
Plagiarism Advisory Service February 2003

 1

Old and new challenges in automatic plagiarism detection

Paul Clough, Department of Information Studies
(p.d.clough@sheffield.ac.uk)

University of Sheffield
Regent Court
211 Portobello Street
Sheffield, S1 4DP
UK

Automatic methods of measuring similarity between program code and natural language text pairs have been used for many years to assist
humans in detecting plagiarism. For example, over the past thirty years or so, a vast number of approaches have been proposed for
detecting likely plagiarism between programs written by Computer Science students. However, more recently, approaches to identifying
similarities between natural language texts have been addressed, but given the ambiguity and complexity of natural over program
languages, this task is very difficult. Automatic detection is gaining further interest from both the academic and commercial worlds given the
ease with which texts can now be found, copied and rewritten. Following the recent increase in the popularity of on-line services offering
plagiarism detection services and the increased publicity surrounding cases of plagiarism in academia and industry, this paper explores the
nature of the plagiarism problem, and in particular summarise the approaches used so far for its detection. I focus on plagiarism detection in
natural language, and discuss a number of methods I have used to measure text reuse. I end by suggesting a number of recommendations
for further work in the field of automatic plagiarism detection.

1. Introduction
As an example of one particular type of text reuse (see, e.g.
(Clough,2003) for further information and discussion),
plagiarism has received much attention from both the
academic and commercial communities. This has been
particularly true in academia as students turn to technology
to fabricate texts which are not entirely their own work. Text
reuse is defined as the activity whereby pre-existing written
material is reused during the creation of a new text, either
intentionally or un-intentionally.

Many other examples of text reuse surround us today,
including the creation of literary and historical texts,
summarisation, translation or revision of existing texts.
Many factors influence text reuse including translating an
original text into a different language, restyling an original to
fit different authorial or consumer needs (e.g. rewriting a
scientific text to be readable by the layman), reducing or
expanding the size of the original text and the competency
and production requirements of the writer.

Recent advances in technology are making text reuse
much easier. For example, the Google web search engine
claims to index over 3 billion web pages1 providing a large
variety of source texts on a diverse range of topics in many
different languages. Word processors have also become
more sophisticated, enabling users to easily cut and paste,
merge and format pre-existing texts from a variety of
sources. This, coupled with the change of culture brought
about by electronic ‘cyber-space’ has caused concern to
authors surrounding the ownership of their written material.
Either the owner (perhaps the publisher) has to protect their
texts (e.g. using digital watermarks), rely on finding
illegitimate copies, or even de-valuea their digital content in
some way. Mallon (1989) suggests that “the origin and

1 This estimate stands at the time of writing and not all of these
web pages will contain text.

ownership of all electronic documents is now peculiarly
evanescent; one click of the ‘Save As’ button can give a
whole new name and identity, instantly, to someone else’s
creation.”

Of course not all text reuse is deemed a cardinal sin; there
are certain areas where borrowing is perfectly acceptable.
For example, as Angélil-Carter (2000:23) points out:
“generally, borrowing is a tradition in literature and other art
forms and more than a tradition: creativity feeds on what
has gone before, new work is formed out of old.” During the
renaissance and romantic eras of literary writing, even the
“great” authors would reuse the ideas, storylines and plots
of others in their own literary creations. It was not
considered immoral or unethical; rather it was seen as a
stimulus for creativity. Text reuse was (and is) the epitome
of literary recognition.

Today, there are examples where even verbatim text reuse
is not considered unethical; rather the norm. One such
example is the reuse of newswire (or news agency) texts by
journalists in the creation of newspaper articles (see, e.g.
(Clough et al.,2002a)). As long as the journalist or the
organisation they write for are subscribers of the news
agency, they are free to reuse agency text as and how they
please, with or without attribution. But let us return to the
broader example of text reuse in hand: plagiarism. Why is it
considered so wrong and what can be done to counteract
this kind of text reuse?

2. Plagiarism detection
The aim of this paper is to present plagiarism detection as a
problem to be solved; not to cover other aspects of plag-
iarism, important as they are, such as: surrounding ethical
and moral issues (see, e.g. (Mallon,1989), (Martin, 1994),
(LaFollette,1992), (Hannabuss,2001) and (Angélil-
Carter,2000)), suggestions for practical steps that the
individual or institution can take to detect plagiarism (see,

Plagiarism Advisory Service February 2003

 2

e.g. (Bull et al.,2001) and (Culwin and Lancaster,2000)),
examples of plagiarism (see, e.g. (Mallon,1989)), reasoning
behind student plagiarism (see, e.g. JISC), or guidance for
writers on how to prevent themselves unintentionally
plagiarising their sources. So what is plagiarism?

2.1. The problem of plagiarism

“The wrong in plagiarism lies in misrepresenting that a
text originated from the person claiming to be its
author when that person knows very well that it was
derived from another source, knows that the reader is
unlikely to know this, and hopes to benefit from the
reader’s ignorance.” - (Samuelson,1994)

Joy and Luck (1999) define plagiarism as “unacknow-
ledged copying of documents or programs” that can “occur
in many contexts: in industry a company may seek
competitive advantage; in academia academics may seek
to publish their research in advance of their colleagues.”
Most empirical study and analysis has been undertaken by
the academic community to deal with student plagiarism,
although methods of detection have found their way into the
commercial world, e.g. measuring software reuse and
identifying reused code (see, e.g. (Hislop,1998)).

Hannabuss (2001) defines plagiarism as the “unauthorised
use or close imitation of the ideas and language/
expression of someone else and involves representing their
work as your own.” Plagiarism is closely linked with
intellectual property and copyright, both of which are set in
place to protect the ownership of texts through the creativity
and originality of their contents. As Osen (1997) comments:
“if plagiarism is the bane of the academic world, copyright
infringement is the scourge of the legal one.” Copyright law,
however, does not protect ideas, themes or subject matter;
only the style with which the content is expressed, i.e. it
covers only form.

Plagiarism is considered a problem because it not only
infringes upon existing ownership, but also deceives the
reader and misrepresents the originality of the current
author: “it is the mixture of law or rule-breaking and social
misrepresentation and deception that gives plagiarism its
bitter taste” (Hannabuss,2001). In education, students may
plagiarise to gain a qualification; academics to gain
popularity and status. If a plagiarism relationship exists
between two texts, it suggests that the texts exhibit some
degree of intertextuality, which would not appear between
them if independently written.

Academia encourages students and researchers to build
upon the ideas of others, but failure to acknowledge the
ideas or material of others, or copying existing work is
unacceptable. There are cases when what appears to be
plagiarism is not, e.g. appropriate self-reuse of one’s own
work (see, e.g. (Samuelson,1994)), or poor citation. These
cases can be resolved through manual inspection.

2.2. Forms of plagiarism
Plagiarism can take several distinct forms, including the
following (Martin,1994):

(1) Word-for-word plagiarism: direct copying of phrases

or passages from a published text without quotation or
acknowledgement.

(2) Paraphrasing plagiarism: when words or syntax are

changed (rewritten), but the source text can still be
recognised.

(3) Plagiarism of secondary sources: when original

sources are referenced or quoted, but obtained from a
secondary source text without looking up the original.

(4) Plagiarism of the form of a source: the structure of

an argument in a source is copied (verbatim or
rewritten).

(5) Plagiarism of ideas: the reuse of an original thought2

from a source text without dependence on the words or
form of the source.

(6) Plagiarism of authorship: the direct case of putting

your own name to someone else’s work

The easiest form of plagiarism to detect and prove is
verbatim or word-for-word text reuse (given a possible
source text to compare with). This can often be detected
using the simplest of automatic methods, but occurrences
by students are often due to the fact that they are uncertain
as to how to reuse source texts legitimately.

Other forms, such as paraphrasing and the reuse of
structure can also be identified relatively easily, but get
progressively harder as the plagiarist uses more complex
rewrites or to hide the original text, or reuses only ideas and
not the content. The extreme is ghost-writing: getting
someone else to write the text for you. These forms of
plagiarism are not just harder to detect, but also harder to
prove.

2.3. Examples of text reuse

2.3.1 Student plagiarism
Real examples of student plagiarism are hard to come by
due to restrictions in student confidentiality. However, many
on-line sources exist that provide examples of what
constitutes student plagiarism. The simplest form of
plagiarism is to directly copy from a source text with
minimum rewriting. This type of text reuse is common in
student plagiarism (Martin,1994) where entire passages are
copied word-for-word directly from the source. For example,
consider the following rewrite from the University of
Wisconsin-Madison Writing Centre3:

2 There are cases when an idea or thought becomes common
knowledge and it is not necessarily plagiarism if the idea is reused.
3 http://www.wisc.edu/writing/Handbook/QuoSampleParaphrases.
html (site visited 23/01/2003).

Plagiarism Advisory Service February 2003

 3

Original version:
“How important is our power of non-analytical thought to the
practice of science? It's the most important thing we have,
declares the Princeton physicist historian Thomas Kuhn who
argues that major breakthroughs occur only after scientists
finally concede that certain physical phenomena cannot be
explained by extending the logic of old theories. Consider
the belief that the sun and the planets move around the
earth, which reigned prior to 1500. This idea served nicely
for a number of centuries, but then became too cumbersome
to describe the motions of heavenly bodies. So the Polish
astronomer Copernicus invented a new reality that was
based on a totally different ‘paradigm’ or model - that the
earth and planets move around the sun”.

Plagiarised version:

Non-analytic thought is considered very important to the
practice of science by Princeton physicist historian
Thomas Kuhn who claims that major breakthroughs
happen only when scientists finally concede that some
physical phenomena defy explanation by extending the
logic of old theories. One idea which served nicely for
many centuries but then became too cumbersome was the
belief that the sun and planets revolved around the earth.
This was held prior to 1500 until Copernicus invented a
new reality: the earth and planets move around the sun.

Words highlighted in bold are copied directly from the
source and the structure follows a similar form to that of the
original. Even with proper citation, there is little originality or
added creativity in this example. Although text can be
copied verbatim, it is more likely that sentences are
rephrased or paraphrased to put the original into the
writer’s own words. The following examples are taken from
the University of Kentucky4:

Original version:

“Those complexes that contain unpaired electrons are attracted
into a magnetic field and are said to be paramagnetic, while
those with no unpaired electrons are repelled by such a field and
are called diamagnetic.”

Plagiarised versions:

“Complexes that contain unpaired electrons are those that
are attracted to a magnetic field. These are called
paramagnetic, while those with no unpaired electrons are
repelled by a magnetic field and are said to be diamagnetic.”

“Those complexes that contain paired electrons are repelled
by a magnetic field and are said to be diamagnetic, whereas
those with no paired electrons are attracted to such a field
and are called paramagnetic.”

“Compounds that have unpaired electrons are attracted to a
magnetic field and are called paramagnetic. Compounds with
no unpaired electrons are repelled by this field and are said
to be diamagnetic.”

The degree of rewriting can vary from direct copying from a
source with no attribution, the insertion or deletion of
grammatical units, e.g. sentences or phrases, the insertion
or deletion of words within a sentence, e.g. noun phrase
modifiers, the reordering of words in a sentence or the re-
ordering of sentences in a discourse, inversion of original

4 http://www.chem.uky.edu/Courses/common/plagiarism.html (site
visited 23/01/2003).

clauses, substitution of equivalent words or phrases,
changes in form such as tense and voice (e.g. active to
passive voice), making abstract ideas more concrete
(specification), making concrete ideas more abstract
(generalisation), merging or separating sentences (either
adjacent or dispersed throughout the original) and rewriting
direct quotes as indirect (and vice-versa). Rewriting a text
will invariably include paraphrasing: a form of rewriting in
which the meaning of the original phrase or sentence is
preserved, but the way in which the meaning is expressed
is changed.

Other forms of plagiarism include submitting someone
else’s work (or copying it directly), failing to reference/
footnote source material and copying a collection of
paragraphs from a variety of electronic sources and pasting
them together into a coherent whole. This is known as an
‘Internet pastiche’ or ‘patchwork plagiarism’.

2.3.2 Journalism
An example of text reuse with which I have been involved
more closely with lies within the domain of journalism. It is
common knowledge within the newspaper industry that
most newspapers rely heavily upon press agencies as their
primary source of ‘pre-fabricated’ news material
(Bell,1996:20-22). This is a form of plagiarism, but ‘benign’.
As regular subscribers to news agency services, media
organisations pay an annual fee which entitles them to
reuse the agency source text in any way they see fit, either
verbatim, or editing it to suit their own production
requirements. In many cases, the final attribution of the
news story goes to the journalist or newspaper and not the
news agency, but this is perfectly acceptable. As an
example, consider the following.

Original (news agency):

A Chief Constable's daughter who assaulted two officers in her
father's force after drinking a litre of strong cider was today
sentenced to 150 hours community service.

Rewrite (The Sun - popular press):

A Top Cop's daughter who assaulted two of her Dad's
officers after downing a litre of cider was sentenced to 150
hours' community service yesterday.

Rewrite (The Independent - quality press):

The daughter of the Chief Constable of Sussex was
sentenced to 150 hours' community service yesterday.

The journalist may decide to rewrite, re-order, delete or
paraphrase agency copy, rather than reuse the text
verbatim depending on a wide variety of external influences
and personal writing style. Texts are often edited after their
creation by other newsworkers whose job it is to remove
personal style and make it consistent with other texts
written under the name of a common author (the
newspaper). In the past, paper copies of stories were
marked with these changes, but now journalists like other
writers, work with entirely electronic media, which has
promoted a cut-and-paste culture that makes it easier for
the journalist and editor to create and manipulate versions
of a story as it cycles between newsworkers prior to
production. Bell (1991) identifies typical rewrite strategies

Plagiarism Advisory Service February 2003

 4

used by the newsworker as deletion, lexical substitution,
and changes in syntax.

2.4. Plagiarism detection
Typically, manual plagiarism detection within a single text is
based on identifying inconsistencies such as the author’s
writing style, or recognising passages with a familiar feel to
them. Between multiple texts, plagiarism detection involves
finding similarities which are more than just coincidence
and more likely to be the result of copying or collaboration
between multiple authors. In some cases, a single text is
first read and certain characteristics found which suggest
plagiarism. The second stage is to then find possible
source texts using tools such as web search engines for
unknown on-line sources, or manually finding non-digital
material for known sources.

In academia, plagiarism detection is generally down to the
knowledge, ability, time and effort of the lecturer/teacher
assessing the student’s work. Typical discriminators
signaling plagiarism might include the following:

• Use of advanced or technical vocabulary beyond that
expected of the writer.

• A large improvement in writing style compared to
previous submitted work.

• Inconsistencies within the written text itself, e.g.
changes in vocabulary, style or quality.

• Incoherent text where the flow is not consistent or
smooth, which may signal that a passage has been
cut-and-pasted from an existing electronic source.

• A large degree of similarity between the content of two
or more submitted texts. This may include similarity of
style as well as content.

• Shared spelling mistakes or errors between texts.

• Dangling references, e.g. a reference appears in the
text, but not in the bibliography.

• Use of inconsistent referencing in the bibliography
suggesting cut-and-paste.

In a recent survey undertaken by JISC (Bull,2001) in which
321 lecturers were asked to participate in a questionnaire
regarding their plagiarism experiences, 72% of the respon-
dents declared that a change in writing style within a text
was enough to signal plagiarism.

From the literature surrounding plagiarism, I believe that at
least four problems exist that those addressing plagiarism
detection should address. I have classified these based on
whether the detection addresses a single text or more than
one text.

(1) Within a single text:

a) Identify inconsistencies that indicate a text is unlikely to

be written solely by the claimed author.

b) Find the likely sources for an inconsistent text.

(2) Between multiple texts:

c) Identify unacceptable collaboration, i.e. collusion.

d) Identify unacceptable copying from a source text, i.e.

plagiarism.

It is useful to make the distinction between identifying
plagiarism within a single text and between multiple texts
because much of the research in automatic plagiarism
detection to date has concentrated on the latter. However,
from the findings of the JISC survey and from the
comments of lecturers at the University of Sheffield, it is
likely that methods to address the first task are also
important and necessary to cover all types of plagiarism.

2.5. What the plagiarism detection task is not
The problem of identifying plagiarism concerns the way in
which the content of a text is expressed and whether this is
likely to come from other sources. Is it consistent, or does it
feel multi-authored; is the text similar to an existing one or
does it appear original? This task differs from other
problems of text analysis, for example authorship attribution
and information retrieval.

In authorship attribution, the concern is one of authorship
regardless of content. Discriminators of attribution tend to
be those based on lexical or syntactic features which re-
main constant over texts on different topics, but vary across
authors. Plagiarism detection also varies from the typical ad
hoc information retrieval task of finding texts on the same or
similar topic to a user-defined query. In this problem
discriminators are those based on topic (e.g. perhaps noun
phrases, or proper names).

The plagiarism detection task is different from authorship
attribution, but deeper than information retrieval. Plagiarism
concerns content, regardless of author and expression,
rather than topic. Given that there will always remain a high
degree of similarity between works on the same topic (e.g.
essays written by a group of students on the same course)
discriminators used in plagiarism detection should not only
concern content, but also expression.

3. Automatic plagiarism detection
Almost all research to date has concentrated on identifying
plagiarism and collusion between texts. Since the 1970s,
the popularity and direction of automatic plagiarism
detection has changed. To begin with, empirical research
came from the programming community, particularly in
academia where computer science departments built tools
to identify “unusual” similarity between programming
assignments handed in by students. There is still much
work being done within industry where there is great
interest in identifying similarity between large software
programs, e.g. duplication, redundant code and similarity
between revisions.

In academia, recent interest has shifted towards identifying
plagiarism between natural language texts. Particular areas
of concern include: identifying verbatim cut-and-paste (with
minor changes) from Web-based sources and identifying

Plagiarism Advisory Service February 2003

 5

the same content but paraphrased. This is reflected by the
increase in on-line services (e.g. Plagiarism.org and
turnitin.com) to address plagiarism from available on-line
resources, particularly term paper mills which can supply
pre-made essays to students for a given fee. Services to
track and monitor commercial content have also received
increased popularity as the media report more cases of
stolen digital content (e.g. contentguard.com).

Whale (1990) suggests that “the task [of automatic
plagiarism detection] may be simplified by finding a
distinctive characteristic such as a misspelled identifier or
paraphrased comment, though such a capability is hard to
build into any automated plagiarism detection system.” To
identify more complex forms of plagiarism beyond cut-and-
paste or simple rewriting is hard, particularly for natural
language, therefore automatic plagiarism detection
generally involves finding quantifiable discriminators which
can be used to measure the similarity between texts.
Rather than identify more complex plagiarism, the
automatic methods aim to highlight potentially derived texts
through “unusual” or unlikely similarity enabling further
manual inspection where more complex forms can be
found.

Assumption:
The greater the similarity (or fewer the differences)
between texts; the more likely is that one of the texts is
derived.

One of many challenges in automatic plagiarism detection
is the selection of suitable discriminators that reflect
plagiarism and not co-incidental similarity due to content or
theme. So far the focus has been on lexical and structural
similarity in both program code and natural language, but
these become less effective when the degree of rewriting or
form of plagiarism becomes more complex. Three areas to
address in automatic plagiarism detection include the
following:

(1) Finding suitable discriminators of plagiarism which
can be quantified.

(2) Developing suitable methods to compare those

discriminators.

(3) Finding suitable measures of similarity.

The goal of an automatic plagiarism detection system is to
assist manual detection by: reducing the amount of time
spent comparing texts, making comparison between large
numbers of multiple texts feasible and finding possible
source texts from electronic resources available to the
system. The systems must minimise the number of false
positives (those incorrectly classed as plagiarised) and
false negatives (those incorrectly classed as non-
plagiarised), and maximize the number of true positives
(those correctly classed as plagiarised) and true negatives
(those correctly classed as non-plagiarised).

3.1. Plagiarism detection in program code
Parker and Hamblen (1989) define plagiarism in program
code as: “a program which has been produced from

another program with a small number of routine
transformations.” These transformations might range from
the simple (e.g. changing comments or variable names), to
the more complex (e.g. replacing control structures with
equivalents). Faidhi and Robinson (1987) characterise
possible transformations in a spectrum ranging from no
change (level 1) to the most complex changes (level 6).
Identifying all possible changes a plagiarist is likely to use
to disguise their copying would be infeasible, however
changes in program code tend to fall into two categories
(Joy and Luck,1999):

(1) Lexical changes: edits that would, in principle, be

performed using a simple text editor and require little
knowledge of the programming language. In particular
these edits would not require knowledge sufficient to
parse a program. These changes might include
rewording, adding or deleting comments, changing for-
matting and changing variable names (approximately
levels 1-3 in Faidhi and Robinson (1987)).

(2) Structural changes: these changes require

knowledge of the programming language to the extent
of being able to change the structure so that the
program still parses. This is highly language depen-
dent and might include replacement of equivalent
iteration structures or operand ordering (approximately
levels 4-6 in Faidhi and Robinson (1987)).

Two major approaches have emerged for plagiarism
detection in program code (e.g. (Whale,1990) and (Verco
and Wise, 1996)): (1) attribute-counting, and (2)
structure-based. The earliest systems (e.g.
(Ottenstein,1976)) counted program attributes such as
metrics of software science5, the number of tokens,
distribution of identifiers and other author or program
specific characteristics. These scores were collected into a
vector called a profile and a distance measure, e.g.
Euclidean distance, used to determine the degree of
closeness between profiles. Many attributes have been
tried, but an attribute-counting method with consistent
results is still to be found. The difficulty of choosing an
appropriate set of metrics, so far, has been an insoluble
problem associated with this approach.

Empirical investigation has shown that measures of
similarity derived from attribute-counting measures cannot
capture the structure of a program sufficiently to distinguish
plagiarised from non-plagiarised texts (c.f. (Faidhi and
Robinson,1987), (Whale,1990) and (Wise,1992)). This has
led to the creation of ‘structure-based’ methods which
compare string representations of program structure
directly, rather than measures derived from the structure.

Programs are typically converted into a string represent-
tation, which might involve some knowledge of the target
language, e.g. tokenisation, or more language-dependent
methods, such as parsing. The aim of this stage is to
reduce the effect of differences due to systematic changes

5 “A rule for assigning a number or identifier to software, calculated
algorithmically from the software alone” – (Dunsmore,1984).

Plagiarism Advisory Service February 2003

 6

such as renaming identifiers, or replacing equivalent
iteration structures.

Given two “normalised” strings, a language-independent
comparison method is chosen based upon string compari-
son, e.g. approximate string matching (Wise,1996) or
sequence alignment (e.g. Gitchell and Tran (1999)), with
the following assumption: plagiarised programs are more
likely to share longer matching substrings. The output from
this comparison can be quantitative, e.g. the longest
common substring or the average substring length; or
qualitative, such as a visual representation of comparison
or a list of substring matches.

Some researchers combined both approaches, e.g.
Donaldson et al. (1981) and Jankowitz (1988), but current
detec-tion systems (see, e.g. Whale (1990), Baker (1993),
Wise (1996), Gitchell and Tran (1999), Joy and Luck (1999)
and Prechelt et al. (2000)) use only structure-based
approaches and compare string representations of
programs rather than metrics obtained from the program.
Current research is not focused on finding further
comparison methods, but in how best to recode programs
into a normalised stream of tokens.

In summary, methods of detection between programs
include measuring similarity: (1) between program style or
complexity (Ottenstein,1976), (2) between their parse trees
(Jankowitz,1988), (3) between their flow of data (Horwitz,
1990), (4) between fingerprint or compressed represen-
tations of the programs (see, e.g. (Manber,1994) and (Ziv
and Lempel,1977)), (5) between matching substrings (e.g.
the UNIX diff tool), (6) between compressed versions of the
sources, (7) between parameterised matches (Baker,1993),
and (8) between visual representations of the programs
(Church and Helfman,1993).

3.2. Plagiarism detection in natural language
In a similar way to automatic plagiarism detection in
program code, methods of plagiarism detection in natural
language have focused on identifying similarity between
groups of texts, rather than across a single text. However,
natural language is inherently more difficult to process
automatically than program code, making detection of even
more routine changes such as lexical or syntactic
modifications less successful.

Compared to program code, difficulty in processing in this
instance is derived from at least two properties of natural
language: (1) ambiguity, and (2) unconstrained vocabulary.
For example, consider detecting plagiarism in which words
are replaced by their synonyms. Machine Readable
Dictionaries such as WordNet6 are possible sources for
such transformations, but because word senses are
ambiguous, selection of the correct term is often non-trivial.
Consider a more complex approach in which the texts are
parsed and their syntax compared. Ambiguity in parsing
means that the same sentence between texts can result in

6 WordNet is a thesaurus of general English containing semantic
relations between words and phrases. For more information see:
http://www.cogsci.princeton.edu/~wn/ (site visited: 31/01/2003).

many different parse trees thereby reducing similarity and
wrongly missing plagiarism.

The flexibility and complexity of natural language has driven
researchers (in many language engineering tasks, not just
plagiarism) to apply simpler methods of similarity involving
a minimal amount of natural language processing. As with
detection between different programs, various methods of
comparing texts have been investigated, as well as defining
suitable discriminators. Most research has been directed at
finding possible copies and collusion between members of
a closed-set, e.g. a set of student essays. However, unlike
detection in software code, detection of plagiarism from
Web-based sources has also been investigated using
methods of copy detection.

Methods of detection originating from file comparison,
information retrieval, authorship attribution, compression
and copy detection have all been applied to the problem of
plagiarism detection. For example, similarity between texts
based on the longest common subsequence (e.g. UNIX
diff), approximate string matching (e.g. turnitin.com), the
overlap of longest common substrings (e.g. YAP
(Wise,1996) and JPLAG (Prechelt et al.,2000)), the
proportion of shared content words (particularly those
occurring only once: the hapax legomena - CopyCatch
(Woolls and Coulthard,1998)), the overlap of consecutive
word seqences or word n-grams (e.g. Ferret (Lyon et
al.,2001), SCAM (Shivakumar and Garcia-Molina,1996),
COPS (Brin et al.,1995), Koala (Heintze,1996) and
CopyFind7), and compressed versions of the texts (see,
e.g. (Medorie et al.,2002))

Methods have also been developed to visualise the
similarity between texts including VAST (Culwin and
Lancaster,2001), Dotplot (Church and Helfman,1996),
Bandit8 and Duploc (Ducasse et al.,1999). For more
information about plagiarism detection, see (Clough, 2000).

4. Example plagiarism detection methods for
natural language

Two approaches for detecting plagiarism in natural
language texts will now be discussed. The main focus of
my research has been measuring text reuse in journalism.
In most cases this would represent reuse by an
experienced plagiarist (i.e. the newsworker) with a high
level of editing skill and excellent command of the English
language. More recently I have been experimenting with
methods to detect stylistic inconsistency across a single
text. This inconsistency may indicate that different authors
may have been involved with its creation.

4.1. Measuring similarity between multiple texts
One method of plagiarism detection which has proven to be
successful in a number of applications is finding the overlap
of matching subsequences and substrings (consecutive
tokens) of length ≥ n (where n is derived empirically).

7 http://plagiarism.phys.virginia.edu/software.html (site visited:
23/01/2003).
8 http://socrates.cs.man.ac.uk/~ajw/pd.html (site visited:
23/01/2003).

Plagiarism Advisory Service February 2003

 7

Because there are many ways to express the same
concept, the longer n becomes, the more unlikely it is that
the same sequence of n tokens (words or characters) will
appear in the same order in independently-written texts.
Methods have varied between the use of fixed length
substrings (commonly known as n-grams), variable-length
substrings, or both (see, e.g. (Brin et al.,1995),
(Shivakumar and Garcia-Molina,1996), (Lyon et al.,2001),
and (Broder,1998)). The assumption that derived texts are
unlikely to share matching sequences of consecutive
tokens of length ≥ n rests upon the intuition that the way in
which people express themselves varies from person to
person. Even if writing about the same subject, it is unlikely
that the topic will be expressed in exactly the same way
(e.g. the same program structure or grammatical syntax),
and using exactly the same words (i.e. the same
vocabulary). As McEnery and Wilson (1996) state about
finding the same sentence more than once: “unless it is a
very formulaic sentence (such as those appearing as part
of a legal disclaimer at the beginning of a book), it is deeply
unlikely that you will find it repeated in its exact form in any
book, in any library, anywhere” (McEnery and
Wilson,1996:7).

For example, Table 1 shows the number of n-gram occur-
rences (tokens), distinct n-grams (types), the percentage of
unique n-grams (type-token ratio) and the percentage of n-
grams occurring in one text as n varies from 1 to 10 words.
These figures are taken from 769 texts in the METER
corpus (a restricted domain of law and court reporting texts
- see (Clough et al.,2002b)). Note that as n increases, the
percentage of distinct n-grams increases indicating that
tokens become increasingly unique. Note also that the
percentage of distinct n-grams occurring in a single file also
increases indicating that longer n-grams are less likely to
be shared across more than one document.

Table 1 Uniqueness of consecutive n-word sequences

(n-grams) as n increases from 1-10 words

Although Table 1 shows that as n increases it is less likely
that the n-word sequence will be repeated and therefore
becomes a possible suitable discriminator for plagiarism, it
also becomes less likely that the n-gram will occur at all in
any derived text (a problem known as data sparseness).
The selection of n is therefore a trade-off between correctly
finding derived texts, versus the number of plagiarised texts
retrieved.
Similarity between texts is measured by computing sets of
n-grams for each text and comparing these to determine

the degree of overlap. A similarity function is used to
capture the degree of overlap between the two texts
represented by the sets of n-grams and a threshold chosen
above which texts are deemed plagiarised. We used a
variety of different similarity measures to capture the
overlap between two texts including the following:

In this measure, the similarity between two sets of n-grams,
SA and SB, is computed by summing elements of the
intersection, T, of n-gram sets using a weighted function
dependent on the length of n-gram i, leni. The sum is
normalized with respect to set SA to create a subset or
containment score. This score can be computed for various
lengths of n (or leni) where the weighted score is used to
give a higher similarity score to longer overlapping n-grams.
If the weighting based on length is not used, the problem
arises where a single overlapping n-gram of length 5 will
receive the same score as 5 n-grams of length 1, but where
even a single occurrence of an n-gram of length 5 words is
much more significant and indicative of reuse than many
single word matches.

In my experiments with n-grams, I found data sparseness
to be a problem: the occurrence of longer n-grams
becomes increasingly rare in derived texts as relatively
simple lexical and syntactic rewriting is used to modify the
original. This method of comparison then becomes
sensitive to the n-gram length chosen to discriminate
between derived and non-derived texts. Another problem is
the existence of long substrings in non-derived texts
resulting from domain-specific terminology (e.g. “the court
was told yesterday”) and direct quotations, both of which
are likely to occur in dependent and independently-written
texts. An alternative approach to using fixed-length n-grams
is variable length n-grams or sequence comparison. In
particular, I have experimented with various methods of
computing the overlap of longest common substrings.

Figure 1 The longest common substrings computed

between two sentences using GST

N
(words)

N-gram
occurrences

(tokens)

Distinct
n-grams
(types)

% distinct
n-grams

% distinct
n-grams in

1 file
1 137204 14407 11 39
2 248819 99682 40 67
3 248819 180674 73 82
4 257312 214119 85 90
5 251429 226369 90 93
6 250956 231800 92 94
7 250306 234600 94 95
8 249584 236310 95 96
9 248841 237409 95 97

10 289610 278903 96 97

|AS|
Ti

1)ilog(len ilen
)BS,A(SSimilarity

∑
∈

+×

=

A drink-driver who ran into the Queen
Mother’s official Daimler was fined £700
and banned from driving for two years.

Text string: source text

A DRUNK driver who crashed into the back
of the Queen Mum’s limo was banned for
two years yesterday.

Pattern string: derived text

Plagiarism Advisory Service February 2003

 8

Various methods of sequence comparison have been
suggested for measuring the similarity and difference
between token sequences (see, e.g. (Sankoff and Krustal,
1983)). One approach used successfully for plagiarism
detection in program code is Greedy String Tiling (or GST:
see, e.g. (Wise,1993)), an algorithm which computes a 1:1
mapping between the tokens in a text pair in such a way
that as much of one text as possible is covered with
maximal non-overlapping substrings (called tiles) from the
other. This algorithm computes the longest common
substrings (greater than length n) between two texts without
having to define an n-gram size a priori. For example, the
texts in Figure 1 represents a tiling of two sentences after
running GST (tiles are highlighted) with a minimum match
length of 1 word.

The result of running the GST algorithm is a set of maximal
matches between the text pair: [for two years], [driver who],
[into the], [a], [queen], [was] and [banned]. Given a set of
tiles, a number of different quantitative measures can be
derived such as the minimum and maximum tile length, the
average tile length, the dispersion of tile lengths, and a
similarity score based on tile length (similar to that for n-
gram containment). We have found on average that derived
texts do share longer matching substrings, and both the
tiling for a derived and non-derived text pair are in most
cases apparently different (see Figure 2). The challenges
are capturing these tiling patterns such that derived and
non-derived texts are distinguishable.

Figure 2 The longest common substrings computed

between a derived text pair (top) and
independent text pair (bottom)

This method of comparison has been particularly useful in
aiding manual comparison between texts9. The visualization

9 This implementation of the GST algorithm can be tested on-line
at: http://nlp.shef.ac.uk/meter/index.jsp (site visited 31/01/2003).

of GST is similar to that of the Dotplot approach (see
Appendix 1), but with the advantage that the similarity is
also quantified. I am looking at ways to better capture tiling
patterns between texts, as well as creating 1:1 mappings
based on the context around tokens, rather than just
selecting the first match. I am also experimenting with
making tile creation more resilient to simple editing
changes, and comparing alternative text representations
based on tagged, parsed and interpreted formats.

I currently use a version of the UNIX diff tool to compute a
measure of similarity based on the longest common
subsequence of matching tiles to capture an element of
structural similarity between the texts. This sequence
comparison stage is also able to produce an edit script
which lists a set of simple edit operations (insertion,
deletion, substitution and transposition) to transform the
original text into the derived text. My goal is to capture
common editing patterns that describe how the tiles differ
between the original and derived text, to enable the
detection of further rewrite examples. Murata and Isaraha
(2002) have shown how sequence comparison can be used
to identify predictable differences between spoken tran-
scripts of written texts.

For both n-gram and GST approaches, I am experimenting
with methods to relax the matching between sequences to
allow for: (1) small gaps to represent token deletion, (2)
simple word substitution (using WordNet), (3) the insertion
of certain words such as domain-specific terminology and
function words (e.g. conjunctions), and (4) simple re-
ordering of tokens (e.g. transposition). These are aimed at
preserving longer matching n-grams and tile lengths, and
making the approaches resilient to “simple” edits.

4.2. Identifying inconsistencies within a single
text

Given a natural language text, consider the task of
identifying inconsistencies within it. These might be stylistic
(e.g. use of particular words), grammatical (e.g. use of
punctuation) or other forms specific to plagiarism detection,
e.g. inconsistent use of references. If we concentrate on
identifying stylistic and grammatical inconsistencies, this
problem is similar to two areas: (1) authorship attribution
(see, e.g. (Holmes,1994)), and (2) detecting and correcting
inconsistencies in collaborative writing (see, e.g. (Glover
and Hirst,1995)). The latter is particularly interesting as this
task first involves identifying inconsistencies before
recommendations can be made to correct the style. Typical
indicators of style include average sentence length,
distribution of word classes, verb forms, nominal forms (e.g.
gerunds), vocabulary richness and frequency of passive
voice. Indicators of style can be derived from un-analysed
text, tagged text, parsed text or interpreted text.

One technique I have been exploring is the cusum
technique (Farringdon,1996). This was developed to detect
stylistic inconsistencies through variation in the proportion
of occurrences of author-specific discriminators called
habits. The technique has been used in British courts as
evidence to prove or disprove authorship, e.g. witness

Plagiarism Advisory Service February 2003

 9

statements and suicide notes. Over the years this approach
has received considerable criticism from academics, due to
its rather ad hoc underlying assumptions (see, e.g. Holmes
and Tweedie (1995)). However there is evidence to suggest
that this method does work well in some cases, and with
certain changes can be made more reliable (see, e.g.
(Somers,1998)). The question is whether or not the cusum
approach can be used in plagiarism detection.

The underlying assumption of the technique is that
everyone has a unique set of quantifiable habits (this
assumption has received the most criticism), e.g. noun
usage, use of 2-3 letter words, words beginning with a
vowel and use of function words. The claim is that when
compared with the average sentence length, the rate of
habit occurrence will be consistent. Any variation between
the habit and average sentence length supposedly
indicates multiple authorship.

The habits and average sentence length are plotted on the
same chart known as a cumulative sum chart that plots the
cumulative deviation from the mean. This is not just a plot
of separate deviation scores for each sentence, but rather a
cumulative measure of homogeneity. Given the number of
words in sentence r, wr, for sentences r = 1 ... n, the
average sentence length, w , is given by:

The variance of each sentence is computed and summed
with those preceding it. For each sentence, i, the cusum
value, ci, is given by:

The same calculation is performed for the habits, but first
computing the average number of habit occurrences per
sentence, before then computing the habit variance for
each sentence, in a cumulative fashion. After plotting the
average sentence length and habits, the axes are scaled
such that they lie within the same range, making the charts
comparable.

Figure 3 Example cusum chart for Chapter 1 of Jane

Austin’s Northanger Abbey

To scale the charts, I use ordinary least squares regression
between the sets of values for the habit and average
sentence length. This computes a linear equation of the
form y=ax+b by minimizing the differences between the two
data sets. I then re-scale the habit values using this linear
equation.

Figure 3 shows an example cusum plot for average
sentence length versus the habit: 2-3 letter words + words
starting with an initial vowel word for Chapter 1 of
Northanger Abbey by Jane Austin10. This cusum chart
represents one of the difficulties of using cusums to identify
inconsistencies in texts: that of selecting the correct habits.
The charts can be seen to deviate from around sentence 16
to 23, and 32 to 42, which would suggest Jane Austin was
not the only author of this chapter. However, for the BBC
news story given in Figure 4, this choice of habit does seem
suitable (assuming the text is authored by one person).

Figure 4 BBC news story

Figure 5 shows two news stories (about the same topic)
from two different news organisations appended together at
sentence 11 (vertical line). Again, like Figure 3, the choice
of habit is not suitable in distinguishing the two authors and
there seems little consistency between the texts, making it
difficult to conclude anything substantive from these charts.

Figure 5 Two combined news stories (from the Sun and

Mirror – British tabloids)

10 Electronic versions of many literary classics can be found on the
Project Gutenberg web site. http://promo.net/pg/ (site visited:
31/01/2003)

∑
=

=
n

1r

rw
n
1 w

)w - w(c ri

i

1
∑
=

=
r

Plagiarism Advisory Service February 2003

 10

There are three main problems with using cusums: (1)
computing the scaling factor for plotting cusum charts, (2)
selecting suitable habits, and (3) detecting “significant”
variations between the charts. Further problems also
involve the quality of sentence splitting, the removal of
“noisy” sentences, e.g. lists which deviate significantly from
the average sentence length, the chart’s appearance varies
depending on the number of sentences analysed,
combining texts in different ways tends to give different
cusum charts and the position of the combined texts also
creates variation in the cusum plots. The cusum technique
is certainly useful in detecting inconsistencies within a
single text, but work by Hearsee (2001) found the method
unsuccessful for plagiarism detection, and I believe
methods used to detect inconsistencies in collaborative
writing may offer better alternatives to the cusum approach.

5. Recommendations for future work
Many academics and commercial organisations have
addressed the problem of plagiarism detection and many
areas are still part of active research among both of these
communities. There are still many questions surrounding
plagiarism and its detection which remain unanswered, but
I would like to recommend at least five areas of research
that I believe would benefit plagiarism detection. These
recommendations focus on detection in natural language
texts, because to some degree the problem for program
code has already been solved.

5.1. Multi-lingual detection
Research in natural language has predominantly focused
on plagiarism occurring between monolingual texts (mainly
English). However, given the multi-lingual nature of the
Web and access to a growing wealth of multi-lingual
resources, it seems plausible that plagiarists (who are
probably able to write in more than one language) will reuse
texts from a variety of languages as well as sources to
create new texts.

In the near future, it may well be common to find derived
texts in one language, but with sources existing only in
another language. Without knowing the source language
from which the derived text has been taken, it becomes
almost impossible to find possible source texts even with
Cross Language Information Retrieval (CLIR) and
Multilingual Copy Detection (MCD) systems. Another
approach is to use bilingual alignment techniques to find
the most likely corresponding source texts, but these
approaches often only work between languages which
share similar orthographic word forms (known as
cognates), e.g. some proper names in German and
English.

5.2. A text collection for plagiarism detection
Being able to study plagiarism and compare various
approaches to plagiarism detection is essential to further
research in this area. To date, no standard collection of
texts for plagiarism detection in natural language exists,
thereby making comparison between various approaches
impossible, unless the same set of texts is used.

Many areas of Language Engineering, including Information
Retrieval (IR), summarisation, document routing, genre
classification, authorship analysis, and information
extraction have benefited from careful construction of a
standard evaluation test collection. For example, in IR the
Text REtrieval Conference (TREC) has provided document
collections, methods of evaluation and problem-specific
resources such as lists of user requests (topics) and
documents judged as relevant to those topics for many
years. The TREC collections are considered to be a driving
force behind much of the success in recent years of IR
evaluation and comparison. I believe that building a test
collection for plagiarism detection would offer many benefits
including the following:

(1) It would help to stimulate research in automatic
plagiarism detection.

(2) It would enable communities to compare different

approaches.

(3) It would help us better understand plagiarism.

(4) It could be used to help teach students how to cite
and paraphrase correctly by looking at examples
of plagiarism.

However, building a representative and comprehensive test
collection is unlikely to be straightforward. One of the
issues which most builders of corpora face is copyright. In
plagiarism this is no exception. Either examples used in the
collection must be created artificially (not the ideal), or
steps to protect confidentiality must be taken (e.g.
sanitation). A possible solution is to use corpora created for
other tasks involving text reuse, e.g. summarisation,
translation and journalistic text reuse, but to be of any use,
these must provide realistic examples of plagiarism.

5.3. Use of natural language processing
Most approaches used in plagiarism detection so far have
involved minimal natural language processing (NLP)
because plagiarism can involve complex editing that even
sophisticated methods of analysis are probably unable to
deal with. However, there are many areas of NLP that could
aid plagiarism detection, particularly in identifying texts
which exhibit similarity in semantics, structure or discourse,
but differ in lexical overlap and syntax.

These may include morphological analysis, part-of-speech
tagging, anaphora resolution, parsing (syntactic and
semantic), co-reference resolution, word sense disambig-
uation and discourse processing. I believe that future work
would benefit from exploring these areas for detecting
similarity to perhaps offer several similarity scores based on
lexical overlap, syntax, semantics, discourse and maybe
other structural features.

5.4. Use of techniques from machine learning
Given more sophisticated methods of analysis, more
sophisticated methods of combining evidence from these
sources would benefit plagiarism detection. I have used a
Naïve Bayes probabilistic classifier to combine evidence

Plagiarism Advisory Service February 2003

 11

from several measures of similarity taken from a GST tiling
and make a decision: derived or not-derived, with a
reasonable degree of success. This involves using texts
which have already been classified as plagiarised or not to
training the classifier (called supervised learning), but other
methods of learning, e.g. unsupervised learning, can also
be helpful in grouping together texts which exhibit similar
characteristics (e.g. clustering).

5.5. Detection within single texts
Detecting inconsistencies within a single text is a
challenging problem and I have illustrated some of the
difficulties with one technique: the cusum. However, given
that studies based on interviews with academic staff have
shown that finding stylistic inconsistencies through manual
inspection of texts often reveals plagiarism, it would seem
this form of plagiarism detection deserves more attention.
There are many approaches to authorship attribution and
style analysis, including those from computational
stylometry which may offer more suitable solutions to this
problem than the cusum. These could also be explored.

The second challenge for the single text is to extract the
inconsistencies and then find possible source texts. After
all, it is not much use to have these inconsistencies without
being able to compare them with possible original source
texts. This presents the challenge of best extracting the
inconsistencies (e.g. select sentences or phrases), and
then formulating suitable search requests against on-line
collections.

6. Conclusions
In this paper I have considered the problem of plagiarism,
one of the most publicised forms of text reuse around us
today. In particular, I have focused on automatic plagiarism
detection, the task of identifying quantifiable discriminators
able to distinguish derived from non-derived texts. I have
discussed various approaches to plagiarism detection in
both program code and natural language. To date there are
few resources which specifically address the task of
automatic plagiarism detection. This paper outlines many of
the approaches taken over the past 30 years.

The use of automatic methods of detection aids the manual
inspection of suspect texts by reducing the effort required in
comparing large numbers of texts, and finding possible
sources from on-line collections. Automatic detection is
used to bring to light texts which exhibit high similarity with
others, or high inconsistency within them and almost all
approaches assume that a high degree of similarity based
on quantifiable discriminators (lexical or structural) would
not be likely from texts written independently by a single
author.

Structure-based methods of plagiarism detection have
proven successful for program code. The task in their case
is not so much one of finding methods of comparing
programs, but rather finding suitable representations that
are not affected by both trivial and more complex
transformations. The majority of work has focused on
detecting plagiarism or collusion between a group of
programs, rather than finding possible on-line sources.

The task of plagiarism detection in natural language is more
complex than with program code because of ambiguity and
the wide variety of ways in which the same topic can be
expressed. Most techniques have concentrated on finding
unlikely structural patterns or vocabulary overlap between
texts, finding texts from large collections (copy detection)
and collaboration between texts. I have presented a
number of methods for plagiarism detection that involve
minimal Natural Language Processing. Due to the difficulty
in processing natural language, these methods are likely to
offer more robust solutions across varying domains and
languages. However without using more complex language
analysis, cases of plagiarism may be missed.

I believe that plagiarism detection offers an interesting and
challenging problem for researchers from a variety of
backgrounds and will continue to be of interest as cases of
plagiarism are publicised and motivation intensified by the
concerns of authors, both academic and commercial.

7. Notes

a As an example of the last, rather extreme action, consider the

legal action taken by Ordnance Survey against the
Automobile Association (AA) for copy right infringement which
ended in 2001 after a long running court battle. In the end, AA
admitted using Ordnance Survey originals as the basis for
their own maps which were then published; not permissible in
the copyright agreement agreed with Ordnance Survey. To
protect their intellectual property, Ordnance Survey admitted
they introduced minor deliberate “errors” into their maps (e.g.
slight changes to the bend in a river) to enable them to prove
copyright infringement had occurred.

8. References

Angélil-Carter, S. (2000), Stolen Language - plagiarism in writing,

Real Language Series, Pearson Education Limited.

Baker, B. (1993), Parameterised Pattern Matching: Algorithms and

Applications, Proceedings of the 25th Annual ACM Symposium
on Theory of Computing, ACM Press, 71-80.

Bell, A. (1991), The Language of News Media, Blackwell.

Bell, A. (1996), Text, time and technology in News English, In Re-

designing English: news texts, new identities, Routledge, 3-26.

Brin, S., Davis, J. and Garcia-Molina, H. (1995), Copy Detection

Mechanisms for Digital Documents, Proceedings of the ACM
SIGMOD International Conference on Management of Data,
398-409.

Broder, A. Z. (1998), On the resemblance and containment of

documents, Compression and Complexity of Sequences, IEEE
Computer Society.

Bull, J., Collins, C., Coughlin, E. and Sharp, D. (2001), Technical

Review of Plagiarism Detection Software Report, Computer-
Assisted Assessment Centre, University of Luton.

Church, K.W. and Helfman, J.I. (1993), Dotplot: A Program for

Exploring Self-Similarity in Millions of Lines of Text and Code,
Journal of Computational and Graphical Statistics, Vol. 2(2),
153-174.

Plagiarism Advisory Service February 2003

 12

Clough, P.D. (2000), Plagiarism in Natural and Programming
Languages: An Overview of Current Tools and Technologies,
Department of Computer Science, University of Sheffield, UK,
Technical Report CS-00-05.

Clough, P.D., Gaizauskas, R., Piao, S.L. and Wilks, Y. (2002a),

Measuring Text Reuse, In Proceedings of the 40th Anniversary
Meeting for the Association for Computational Linguistics.

Clough, P.D., Gaizauskas, R. and Piao, S.L. (2002b), Building and

annotating a corpus for the study of journalistic text reuse,
Proceedings of the 3rd International Conference on Language
Resources and Evaluation, LREC2002, 1678-1685.

Clough, P.D. (2003), Measuring Text Reuse, PhD thesis, University

of Sheffield.

Culwin, F. and Lancaster, T. (2000), A review of electronic services

for plagiarism detection in student submissions, Proceedings of
8th Annual Conference on the Teaching of Computing.

Culwin F. and Lancaster T. (2001), Visualising Intra-Corpal

Plagiarism, Presented at Information Visualisation 2001,
London, UK.

Donaldson, J. L., Lancaster, A. and Sposato, P. H. (1981), A

Plagiarism Detection System, ACM SIGSCI Bulletin, Vol. 13(1),
21-25.

Ducasse, S. and Rieger, M. and Demeyer, S. (1999), A Language

Independent Approach for Detecting Duplicated Code,
Proceedings ICSM'99 (International Conference on Software
Maintenance), IEEE, 109-118.

Dunsmore, H. E. (1984), Software Metrics: An Overview of an

Evolving Methodology, Information Processing and Manage-
ment, Pergamon Press Ltd., Vol. 20(1-2), 183-192.

Farringdon, J. M. (1996), Analysing for Authorship: A Guide to the

Cusum Technique. Cardiff: University of Wales Press.

Faidhi, J. A. W. and Robinson, S. K. (1987), An Empirical

Approach for Detecting Program Similarity and Plagiarism within
a University Programming Environment, Journal of Computer
Education, Pergamon Journals Ltd., Vol. 11(1), 11-19,

Gitchell, D. and Tran, N. (1999), Sim: A utility for Detecting

Similarity in Computer Programs, Proceedings of 13th SIGSCI
Technical Symposium on Computer Science Education, 226-
270.

Glover, A. and Hirst, G. (1995), Detecting stylistic inconsistencies

in collaborative writing, In Thea van der Geest et al., editor,
Writers at work: Professional writing in the computerized
environment, Springer, London.

Hannabuss, S. (2001), Contested texts: issues of plagiarism,

Library Management, MCB University Press, Vol. 22(6-7), 311-
318.

Heintze, N. 1996), Scalable Document Fingerprinting, In

Proceedings of the Second USENIX Workshop on Electronic
Commerce.

Helfman, J.I. (1996), Dotplot Patterns: A Literal Look at Pattern

Languages, In Theory and Practice of Object Systems (TAPOS)
special issue on Patterns, Vol. 2(1), 31-41.

Hersee, M. (2001), Automatic Detection of Plagiarism, 3rd Year

undergraduate project, University of Sheffield.

Hislop, G. W. (1998), Analyzing existing software for software
reuse, Journal of Systems and Software, Vol. 41, 33-40.

Holmes, D. I. (1994), Authorship Attribution, Computers and the

Humanities, Vol. 28(2), 87-106.

Holmes, D. I. and Tweedie, F. J. (1995), Forensic Linguistics: A

review of the Cusum controversy. Revue Informatique et
Statistique dans les Sciences Humaines. Vol. 31, 19-47.

Horwitz, S. (1990), Identifying the Semantic and Textual

Differences Between Two Versions of a Program, Proceedings
of Conference on Programming Language Design and
Implementation (SIGPLAN'90), 234-245.

Jankowitz, H. T. (1988), Detecting plagiarism in student Pascal

programs, Computing Journal, Vol. 31(1), 1-8.

Joy, M. and Luck, M. (1999), Plagiarism in Programming

Assignments, IEEE Transactions of Education, Vol. 42(2), 129-
133.

LaFollette, M. C. (1992), Stealing into Print: Fraud, Plagiarism, and

Misconduct in Scientific Publishing. Berkeley: University of
Calfornia Press.

Lyon, C., Malcolm, J. and Dickerson, B. (2001), Detecting Short

Passages of Similar Text in Large Document Collections, In
Proceedings of the 2001 Conference on Empirical Methods in
Natural Language Processing, 118-125.

Mallon, T. (1989), Stolen Words: Forays into the Origins and

Ravages of Plagiarism, Ticknor and Fields.

Manber, U. (1994), Finding similar files in a large file system,

Proceedings of 1994 Winter Usenix Technical Conference, 1-10.

Martin, B. (1994), Plagiarism: a misplaced emphasis, Journal of

Information Ethics, Vol. 3(2), 36-47.

McEnery, A. M. and Wilson, A. (1996), Corpus Linguistics,

Edinburgh textbooks in empirical linguistics.

Medori, J., Atwell, E., Gent, P. and Souter, C. (2002), Customising

a Copying-Identifier for Biomedical Science Student Reports:
Comparing Simple and Smart Analyses, M. O’Neill et al. (Eds),
AICS2002, LNAI 2464, Springer-Verlag, 228-233..

Murata, M. and Isahara, H. (2002), Automatic Extraction of

Differences between Spoken and Written Languages, and
Automatic Translation from the Written to the Spoken Language,
Proceedings of the 3rd International Conference on Language
Resources and Evaluation, LREC2002.

Osen, J. (1997), The Cream of Other Men's Wilt: Plagiarism and

Misappropriation in Cyberspace, Computer Fraud and Security,
Elsevier Science Ltd, 13-9.

Ottenstein, K. J. (1976), An algorithmic approach to the detection

and prevention of plagiarism, SIGSCI Bulletin, Vol. 8 (Part 4),
30-41.

Parker, A. and Hamblen, J. O. (1989), Computer Algorithms for

Plagiarism Detection, IEEE Transactions on Education, Vol.
32(2), 94-99.

Prechelt, L., Malpohl, G. and Philippsen, M. (2000), JPlag: Finding

plagiarisms among a set of programs, Faculty of Informatics,
University of Karlsruhe, Technical Report 2000-1.

Plagiarism Advisory Service February 2003

 13

Samuelson, P. (1994), Self-Plagiarism or Fair Use?, Commun-
ications of the ACM, Vol. 37(8), 21-25.

Sankoff, D. and Kruskal, J. (1983), Time Warps, String Edits, and

Macromodules: The Theory and Practice of Sequence
Comparison, Addison-Wesley.

Shivakumar, N. and Garcia-Molina, H. (1996), Building a Scalable

and Accurate Copy Detection Mechanism, Proceedings of 1st
ACM Conference on Digital Libraries DL'96.

Somers, H. (1998), An Attempt to Use Weighted Cusums to

Identify Sublanguages, In Proceedings of the Joint Conference
on New Methods in Language Processing and Computational
Natural Language Learning, NeMLaP3/CoNLL98, 131-139.

Verco, K.L. and Wise, M., (1996), Software for Detecting

Suspected Plagiarism: Comparing Structure and Attribute-
Counting Systems, Presented at the First Australian Conference
on Computer Science Education, Sydney, Australia, 130-134.

Whale, G. (1990), Identification of Program Similarity in Large

Populations, The Computer Journal, Vol. 33(2), 140-146.

Wise, M. (1992), Detection of Similarities in Student Programs:

YAP'ing may be preferable to Plague'ing, Presented at 23rd
SIGCSE Technical Symposium, Kansas City, USA, 268-271.

Wise, M. (1993), Running Karp-Rabin Matching and Greedy String

Tiling, Basser Department of Computer Science, Sydney
University, Technical Report 463.

Wise, M. (1996), YAP3: Improved Detection of Similarities in

Computer Programs and Other Texts, Presented at SIGCSE'96,
130-134.

Woolls, D. and Coulthard, M. (1998), Tools for the Trade, Forensic

Linguistics, Vol. 5(1), 33-57.

Ziv, J. and Lempel, A. (1977), A universal algorithm for sequential

data compression, IEEE Transactions Information Theory, Vol.
23, 337-343.

9. Appendices

Appendix 1 Comparing texts using Dotplots

Given two sequences, it is useful to be able to visualise the
similarity between them to highlight regions of similar
structure. The Dotplot is one such method which has been
used to identify similarity between biological sequences
(e.g. DNA and protein), to highlight plagiarism between
both natural and programming language texts, to identify
duplication and redundancy in software code, and as a
preliminary stage for the alignment of bilingual texts. The
Dotplot is a language-independent method of comparing
two sequences because it can be used for any kind of
sequence and across a variety of domains. The beauty of
this approach is its simplicity but effectiveness as it relies
one the human interpretation of similarity patterns.

A pre-processing stage is used to create the two token
streams to compare. For texts this can be either groups of
overlapping character n-grams, words, lines, sentences, or
groups of overlapping word n-grams. Given two sequences
of tokens, each token in one sequence is compared to

every token in the other sequence using an exact or inexact
match method. To visualize the similarity between a text
pair, a dot is placed on a 2-by-2 matrix whenever the
tokens match using either a single colour for an exact
match, or a shade to indicate the degree of match. For
example if the 3rd token of one text matches the 5th in
another, a dot is placed at position (3,5) in the matrix and
this is continued until all tokens have been processed. The
result of the Dotplot is a visualization of matches between
the two sequences where diagonal lines indicate ordered
matching sequences, and squares indicate unordered
matches.

Figure 6 illustrates the concept using a well-known phrase
comparing words which match exactly. The left-hand image
demonstrates self-similarity by comparing the same phrase
which produces the main diagonal line. The smaller
diagonals are due to repetition within the phrase of “to be”.
The right-hand image demonstrates the effects of re-
ordering one version such that the beginning is almost the
same, but the end is different.

Figure 6 A simple Dotplot example

Figure 7 shows four patterns which can be created by the
repetition of subsequences within the sequences them-
selves.

Figure 7 Four example patterns using a Dotplot

visualization (Helfman,1996)

The Dotplot can be used for two purposes: (1) to identify
regions of duplication within a text, and (2) to identify
regions of similarity across texts. The Dotplot not only

Plagiarism Advisory Service February 2003

 14

shows the matches, but also the position at which they
occur, therefore providing an indication of structural
similarity.

To demonstrate how useful a visual representation of the
similarity between texts can be, consider Figure 8. This
shows two revisions of an academic paper (in Latex): the
first (on the vertical axis) is my version of the paper; the
second (on the horizontal axis) the result of a second
author rewriting the paper to give it more impact and clarity.
The Dotplot shows matching sequences of 20 characters
(this removes most of the “noisy” text).

Figure 8 A comparison of a paper and its revision

showing the location of most modification (in the
earlier sections)

There are several points to notice about the resulting
Dotplot pattern and what this says about the two texts:

(1) There is a noticeable line down the main diagonal
indicating the second text is a clear revision of the first.

(2) Most revision was undertaken in the first half of the
paper. There was good reason for this: the latter half of
the paper contained the experiments and discussion
which was on the whole considered acceptable. The
main rewriting was in the introduction and background to
improve clarity and style.

(3) The main diagonal at the end of the second half is
broken towards the end. This represents a subsequent
revision in the conclusions reflecting the changes made
in the first half of the paper.

(4) The main diagonal is offset at certain positions. This
represents the deletion of text in the original which
results in a shorter text overall.

(5) Given the match length of 20 characters, the resulting
matches indicate text reuse.

(6) Matches elsewhere between the texts are mostly due to
Latex commands.

(7) Some of the gaps in the lines are caused by re-ordering
paragraphs in the original version.

Appendix 2 Cusum charts for chapters 1-5 of
Jane Austin’s Northanger Abbey

Modified version

Original
version

