 
1. Introduction 
As an example of one particular type of text reuse (see, e.g. 
(Clough,2003) for  further information and discussion), 
plagiarism has received much attention from both the 
academic and commercial communities. This has been 
particularly true in academia as students turn to technology 
to fabricate texts which are not entirely their own work. Text 
reuse is defined as the activity whereby pre-existing written 
material is reused during the creation of a new text, either 
intentionally or un-intentionally.  
 
Many other examples of text reuse surround us today, 
including the creation of literary and historical texts, 
summarisation, translation or revision of existing texts. 
Many factors influence text reuse including translating an 
original text into a different language, restyling an original to 
fit different authorial or consumer needs (e.g. rewriting a 
scientific text to be readable by the layman), reducing or 
expanding the size of the original text and the competency 
and production requirements of the writer.  
 
Recent advances in technology are making text reuse 
much easier. For example, the Google web search engine 
claims to index over 3 billion web pages1 providing a large 
variety of source texts on a diverse range of topics in many 
different languages. Word processors have also become 
more sophisticated, enabling users to easily cut and paste, 
merge and format pre-existing texts from a variety of 
sources. This, coupled with the change of culture brought 
about by electronic ‘cyber-space’ has caused concern to 
authors surrounding the ownership of their written material. 
Either the owner (perhaps the publisher) has to protect their 
texts (e.g. using digital watermarks), rely on finding 
illegitimate copies, or even de-valuea their digital content in 
some way. Mallon (1989) suggests that “the origin and 

                                                 
1 This estimate stands at the time of writing and not all of these 
web pages will contain text. 

ownership of all electronic documents is now peculiarly 
evanescent; one click of the ‘Save As’ button can give a 
whole new name and identity, instantly, to someone else’s 
creation.”  
 
Of course not all text reuse is deemed a cardinal sin; there 
are certain areas where borrowing is perfectly acceptable. 
For example, as Angélil-Carter (2000:23) points out: 
“generally, borrowing is a tradition in literature and other art 
forms and more than a tradition: creativity feeds on what 
has gone before, new work is formed out of old.” During the 
renaissance and romantic eras of literary writing, even the 
“great” authors would reuse the ideas, storylines and plots 
of others in their own literary creations. It was not 
considered immoral or unethical; rather it was seen as a 
stimulus for creativity. Text reuse was (and is) the epitome 
of literary recognition.  
 
Today, there are examples where even verbatim text reuse 
is not considered unethical; rather the norm. One such 
example is the reuse of newswire (or news agency) texts by 
journalists in the creation of newspaper articles (see, e.g. 
(Clough et al.,2002a)). As long as the journalist or the 
organisation they write for are subscribers of the news 
agency, they are free to reuse agency text as and how they 
please, with or without attribution. But let us return to the 
broader example of text reuse in hand: plagiarism. Why is it 
considered so wrong and what can be done to counteract 
this kind of text reuse? 

2. Plagiarism detection 
The aim of this paper is to present plagiarism detection as a 
problem to be solved; not to cover other aspects of plag-
iarism, important as they are, such as: surrounding ethical 
and moral issues (see, e.g. (Mallon,1989), (Martin, 1994), 
(LaFollette,1992), (Hannabuss,2001) and (Angélil-
Carter,2000)), suggestions for practical steps that the 
individual or institution can take to detect plagiarism (see, 
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e.g. (Bull et al.,2001) and (Culwin and Lancaster,2000)), 
examples of plagiarism (see, e.g. (Mallon,1989)), reasoning 
behind student plagiarism (see, e.g. JISC), or  guidance for 
writers on how to prevent themselves unintentionally 
plagiarising their sources. So what is plagiarism? 

2.1. The problem of plagiarism 
 
“The wrong in plagiarism lies in misrepresenting that a 
text originated from the person claiming to be its 
author when that person knows very well that it was 
derived from another source, knows that the reader is 
unlikely to know this, and hopes to benefit from the 
reader’s ignorance.” - (Samuelson,1994) 

 
Joy and Luck (1999) define plagiarism as “unacknow-
ledged copying of documents or programs” that can “occur 
in many contexts: in industry a company may seek 
competitive advantage; in academia academics may seek 
to publish their research in advance of their colleagues.” 
Most empirical study and analysis has been undertaken by 
the academic community to deal with student plagiarism, 
although methods of detection have found their way into the 
commercial world, e.g. measuring software reuse and 
identifying reused code (see, e.g. (Hislop,1998)).  
 
Hannabuss (2001) defines plagiarism as the “unauthorised 
use or close imitation of the ideas and language/ 
expression of someone else and involves representing their 
work as your own.” Plagiarism is closely linked with 
intellectual property and copyright, both of which are set in 
place to protect the ownership of texts through the creativity 
and originality of their contents. As Osen (1997) comments: 
“if plagiarism is the bane of the academic world, copyright 
infringement is the scourge of the legal one.” Copyright law, 
however, does not protect ideas, themes or subject matter; 
only the style with which the content is expressed, i.e. it 
covers only form.  
 
Plagiarism is considered a problem because it not only 
infringes upon existing ownership, but also deceives the 
reader and misrepresents the originality of the current 
author: “it is the mixture of law or rule-breaking and social 
misrepresentation and deception that gives plagiarism its 
bitter taste” (Hannabuss,2001). In education, students may 
plagiarise to gain a qualification; academics to gain 
popularity and status. If a plagiarism relationship exists 
between two texts, it suggests that the texts exhibit some 
degree of intertextuality, which would not appear between 
them if independently written.   
 
Academia encourages students and researchers to build 
upon the ideas of others, but failure to acknowledge the 
ideas or material of others, or copying existing work is 
unacceptable. There are cases when what appears to be 
plagiarism is not, e.g. appropriate self-reuse of one’s own 
work (see, e.g. (Samuelson,1994)), or poor citation. These 
cases can be resolved through manual inspection.  
 

2.2. Forms of plagiarism  
Plagiarism can take several distinct forms, including the 
following (Martin,1994): 
 
(1) Word-for-word plagiarism: direct copying of phrases 

or passages from a published text without quotation or 
acknowledgement.  

 
(2) Paraphrasing plagiarism:  when words or syntax are 

changed (rewritten), but the source text can still be 
recognised.  

 
(3) Plagiarism of secondary sources: when original 

sources are referenced or quoted, but obtained from a 
secondary source text without looking up the original.  

 
(4) Plagiarism of the form of a source: the structure of 

an argument in a source is copied (verbatim or 
rewritten).  

 
(5) Plagiarism of ideas: the reuse of an original thought2 

from a source text without dependence on the words or 
form of the source. 

 
(6) Plagiarism of authorship: the direct case of putting 

your own name to someone else’s work 
 
The easiest form of plagiarism to detect and prove is 
verbatim or word-for-word text reuse (given a possible 
source text to compare with). This can often be detected 
using the simplest of automatic methods, but occurrences 
by students are often due to the fact that they are uncertain 
as to how to reuse source texts legitimately.  
 
Other forms, such as paraphrasing and the reuse of 
structure can also be identified relatively easily, but get 
progressively harder as the plagiarist uses more complex 
rewrites or to hide the original text, or reuses only ideas and 
not the content. The extreme is ghost-writing: getting 
someone else to write the text for you. These forms of 
plagiarism are not just harder to detect, but also harder to 
prove.  

2.3. Examples of text reuse 
 
2.3.1 Student plagiarism  
Real examples of student plagiarism are hard to come by 
due to restrictions in student confidentiality. However, many 
on-line sources exist that provide examples of what 
constitutes student plagiarism. The simplest form of 
plagiarism is to directly copy from a source text with 
minimum rewriting. This type of text reuse is common in 
student plagiarism (Martin,1994) where entire passages are 
copied word-for-word directly from the source. For example, 
consider the following rewrite from the University of 
Wisconsin-Madison Writing Centre3: 

                                                 
2 There are cases when an idea or thought becomes common 
knowledge and it is not necessarily plagiarism if the idea is reused. 
3 http://www.wisc.edu/writing/Handbook/QuoSampleParaphrases. 
html (site visited 23/01/2003). 
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Original version: 
“How important is our power of non-analytical thought to the 
practice of science? It's the most important thing we have, 
declares the Princeton physicist historian Thomas Kuhn who 
argues that major breakthroughs occur only after scientists 
finally concede that certain physical phenomena cannot be 
explained by extending the logic of old theories. Consider 
the belief that the sun and the planets move around the 
earth, which reigned prior to 1500. This idea served nicely 
for a number of centuries, but then became too cumbersome 
to describe the motions of heavenly bodies. So the Polish 
astronomer Copernicus invented a new reality that was 
based on a totally different ‘paradigm’ or model - that the 
earth and planets move around the sun”. 

 
Plagiarised version: 

Non-analytic thought is considered very important to the 
practice of science by Princeton physicist historian 
Thomas Kuhn who claims that major breakthroughs 
happen only when scientists finally concede that some 
physical phenomena defy explanation by extending the 
logic of old theories. One idea which served nicely for 
many centuries but then became too cumbersome was the 
belief that the sun and planets revolved around the earth. 
This was held prior to 1500 until Copernicus invented a 
new reality: the earth and planets move around the sun. 

 
Words highlighted in bold are copied directly from the 
source and the structure follows a similar form to that of the 
original. Even with proper citation, there is little originality or 
added creativity in this example. Although text can be 
copied verbatim, it is more likely that sentences are 
rephrased or paraphrased to put the original into the 
writer’s own words. The following examples are taken from 
the University of Kentucky4: 
 
Original version: 

“Those complexes that contain unpaired electrons are attracted 
into a magnetic field and are said to be paramagnetic, while 
those with no unpaired electrons are repelled by such a field and 
are called diamagnetic.”  

 
Plagiarised versions: 

“Complexes that contain unpaired electrons are those that 
are attracted to a magnetic field. These are called 
paramagnetic, while those with no unpaired electrons are 
repelled by a magnetic field and are said to be diamagnetic.” 

 
“Those complexes that contain paired electrons are repelled 
by a magnetic field and are said to be diamagnetic, whereas 
those with no paired electrons are attracted to such a field 
and are called paramagnetic.” 

 
“Compounds that have unpaired electrons are attracted to a 
magnetic field and are called paramagnetic. Compounds with 
no unpaired electrons are repelled by this field and are said 
to be diamagnetic.” 

 
The degree of rewriting can vary from direct copying from a 
source with no attribution, the insertion or deletion of 
grammatical units, e.g. sentences or phrases, the insertion 
or deletion of words within a sentence, e.g. noun phrase 
modifiers, the reordering of words in a sentence or the re-
ordering of sentences in a discourse, inversion of original 

                                                 
4 http://www.chem.uky.edu/Courses/common/plagiarism.html (site 
visited 23/01/2003). 

clauses, substitution of equivalent words or phrases, 
changes in form such as tense and voice (e.g. active to 
passive voice), making abstract ideas more concrete 
(specification), making concrete ideas more abstract 
(generalisation), merging or separating sentences (either 
adjacent or dispersed throughout the original) and rewriting 
direct quotes as indirect (and vice-versa). Rewriting a text 
will invariably include paraphrasing: a form of rewriting in 
which the meaning of the original phrase or sentence is 
preserved, but the way in which the meaning is expressed 
is changed.  
 
Other forms of plagiarism include submitting someone 
else’s work (or copying it directly), failing to reference/ 
footnote source material and copying a collection of 
paragraphs from a variety of electronic sources and pasting 
them together into a coherent whole. This is known as an 
‘Internet pastiche’ or ‘patchwork plagiarism’.  
 
2.3.2 Journalism  
An example of text reuse with which I have been involved 
more closely with lies within the domain of journalism. It is 
common knowledge within the newspaper industry that 
most newspapers rely heavily upon press agencies as their 
primary source of ‘pre-fabricated’ news material 
(Bell,1996:20-22). This is a form of plagiarism, but ‘benign’. 
As regular subscribers to news agency services, media 
organisations pay an annual fee which entitles them to 
reuse the agency source  text in any way they see fit, either 
verbatim, or editing it to suit their own production 
requirements. In many cases, the final attribution of the 
news story goes to the journalist or newspaper and not the 
news agency, but this is perfectly acceptable. As an 
example, consider the following. 
 
Original (news agency): 

A Chief Constable's daughter who assaulted two officers in her 
father's force after drinking a litre of strong cider was today 
sentenced to 150 hours community service. 

 
Rewrite (The Sun - popular press): 

A Top Cop's daughter who assaulted two of her Dad's 
officers after downing a litre of cider was sentenced to 150 
hours' community service yesterday. 

 
Rewrite (The Independent - quality press): 

The daughter of the Chief Constable of Sussex was 
sentenced to 150 hours' community service yesterday. 

 
The journalist may decide to rewrite, re-order, delete or 
paraphrase agency copy, rather than reuse the text 
verbatim depending on a wide variety of external influences 
and personal writing style. Texts are often edited after their 
creation by other newsworkers whose job it is to remove 
personal style and make it consistent with other texts 
written under the name of a common author (the 
newspaper). In the past, paper copies of stories were 
marked with these changes, but now journalists like other 
writers, work with entirely electronic media, which has 
promoted a cut-and-paste culture that makes it easier for 
the journalist and editor to create and manipulate versions 
of a story as it cycles between newsworkers prior to 
production. Bell (1991) identifies typical rewrite strategies 
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used by the newsworker as deletion, lexical substitution, 
and changes in syntax. 

2.4. Plagiarism detection 
Typically, manual plagiarism detection within a single text is 
based on identifying inconsistencies such as the author’s 
writing style, or recognising passages with a familiar feel to 
them. Between multiple texts, plagiarism detection involves 
finding similarities which are more than just coincidence 
and more likely to be the result of copying or collaboration 
between multiple authors. In some cases, a single text is 
first read and certain characteristics found which suggest 
plagiarism. The second stage is to then find possible 
source texts using tools such as web search engines for 
unknown on-line sources, or manually finding non-digital 
material for known sources.  
 
In academia, plagiarism detection is generally down to the 
knowledge, ability, time and effort of the lecturer/teacher 
assessing the student’s work. Typical discriminators 
signaling plagiarism might include the following: 

• Use of advanced or technical vocabulary beyond that 
expected of the writer. 

• A large improvement in writing style compared to 
previous submitted work. 

• Inconsistencies within the written text itself, e.g. 
changes in vocabulary, style or quality. 

• Incoherent text where the flow is not consistent or 
smooth, which may signal that a passage has been 
cut-and-pasted from an existing electronic source. 

• A large degree of similarity between the content of two 
or more submitted texts. This may include similarity of 
style as well as content.  

• Shared spelling mistakes or errors between texts. 

• Dangling references, e.g. a reference appears in the 
text, but not in the bibliography. 

• Use of inconsistent referencing in the bibliography 
suggesting cut-and-paste. 

 
In a recent survey undertaken by JISC (Bull,2001) in which 
321 lecturers were asked to participate in a questionnaire 
regarding their plagiarism experiences, 72% of the respon-
dents declared that a change in writing style within a text 
was enough to signal plagiarism.  
 
From the literature surrounding plagiarism, I believe that at 
least four problems exist that those addressing plagiarism 
detection should address. I have classified these based on 
whether the detection addresses a single text or more than 
one text.  
 
(1) Within a single text: 
 
a) Identify inconsistencies that indicate a text is unlikely to 

be written solely by the claimed author.  
 
b) Find the likely sources for an inconsistent text. 

(2) Between multiple texts: 
 
c) Identify unacceptable collaboration, i.e. collusion. 
 
d) Identify unacceptable copying from a source text, i.e. 

plagiarism.  
 
It is useful to make the distinction between identifying 
plagiarism within a single text and between multiple texts 
because much of the research in automatic plagiarism 
detection to date has concentrated on the latter. However, 
from the findings of the JISC survey and from the 
comments of lecturers at the University of Sheffield, it is 
likely that methods to address the first task are also 
important and necessary to cover all types of plagiarism.  

2.5. What the plagiarism detection task is not 
The problem of identifying plagiarism concerns the way in 
which the content of a text is expressed and whether this is 
likely to come from other sources. Is it consistent, or does it 
feel multi-authored; is the text similar to an existing one or 
does it appear original? This task differs from other 
problems of text analysis, for example authorship attribution 
and information retrieval.  
 
In authorship attribution, the concern is one of authorship 
regardless of content. Discriminators of attribution tend to 
be those based on lexical or syntactic features which re-
main constant over texts on different topics, but vary across 
authors. Plagiarism detection also varies from the typical ad 
hoc information retrieval task of finding texts on the same or 
similar topic to a user-defined query. In this problem 
discriminators are those based on topic (e.g. perhaps noun 
phrases, or proper names). 
 
The plagiarism detection task is different from authorship 
attribution, but deeper than information retrieval. Plagiarism 
concerns content, regardless of author and expression, 
rather than topic. Given that there will always remain a high 
degree of similarity between works on the same topic (e.g. 
essays written by a group of students on the same course) 
discriminators used in plagiarism detection should not only 
concern content, but also expression.  

3. Automatic plagiarism detection 
Almost all research to date has concentrated on identifying 
plagiarism and collusion between texts. Since the 1970s, 
the popularity and direction of automatic plagiarism 
detection has changed. To begin with, empirical research 
came from the programming community, particularly in 
academia where computer science departments built tools 
to identify “unusual” similarity between programming 
assignments handed in by students. There is still much 
work being done within industry where there is great 
interest in identifying similarity between large software 
programs, e.g. duplication, redundant code and similarity 
between revisions.  
 
In academia, recent interest has shifted towards identifying 
plagiarism between natural language texts. Particular areas 
of concern include: identifying verbatim cut-and-paste (with 
minor changes) from Web-based sources and identifying 
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the same content but paraphrased. This is reflected by the 
increase in on-line services (e.g. Plagiarism.org and 
turnitin.com) to address plagiarism from available on-line 
resources, particularly term paper mills which can supply 
pre-made essays to students for a given fee. Services to 
track and monitor commercial content have also received 
increased popularity as the media report more cases of 
stolen digital content (e.g. contentguard.com). 
 
Whale (1990) suggests that “the task [of automatic 
plagiarism detection] may be simplified by finding a 
distinctive characteristic such as a misspelled identifier or 
paraphrased comment, though such a capability is hard to 
build into any automated plagiarism detection system.” To 
identify more complex forms of plagiarism beyond cut-and-
paste or simple rewriting is hard, particularly for natural 
language, therefore automatic plagiarism detection 
generally involves finding quantifiable discriminators which 
can be used to measure the similarity between texts. 
Rather than identify more complex plagiarism, the 
automatic methods aim to highlight potentially derived texts 
through “unusual” or unlikely similarity enabling further 
manual inspection where more complex forms can be 
found. 
 

Assumption:    
The greater the similarity (or fewer the differences) 
between texts; the more likely is that one of the texts is 
derived.  

 
One of many challenges in automatic plagiarism detection 
is the selection of suitable discriminators that reflect 
plagiarism and not co-incidental similarity due to content or 
theme. So far the focus has been on lexical and structural 
similarity in both program code and natural language, but 
these become less effective when the degree of rewriting or 
form of plagiarism becomes more complex. Three areas to 
address in automatic plagiarism detection include the 
following: 
 

(1) Finding suitable discriminators of plagiarism which 
can be quantified. 

 
(2) Developing suitable methods to compare those 

discriminators. 
 

(3) Finding suitable measures of similarity. 
 
The goal of an automatic plagiarism detection system is to 
assist manual detection by: reducing the amount of time 
spent comparing texts, making comparison between large 
numbers of multiple texts feasible and finding possible 
source texts from electronic resources available to the 
system. The systems must minimise the number of false 
positives (those incorrectly classed as plagiarised) and 
false negatives (those incorrectly classed as non-
plagiarised), and maximize the number of true positives 
(those correctly classed as plagiarised) and true negatives 
(those correctly classed as non-plagiarised).  

3.1. Plagiarism detection in program code 
Parker and Hamblen (1989) define plagiarism in program 
code as: “a program which has been produced from 

another program with a small number of routine 
transformations.” These transformations might range from 
the simple (e.g. changing comments or variable names), to 
the more complex (e.g. replacing control structures with 
equivalents). Faidhi and Robinson (1987) characterise 
possible transformations in a spectrum ranging from no 
change (level 1) to the most complex changes (level 6). 
Identifying all possible changes a plagiarist is likely to use 
to disguise their copying would be infeasible, however 
changes in program code tend to fall into two categories 
(Joy and Luck,1999): 
 
(1) Lexical changes: edits that would, in principle, be 

performed using a simple text editor and require little 
knowledge of the programming language.  In particular 
these edits would not require knowledge sufficient to 
parse a program. These changes might include 
rewording, adding or deleting comments, changing for-
matting and changing variable names (approximately 
levels 1-3 in Faidhi and Robinson (1987)). 

 
(2) Structural changes: these changes require 

knowledge of the programming language to the extent 
of being able to change the structure so that the 
program still parses. This is highly language depen-
dent and might include replacement of equivalent 
iteration structures or operand ordering (approximately 
levels 4-6 in Faidhi and Robinson (1987)). 

 
Two major approaches have emerged for plagiarism 
detection in program code (e.g. (Whale,1990) and (Verco 
and Wise, 1996)): (1) attribute-counting, and (2) 
structure-based. The earliest systems (e.g. 
(Ottenstein,1976)) counted program attributes such as 
metrics of software science5, the number of tokens, 
distribution of identifiers and other author or program 
specific characteristics. These scores were collected into a 
vector called a profile and a distance measure, e.g. 
Euclidean distance, used to determine the degree of 
closeness between profiles. Many attributes have been 
tried, but an attribute-counting method with consistent 
results is still to be found. The difficulty of choosing an 
appropriate set of metrics, so far, has been an insoluble 
problem associated with this approach. 
 
Empirical investigation has shown that measures of 
similarity derived from attribute-counting measures cannot 
capture the structure of a program sufficiently to distinguish 
plagiarised from non-plagiarised texts (c.f. (Faidhi and 
Robinson,1987), (Whale,1990) and (Wise,1992)). This has 
led to the creation of ‘structure-based’ methods which 
compare string representations of program structure 
directly, rather than measures derived from the structure.  
 
Programs are typically converted into a string represent-
tation, which might involve some knowledge of the target 
language, e.g. tokenisation, or more language-dependent 
methods, such as parsing. The aim of this stage is to 
reduce the effect of differences due to systematic changes 

                                                 
5 “A rule for assigning a number or identifier to software, calculated 
algorithmically from the software alone” – (Dunsmore,1984). 
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such as renaming identifiers, or replacing equivalent 
iteration structures. 
 
Given two “normalised” strings, a language-independent 
comparison method is chosen based upon string compari-
son, e.g. approximate string matching (Wise,1996) or 
sequence alignment (e.g. Gitchell and Tran (1999)), with 
the following assumption: plagiarised programs are more 
likely to share longer matching substrings. The output from 
this comparison can be quantitative, e.g. the longest 
common substring or the average substring length; or 
qualitative, such as a visual representation of comparison 
or a list of substring matches.  
 
Some researchers combined both approaches, e.g. 
Donaldson et al. (1981) and Jankowitz (1988), but current 
detec-tion systems (see, e.g. Whale (1990), Baker (1993), 
Wise (1996), Gitchell and Tran (1999), Joy and Luck (1999) 
and Prechelt et al. (2000)) use only structure-based 
approaches and compare string representations of 
programs rather than metrics obtained from the program. 
Current research is not focused on finding further 
comparison methods, but in how best to recode programs 
into a normalised stream of tokens.  
 
In summary, methods of detection between programs 
include measuring similarity: (1) between program style or 
complexity (Ottenstein,1976), (2) between their parse trees 
(Jankowitz,1988), (3) between their flow of data (Horwitz, 
1990), (4) between fingerprint or compressed represen-
tations of the programs (see, e.g. (Manber,1994) and (Ziv 
and Lempel,1977)), (5) between matching substrings (e.g. 
the UNIX diff tool), (6) between compressed versions of the 
sources, (7) between parameterised matches (Baker,1993), 
and (8) between visual representations of the programs 
(Church and Helfman,1993).  

3.2. Plagiarism detection in natural language 
In a similar way to automatic plagiarism detection in 
program code, methods of plagiarism detection in natural 
language have focused on identifying similarity between 
groups of texts, rather than across a single text. However, 
natural language is inherently more difficult to process 
automatically than program code, making detection of even 
more routine changes such as lexical or syntactic 
modifications less successful.  
 
Compared to program code, difficulty in processing in this 
instance is derived from at least two properties of natural 
language: (1) ambiguity, and (2) unconstrained vocabulary. 
For example, consider detecting plagiarism in which words 
are replaced by their synonyms. Machine Readable 
Dictionaries such as WordNet6 are possible sources for 
such transformations, but because word senses are 
ambiguous, selection of the correct term is often non-trivial. 
Consider a more complex approach in which the texts are 
parsed and their syntax compared. Ambiguity in parsing 
means that the same sentence between texts can result in 

                                                 
6 WordNet is a thesaurus of general English containing semantic 
relations between words and phrases. For more information see: 
http://www.cogsci.princeton.edu/~wn/ (site visited: 31/01/2003). 

many different parse trees thereby reducing similarity and 
wrongly missing plagiarism.  
 
The flexibility and complexity of natural language has driven 
researchers (in many language engineering tasks, not just 
plagiarism) to apply simpler methods of similarity involving 
a minimal amount of natural language processing. As with 
detection between different programs, various methods of 
comparing texts have been investigated, as well as defining 
suitable discriminators. Most research has been directed at 
finding possible copies and collusion between members of 
a closed-set, e.g. a set of student essays. However, unlike 
detection in software code, detection of plagiarism from 
Web-based sources has also been investigated using 
methods of copy detection.  
 
Methods of detection originating from file comparison, 
information retrieval, authorship attribution, compression 
and copy detection have all been applied to the problem of 
plagiarism detection. For example, similarity between texts 
based on the longest common subsequence (e.g. UNIX 
diff), approximate string matching (e.g. turnitin.com), the 
overlap of longest common substrings (e.g. YAP 
(Wise,1996) and JPLAG (Prechelt et al.,2000)), the 
proportion of shared content words (particularly those 
occurring only once: the hapax legomena - CopyCatch 
(Woolls and Coulthard,1998)), the overlap of consecutive 
word seqences or word n-grams (e.g. Ferret (Lyon et 
al.,2001), SCAM (Shivakumar and Garcia-Molina,1996), 
COPS (Brin et al.,1995), Koala (Heintze,1996) and 
CopyFind7), and compressed versions of the texts (see, 
e.g. (Medorie et al.,2002))  
 
Methods have also been developed to visualise the 
similarity between texts including VAST (Culwin and 
Lancaster,2001), Dotplot (Church and Helfman,1996), 
Bandit8 and Duploc (Ducasse et al.,1999). For more 
information about plagiarism detection, see (Clough, 2000). 

4. Example plagiarism detection methods for 
natural language 

Two approaches for detecting plagiarism in natural 
language texts will now be discussed. The main focus of 
my research has been measuring text reuse in journalism. 
In most cases this would represent reuse by an 
experienced plagiarist (i.e. the newsworker) with a high 
level of editing skill and excellent command of the English 
language. More recently I have been experimenting with 
methods to detect stylistic inconsistency across a single 
text. This inconsistency may indicate that different authors 
may have been involved with its creation.  

4.1. Measuring similarity between multiple texts 
One method of plagiarism detection which has proven to be 
successful in a number of applications is finding the overlap 
of matching subsequences and substrings (consecutive 
tokens) of length ≥ n (where n is derived empirically). 

                                                 
7 http://plagiarism.phys.virginia.edu/software.html (site visited: 
23/01/2003). 
8 http://socrates.cs.man.ac.uk/~ajw/pd.html (site visited: 
23/01/2003). 
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Because there are many ways to express the same 
concept, the longer n becomes, the more unlikely it is that 
the same sequence of n tokens (words or characters) will 
appear in the same order in independently-written texts. 
Methods have varied between the use of fixed length 
substrings (commonly known as n-grams), variable-length 
substrings, or both (see, e.g. (Brin et al.,1995), 
(Shivakumar and Garcia-Molina,1996), (Lyon et al.,2001), 
and (Broder,1998)). The assumption that derived texts are 
unlikely to share matching sequences of consecutive 
tokens of length ≥ n rests upon the intuition that the way in 
which people express themselves varies from person to 
person. Even if writing about the same subject, it is unlikely 
that the topic will be expressed in exactly the same way 
(e.g. the same program structure or grammatical syntax), 
and using exactly the same words (i.e. the same 
vocabulary). As McEnery and Wilson (1996) state about 
finding the same sentence more than once: “unless it is a 
very formulaic sentence (such as those appearing as part 
of a legal disclaimer at the beginning of a book), it is deeply 
unlikely that you will find it repeated in its exact form in any 
book, in any library, anywhere” (McEnery and 
Wilson,1996:7).  
 
For example, Table 1 shows the number of n-gram occur-
rences (tokens), distinct n-grams (types), the percentage of 
unique n-grams (type-token ratio) and the percentage of n-
grams occurring in one text as n varies from 1 to 10 words. 
These figures are taken from 769 texts in the METER 
corpus (a restricted domain of law and court reporting texts 
- see (Clough et al.,2002b)). Note that as n increases, the 
percentage of distinct n-grams increases indicating that 
tokens become increasingly unique. Note also that the 
percentage of distinct n-grams occurring in a single file also 
increases indicating that longer n-grams are less likely to 
be shared across more than one document.  

 
Table 1 Uniqueness of consecutive n-word sequences 

(n-grams) as n increases from 1-10 words 
 
Although Table 1 shows that as n increases it is less likely 
that the n-word sequence will be repeated and therefore 
becomes a possible suitable discriminator for plagiarism, it 
also becomes less likely that the n-gram will occur at all in 
any derived text (a problem known as data sparseness). 
The selection of n is therefore a trade-off between correctly 
finding derived texts, versus the number of plagiarised texts 
retrieved.  
Similarity between texts is measured by computing sets of 
n-grams for each text and comparing these to determine 

the degree of overlap. A similarity function is used to 
capture the degree of overlap between the two texts 
represented by the sets of n-grams and a threshold chosen 
above which texts are deemed plagiarised. We used a 
variety of different similarity measures to capture the 
overlap between two texts including the following: 
 
 
 
 
 
 
In this measure, the similarity between two sets of n-grams, 
SA and SB, is computed by summing elements of the 
intersection, T, of n-gram sets using a weighted function 
dependent on the length of n-gram i, leni. The sum is 
normalized with respect to set SA to create a subset or 
containment score. This score can be computed for various 
lengths of n (or leni) where the weighted score is used to 
give a higher similarity score to longer overlapping n-grams. 
If the weighting based on length is not used, the problem 
arises where a single overlapping n-gram of length 5 will 
receive the same score as 5 n-grams of length 1, but where 
even a single occurrence of an n-gram of length 5 words is 
much more significant and indicative of reuse than many 
single word matches.  
 
In my experiments with n-grams, I found data sparseness 
to be a problem: the occurrence of longer n-grams 
becomes increasingly rare in derived texts as relatively 
simple lexical and syntactic rewriting is used to modify the 
original. This method of comparison then becomes 
sensitive to the n-gram length chosen to discriminate 
between derived and non-derived texts. Another problem is 
the existence of long substrings in non-derived texts 
resulting from domain-specific terminology (e.g. “the court 
was told yesterday”) and direct quotations, both of which 
are likely to occur in dependent and independently-written 
texts. An alternative approach to using fixed-length n-grams 
is variable length n-grams or sequence comparison. In 
particular, I have experimented with various methods of 
computing the overlap of longest common substrings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 The longest common substrings computed 

between two sentences using GST  
 

N 
(words) 

N-gram 
occurrences 

(tokens) 

Distinct 
n-grams 
(types) 

% distinct 
n-grams 

% distinct 
n-grams in 

1 file 
1 137204 14407 11 39 
2 248819 99682 40 67 
3 248819 180674 73 82 
4 257312 214119 85 90 
5 251429 226369 90 93 
6 250956 231800 92 94 
7 250306 234600 94 95 
8 249584 236310 95 96 
9 248841 237409 95 97 

10 289610 278903 96 97 

|AS|
Ti

1)ilog(len  ilen
)BS,A(SSimilarity

∑
∈

+×

=

A drink-driver who ran into the Queen 
Mother’s official Daimler was fined £700 
and banned from driving for two years.

Text string: source text 

A DRUNK driver who crashed into the back 
of the Queen Mum’s limo was banned for 
two years yesterday. 

Pattern string: derived text 
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Various methods of sequence comparison have been 
suggested for measuring the similarity and difference 
between token sequences (see, e.g. (Sankoff and Krustal, 
1983)). One approach used successfully for plagiarism 
detection in program code is Greedy String Tiling (or GST: 
see, e.g. (Wise,1993)), an algorithm which computes a 1:1 
mapping between the tokens in a text pair in such a way 
that as much of one text as possible is covered with 
maximal non-overlapping substrings (called tiles) from the 
other. This algorithm computes the longest common 
substrings (greater than length n) between two texts without 
having to define an n-gram size a priori. For example, the 
texts in Figure 1 represents a tiling of two sentences after 
running GST (tiles are highlighted) with a minimum match 
length of 1 word. 
 
The result of running the GST algorithm is a set of maximal 
matches between the text pair: [for two years], [driver who], 
[into the], [a], [queen], [was] and [banned]. Given a set of 
tiles, a number of different quantitative measures can be 
derived such as the minimum and maximum tile length, the 
average tile length, the dispersion of tile lengths, and a 
similarity score based on tile length (similar to that for n-
gram containment). We have found on average that derived 
texts do share longer matching substrings, and both the 
tiling for a derived and non-derived text pair are in most 
cases apparently different (see Figure 2). The challenges 
are capturing these tiling patterns such that derived and 
non-derived texts are distinguishable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The longest common substrings computed 

between a derived text pair (top) and 
independent text pair (bottom) 

 
 
This method of comparison has been particularly useful in 
aiding manual comparison between texts9. The visualization 

                                                 
9 This implementation of the GST algorithm can be tested on-line 
at: http://nlp.shef.ac.uk/meter/index.jsp (site visited 31/01/2003).  

of GST is similar to that of the Dotplot approach (see 
Appendix 1), but with the advantage that the similarity is 
also quantified. I am looking at ways to better capture tiling 
patterns between texts, as well as creating 1:1 mappings 
based on the context around tokens, rather than just 
selecting the first match. I am also experimenting with 
making tile creation more resilient to simple editing 
changes, and comparing alternative text representations 
based on tagged, parsed and interpreted formats.  
 
I currently use a version of the UNIX diff tool to compute a 
measure of similarity based on the longest common 
subsequence of matching tiles to capture an element of 
structural similarity between the texts. This sequence 
comparison stage is also able to produce an edit script 
which lists a set of simple edit operations (insertion, 
deletion, substitution and transposition) to transform the 
original text into the derived text. My goal is to capture 
common editing patterns that describe how the tiles differ 
between the original and derived text, to enable the 
detection of further rewrite examples. Murata and Isaraha 
(2002) have shown how sequence comparison can be used 
to identify predictable differences between spoken tran-
scripts of written texts.  
 
For both n-gram and GST approaches, I am experimenting 
with methods to relax the matching between sequences to 
allow for: (1) small gaps to represent token deletion, (2) 
simple word substitution (using WordNet), (3) the insertion 
of certain words such as domain-specific terminology and 
function words (e.g. conjunctions), and (4) simple re-
ordering of tokens (e.g. transposition). These are aimed at 
preserving longer matching n-grams and tile lengths, and 
making the approaches resilient to “simple” edits.  
 

4.2. Identifying inconsistencies within a single 
text 

Given a natural language text, consider the task of 
identifying inconsistencies within it. These might be stylistic 
(e.g. use of particular words), grammatical (e.g. use of 
punctuation) or other forms specific to plagiarism detection, 
e.g. inconsistent use of references. If we concentrate on 
identifying stylistic and grammatical inconsistencies, this 
problem is similar to two areas: (1) authorship attribution 
(see, e.g. (Holmes,1994)), and (2) detecting and correcting 
inconsistencies in collaborative writing (see, e.g. (Glover 
and Hirst,1995)). The latter is particularly interesting as this 
task first involves identifying inconsistencies before 
recommendations can be made to correct the style. Typical 
indicators of style include average sentence length, 
distribution of word classes, verb forms, nominal forms (e.g. 
gerunds), vocabulary richness and frequency of passive 
voice. Indicators of style can be derived from un-analysed 
text, tagged text, parsed text or interpreted text. 
 
One technique I have been exploring is the cusum 
technique (Farringdon,1996). This was developed to detect 
stylistic inconsistencies through variation in the proportion 
of occurrences of author-specific discriminators called 
habits. The technique has been used in British courts as 
evidence to prove or disprove authorship, e.g. witness 
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statements and suicide notes. Over the years this approach 
has received considerable criticism from academics, due to 
its rather ad hoc underlying assumptions (see, e.g. Holmes 
and Tweedie (1995)). However there is evidence to suggest 
that this method does work well in some cases, and with 
certain changes can be made more reliable (see, e.g. 
(Somers,1998)). The question is whether or not the cusum 
approach can be used in plagiarism detection. 
 
The underlying assumption of the technique is that 
everyone has a unique set of quantifiable habits (this 
assumption has received the most criticism), e.g. noun 
usage, use of 2-3 letter words, words beginning with a 
vowel and use of function words. The claim is that when 
compared with the average sentence length, the rate of 
habit occurrence will be consistent. Any variation between 
the habit and average sentence length supposedly 
indicates multiple authorship.  
 
The habits and average sentence length are plotted on the 
same chart known as a cumulative sum chart that plots the 
cumulative deviation from the mean. This is not just a plot 
of separate deviation scores for each sentence, but rather a 
cumulative measure of homogeneity. Given the number of 
words in sentence r, wr, for sentences r = 1 ... n, the 
average sentence length, w , is given by: 
 
 
 
 
 
The variance of each sentence is computed and summed 
with those preceding it. For each sentence, i, the cusum 
value, ci, is given by: 
 
 
 
 
 
The same calculation is performed for the habits, but first 
computing the average number of habit occurrences per 
sentence, before then computing the habit variance for 
each sentence, in a cumulative fashion. After plotting the 
average sentence length and habits, the axes are scaled 
such that they lie within the same range, making the charts 
comparable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Example cusum chart for Chapter 1 of Jane 

Austin’s Northanger Abbey 
 

To scale the charts, I use ordinary least squares regression 
between the sets of values for the habit and average 
sentence length. This computes a linear equation of the 
form y=ax+b by minimizing the differences between the two 
data sets. I then re-scale the habit values using this linear 
equation. 
 
Figure 3 shows an example cusum plot for average 
sentence length versus the habit: 2-3 letter words + words 
starting with an initial vowel word for Chapter 1 of 
Northanger Abbey by Jane Austin10. This cusum chart 
represents one of the difficulties of using cusums to identify 
inconsistencies in texts: that of selecting the correct habits. 
The charts can be seen to deviate from around sentence 16 
to 23, and 32 to 42, which would suggest Jane Austin was 
not the only author of this chapter. However, for the BBC 
news story given in Figure 4, this choice of habit does seem 
suitable (assuming the text is authored by one person).  
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 4 BBC news story 
 
 
Figure 5 shows two news stories (about the same topic) 
from two different news organisations appended together at 
sentence 11 (vertical line). Again, like Figure 3, the choice 
of habit is not suitable in distinguishing the two authors and 
there seems little consistency between the texts, making it 
difficult to conclude anything substantive from these charts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Two combined news stories (from the Sun and 

Mirror – British tabloids) 
 
 

                                                 
10 Electronic versions of many literary classics can be found on the 
Project Gutenberg web site. http://promo.net/pg/ (site visited: 
31/01/2003) 
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There are three main problems with using cusums: (1) 
computing the scaling factor for plotting cusum charts, (2) 
selecting suitable habits, and (3) detecting “significant” 
variations between the charts.  Further problems also 
involve the quality of sentence splitting, the removal of 
“noisy” sentences, e.g. lists which deviate significantly from 
the average sentence length, the chart’s appearance varies 
depending on the number of sentences analysed, 
combining texts in different ways tends to give different 
cusum charts and the position of the combined texts also 
creates variation in the cusum plots. The cusum technique 
is certainly useful in detecting inconsistencies within a 
single text, but work by Hearsee (2001) found the method 
unsuccessful for plagiarism detection, and I believe 
methods used to detect inconsistencies in collaborative 
writing may offer better alternatives to the cusum approach.   

5. Recommendations for future work 
Many academics and commercial organisations have 
addressed the problem of plagiarism detection and many 
areas are still part of active research among both of these 
communities. There are still many questions surrounding 
plagiarism and its detection which remain unanswered, but 
I would like to recommend at least five areas of research 
that I believe would benefit plagiarism detection. These 
recommendations focus on detection in natural language 
texts, because to some degree the problem for program 
code has already been solved.  

5.1. Multi-lingual detection 
Research in natural language has predominantly focused 
on plagiarism occurring between monolingual texts (mainly 
English). However, given the multi-lingual nature of the 
Web and access to a growing wealth of multi-lingual 
resources, it seems plausible that plagiarists (who are 
probably able to write in more than one language) will reuse 
texts from a variety of languages as well as sources to 
create new texts.  

In the near future, it may well be common to find derived 
texts in one language, but with sources existing only in 
another language. Without knowing the source language 
from which the derived text has been taken, it becomes 
almost impossible to find possible source texts even with 
Cross Language Information Retrieval (CLIR) and 
Multilingual Copy Detection (MCD) systems. Another 
approach is to use bilingual alignment techniques to find 
the most likely corresponding source texts, but these 
approaches often only work between languages which 
share similar orthographic word forms (known as 
cognates), e.g. some proper names in German and 
English.  

5.2. A text collection for plagiarism detection 
Being able to study plagiarism and compare various 
approaches to plagiarism detection is essential to further 
research in this area. To date, no standard collection of 
texts for plagiarism detection in natural language exists, 
thereby making comparison between various approaches 
impossible, unless the same set of texts is used.  

Many areas of Language Engineering, including Information 
Retrieval (IR), summarisation, document routing, genre 
classification, authorship analysis, and information 
extraction have benefited from careful construction of a 
standard evaluation test collection. For example, in IR the 
Text REtrieval Conference (TREC) has provided document 
collections, methods of evaluation and problem-specific 
resources such as lists of user requests (topics) and 
documents judged as relevant to those topics for many 
years. The TREC collections are considered to be a driving 
force behind much of the success in recent years of IR 
evaluation and comparison. I believe that building a test 
collection for plagiarism detection would offer many benefits 
including the following: 
 

(1) It would help to stimulate research in automatic 
plagiarism detection. 

 
(2) It would enable communities to compare different 

approaches. 
 

(3) It would help us better understand plagiarism. 
 

(4) It could be used to help teach students how to cite 
and paraphrase correctly by looking at examples 
of plagiarism. 

 
However, building a representative and comprehensive test 
collection is unlikely to be straightforward. One of the 
issues which most builders of corpora face is copyright. In 
plagiarism this is no exception. Either examples used in the 
collection must be created artificially (not the ideal), or 
steps to protect confidentiality must be taken (e.g. 
sanitation). A possible solution is to use corpora created for 
other tasks involving text reuse, e.g. summarisation, 
translation and journalistic text reuse, but to be of any use, 
these must provide realistic examples of plagiarism. 

5.3. Use of natural language processing 
Most approaches used in plagiarism detection so far have 
involved minimal natural language processing (NLP) 
because plagiarism can involve complex editing that even 
sophisticated methods of analysis are probably unable to 
deal with. However, there are many areas of NLP that could 
aid plagiarism detection, particularly in identifying texts 
which exhibit similarity in semantics, structure or discourse, 
but differ in lexical overlap and syntax. 
 
These may include morphological analysis, part-of-speech 
tagging, anaphora resolution, parsing (syntactic and 
semantic), co-reference resolution, word sense disambig-
uation and discourse processing. I believe that future work 
would benefit from exploring these areas for detecting 
similarity to perhaps offer several similarity scores based on 
lexical overlap, syntax, semantics, discourse and maybe 
other structural features.  

5.4. Use of techniques from machine learning 
Given more sophisticated methods of analysis, more 
sophisticated methods of combining evidence from these 
sources would benefit plagiarism detection. I have used a 
Naïve Bayes probabilistic classifier to combine evidence 
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from several measures of similarity taken from a GST tiling 
and make a decision: derived or not-derived, with a 
reasonable degree of success. This involves using texts 
which have already been classified as plagiarised or not to 
training the classifier (called supervised learning), but other 
methods of learning, e.g. unsupervised learning, can also 
be helpful in grouping together texts which exhibit similar 
characteristics (e.g. clustering). 

5.5. Detection within single texts 
Detecting inconsistencies within a single text is a 
challenging problem and I have illustrated some of the 
difficulties with one technique: the cusum. However, given 
that studies based on interviews with academic staff have 
shown that finding stylistic inconsistencies through manual 
inspection of texts often reveals plagiarism, it would seem 
this form of plagiarism detection deserves more attention.  
There are many approaches to authorship attribution and 
style analysis, including those from computational 
stylometry which may offer more suitable solutions to this 
problem than the cusum. These could also be explored.  
 
The second challenge for the single text is to extract the 
inconsistencies and then find possible source texts. After 
all, it is not much use to have these inconsistencies without 
being able to compare them with possible original source 
texts. This presents the challenge of best extracting the 
inconsistencies (e.g. select sentences or phrases), and 
then formulating suitable search requests against on-line 
collections.   

6. Conclusions 
In this paper I have considered the problem of plagiarism, 
one of the most publicised forms of text reuse around us 
today. In particular, I have focused on automatic plagiarism 
detection, the task of identifying quantifiable discriminators 
able to distinguish derived from non-derived texts. I have 
discussed various approaches to plagiarism detection in 
both program code and natural language. To date there are 
few resources which specifically address the task of 
automatic plagiarism detection. This paper outlines many of 
the approaches taken over the past 30 years.  
 
The use of automatic methods of detection aids the manual 
inspection of suspect texts by reducing the effort required in 
comparing large numbers of texts, and finding possible 
sources from on-line collections. Automatic detection is 
used to bring to light texts which exhibit high similarity with 
others, or high inconsistency within them and almost all 
approaches assume that a high degree of similarity based 
on quantifiable discriminators (lexical or structural) would 
not be likely from texts written independently by a single 
author.  
 
Structure-based methods of plagiarism detection have 
proven successful for program code. The task in their case 
is not so much one of finding methods of comparing 
programs, but rather finding suitable representations that 
are not affected by both trivial and more complex 
transformations. The majority of work has focused on 
detecting plagiarism or collusion between a group of 
programs, rather than finding possible on-line sources.  

The task of plagiarism detection in natural language is more 
complex than with program code because of ambiguity and 
the wide variety of ways in which the same topic can be 
expressed. Most techniques have concentrated on finding 
unlikely structural patterns or vocabulary overlap between 
texts, finding texts from large collections (copy detection) 
and collaboration between texts. I have presented a 
number of methods for plagiarism detection that involve 
minimal Natural Language Processing. Due to the difficulty 
in processing natural language, these methods are likely to 
offer more robust solutions across varying domains and 
languages. However without using more complex language 
analysis, cases of plagiarism may be missed.  
 
I believe that plagiarism detection offers an interesting and 
challenging problem for researchers from a variety of 
backgrounds and will continue to be of interest as cases of 
plagiarism are publicised and motivation intensified by the 
concerns of authors, both academic and commercial. 
 
7. Notes 
 
a As an example of the last, rather extreme action, consider the 

legal action taken by Ordnance Survey against the 
Automobile Association (AA) for copy right infringement which 
ended in 2001 after a long running court battle. In the end, AA 
admitted using Ordnance Survey originals as the basis for 
their own maps which were then published; not permissible in 
the copyright agreement agreed with Ordnance Survey. To 
protect their intellectual property, Ordnance Survey admitted 
they introduced minor deliberate “errors” into their maps (e.g. 
slight changes to the bend in a river) to enable them to prove 
copyright infringement had occurred. 
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9. Appendices 
 
Appendix 1  Comparing texts using Dotplots 

Given two sequences, it is useful to be able to visualise the 
similarity between them to highlight regions of similar 
structure. The Dotplot is one such method which has been 
used to identify similarity between biological sequences 
(e.g. DNA and protein), to highlight plagiarism between 
both natural and programming language texts, to identify 
duplication and redundancy in software code, and as a 
preliminary stage for the alignment of bilingual texts. The 
Dotplot is a language-independent method of comparing 
two sequences because it can be used for any kind of 
sequence and across a variety of domains. The beauty of 
this approach is its simplicity but effectiveness as it relies 
one the human interpretation of similarity patterns. 

A pre-processing stage is used to create the two token 
streams to compare. For texts this can be either groups of 
overlapping character n-grams, words, lines, sentences, or 
groups of overlapping word n-grams. Given two sequences 
of tokens, each token in one sequence is compared to 

every token in the other sequence using an exact or inexact 
match method. To visualize the similarity between a text 
pair, a dot is placed on a 2-by-2 matrix whenever the 
tokens match using either a single colour for an exact 
match, or a shade to indicate the degree of match. For 
example if the 3rd token of one text matches the 5th in 
another, a dot is placed at position (3,5) in the matrix and 
this is continued until all tokens have been processed. The 
result of the Dotplot is a visualization of matches between 
the two sequences where diagonal lines indicate ordered 
matching sequences, and squares indicate unordered 
matches. 

Figure 6 illustrates the concept using a well-known phrase 
comparing words which match exactly. The left-hand image 
demonstrates self-similarity by comparing the same phrase 
which produces the main diagonal line. The smaller 
diagonals are due to repetition within the phrase of “to be”. 
The right-hand image demonstrates the effects of re-
ordering one version such that the beginning is almost the 
same, but the end is different. 

 

 

 

 

 
 

Figure 6 A simple Dotplot example 

Figure 7 shows four patterns which can be created by the 
repetition of subsequences within the sequences them-
selves.  

 

 

 

 

 

 

 
Figure 7 Four example patterns using a Dotplot 

visualization (Helfman,1996) 
 
The Dotplot can be used for two purposes: (1) to identify 
regions of duplication within a text, and (2) to identify 
regions of similarity across texts. The Dotplot not only 
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shows the matches, but also the position at which they 
occur, therefore providing an indication of structural 
similarity.  

To demonstrate how useful a visual representation of the 
similarity between texts can be, consider Figure 8. This 
shows two revisions of an academic paper (in Latex): the 
first (on the vertical axis) is my version of the paper; the 
second (on the horizontal axis) the result of a second 
author rewriting the paper to give it more impact and clarity. 
The Dotplot shows matching sequences of 20 characters 
(this removes most of the “noisy” text).  

 

 

 

 

 

 

 

 

 
Figure 8 A comparison of a paper and its revision 

showing the location of most modification (in the 
earlier sections) 

There are several points to notice about the resulting 
Dotplot pattern and what this says about the two texts: 

(1) There is a noticeable line down the main diagonal 
indicating the second text is a clear revision of the first.  

(2) Most revision was undertaken in the first half of the 
paper. There was good reason for this: the latter half of 
the paper contained the experiments and discussion 
which was on the whole considered acceptable. The 
main rewriting was in the introduction and background to 
improve clarity and style.  

(3) The main diagonal at the end of the second half is 
broken towards the end. This represents a subsequent 
revision in the conclusions reflecting the changes made 
in the first half of the paper.  

(4) The main diagonal is offset at certain positions. This 
represents the deletion of text in the original which 
results in a shorter text overall. 

(5) Given the match length of 20 characters, the resulting 
matches indicate text reuse.  

(6) Matches elsewhere between the texts are mostly due to 
Latex commands.  

(7) Some of the gaps in the lines are caused by re-ordering 
paragraphs in the original version. 

Appendix 2  Cusum charts for chapters 1-5 of 
Jane Austin’s Northanger Abbey 
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