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secondary structure, then computes probabilities by manipulating the secondary struc- 
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and implementing PPTC. We synthesize various optimizations to PPTC that are 
scattered throughout the literature. We articulate undocumented "open secrets" that are 
vital to producing a robust and efficient implementation of PPTC. We hope that this 
document makes probabilistic inference more accessible and affordable to those without 
extensive prior exposure. © 1996 Elsevier Science Inc. 
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1. INTRODUCTION 

1.1. Purpose 

An increasing number of academic and commercial endeavors use belief 
networks ] to encode uncertain knowledge in complex domains. These 
networks rely on inference algorithms to compute beliefs of alternative 
hypotheses in the context of observed evidence. However, the task of 
realizing an inference algorithm is not trivial. Much effort is spent synthe- 
sizing methods that are scattered throughout the literature and converting 
them to algorithmic form. Additional effort is spent addressing undocu- 
mented, lower-level issues that are vital to producing a robust and efficient 
implementation. These issues exist, in the words of one colleague, as 
"open secrets" within the probabilistic-inference community. 

This document is addressed to interested researchers and developers 
who do not have extensive prior exposure to algorithms for probabilistic 
inference. We describe, in procedural fashion, the probability propagation 
in trees o f  clusters (PPTC) method for probabilistic inference, as developed 
by Lauritzen and Spiegelhalter and refined by Jensen et al. [1-3]. We focus 
on the steps required to make PPTC work. We synthesize various pub- 
lished optimizations to PPTC, and we articulate the "open secrets" that 
are crucial to a robust and efficient implementation of PPTC. PPTC is an 
established method for exact probabilistic inference; other exact methods 
include cutset conditioning [6-8] and symbolic probabilistic inference (SPI) 
[9, 10]. A review of approximate methods can be found in [11]. 

Our goal is for the reader to be able to use this document to implement 
PPTC without additional help. We hope that this document makes proba- 
bilistic inference more accessible and affordable to those who are not 
entrenched in the belief networks community. More effort can then be 
spent conducting research and developing applications that make use of 
this technology. 

1.2. What is PPTC? 

PPTC is a method for performing probabilistic inference on a belief 
network. Consider the belief network shown in Figure 1. An example of 
probabilistic inference would be to compute the probability that A = on, 

Belief networks are also referred to as causal networks and Bayesian networks in the 
literature. Comprehensive introductions to bclicf networks can be found in [4, 5l. 
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Figure 1. A belief network. 
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given the knowledge that C = on and E = off. In general, probabilistic 
inference on a belief network is the process of computing P(V = viE = e), 
or simply P(vle), where v is a value of a variable V and e is an assignment 
of values to a set of variables E in the belief network. Basically, P(vle) 
asks: Suppose that I observe e on a set of variables E; what is the 
probability that the variable V has value v, given e? 

PPTC works in two steps. First, a belief network is converted into a 
secondary structure. Then, probabilities of interest are computed by oper- 
ating on that secondary structure. 

1.3. Overview of Document 

In Section 2, we describe notational conventions and fundamental 
concepts that are used throughout this document. Then, in Section 3, we 
introduce belief networks and their secondary structures. In Sections 4 and 
5 we describe the creation of the secondary structure, beginning with the 
belief network. We integrate evidence into the above framework in Section 
6. These sections constitute the essence of PPTC inference. Having laid 
these foundations, we discuss some optimization opportunities in Section 7 
and low-level implementation issues in Section 8. 

2. NOTATION 

We specify PPTC using the following notational conventions and funda- 
mental concepts: 
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2.1. Variables and Values 

We denote variables with italic uppercase letters (A,  B, C), and variable 
values with italic lowercase letters (a, b, c). We instantiate a variable A by 
assigning it a value a; we call a an instantiation of A. 

Sets of variables are denoted by boldface uppercase letters (X, Y, Z), and 
their instantiations by boldface lowercase letters (x, y, z). We instantiate a 
set of variables X by assigning a value to each variable in X; we denote  this 
assignment with x, and call x an instantiation of X. 

2.2. Potentials and Distributions 

2.2.1. POTENTIALS We define a potential [1] over a set of variables X as a 
function that maps each instantiation x into a nonnegative real number; 
we denote this potential as ~b x. We use the notation Sx(X) to denote the 
number that ~b x maps x into; we call ~bx(X) an element. Potentials can be 
viewed as matrices and implemented as tables, so we will also refer to 
them as matrices and tables. 

2.2.2. OPERATIONS ON POTENTIALS We define two basic operations on 
potentials: marginalization and multiplication [2]. Suppose we have a set of 
variables Y, its potential ~b v, and a set of variables X where X _ Y. The 
marginalization of ~b v into X is a potential thx, where each ~bx(X) is 
computed as follows: 

1. Identify the instantiations Yl, Y2 . . . .  that are consistent with x. 
2. Assign to tPx(X) the s u m  ~ ) y ( y l  ) -~- ( ~ y ( y 2 )  --[- -- .  

This marginalization is denoted as follows: 

6x = E 6Y. 
v~x 

Given two sets of variables X and Y and their potentials ~b x and ~b v, the 
multiplication of thx and ~b v is a potential ~bz, where Z = X u Y, and each 
~bz(Z) is computed as follows: 

1. Identify the instantiation x and the instantiation y that are consistent 
with z. 

2. Assign to ~bz(Z) the product thx(x)~bv(y). 

This multiplication of potentials is denoted as follows: 

~z = 6 x 6 v .  

2.2.3. PROBABILITY DISTRIBUTIONS A probability distribution, or simply 
a distribution, is a special case of a potential. Given a set of variables X, we 
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use the notation P(X) to denote  the probability distribution of X, or simply 
the probability of X. P(X) is a potential  over X whose elements add up to 
1. We denote the elements of  P(X) as P(x), and we call each element P(x) 
the probability of x. With this notation, we have 

~ P ( x )  = 1. 
x 

Another  important  notion is that of conditional probability. Given sets 
of  variables X and Y, we use the notation P(XIY) to denote the conditional 
probability of X given Y, or simply the probability of X given Y. P(XIY) is a 
collection of probability distributions indexed by the instantiations of  Y; 
each P(X[y) is a probability distribution over X. We denote the elements 
of  P(X[y) as P(x[y), and we call each element P(xly) the probability of x 
given y. With this notation, we have, for each instantiation y, 

Y'~P(xty) = 1. 
x 

Note that P(X) is a special case of P(XIY) where Y = 0 .  

3. BELIEF NETWORKS AND THEIR SECONDARY STRUCTURES 

3.1. Belief  Networks 

Belief networks are used by experts to encode selected aspects of their 
knowledge and beliefs about a domain. Once constructed, the network 
induces a probability distribution over its variables. 

3.1.1. DEFINITION A belief network over a set of  variables U = {V 1 . . . . .  V~} 
consists of  two components:  

• A directed acyclic graph (DAG) ~e: Each vertex in the graph represents 
a variable V, which takes on values ca, v 2, etc. 2 The parents of V in 
the graph are denoted by I I  v, with instantiations 7rv; the family of V, 
denoted by F v, is defined as {V} U H v. The D A G  structure encodes a 
set of  independence assertions, which restrict the variety of interactions 
that can occur among variables. These assertions are discussed more 
precisely in Section 3.1.3 below. 

• A quantification of  ~': Each variable in ~ is quantified with a 
conditional probability table P(VIIIv). While P(V[II v) is technically 
a function of F v, it is most helpful to think of it in the following way: 

2We will not  distinguish between a vertex and the variable it represents. 
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for each instantiation 7rv, real numbers in [0, 1] are assigned to each 
value v, such that they add up to 1. When II V ~ O, P(VIII V) is called 
the conditionalprobability of Vgiven I Iv;  when II v = •, P(VIHv), or 
simply P(V), is called the prior probability of V. 

These components induce a joint probability distribution over U, given by 

n 

e(u)  = FI e(v, ICv,), 
i=1 

where F 1 . . . . .  F n are the variables in the network. 

3.1.2 EXAMPLE Refer  to the example belief network shown in Figure 1. 
This network is over the set of variables U = {A, B, C, D, E, F, G, H}, 
each variable having values {on, off}. P(FIDE) is an example of a condi- 
tional probability; P(A) is an example of a prior probability. The network's 
joint probability distribution is the product of the conditional and prior 
probabilities: 

P ( U )  = P(A)P(BtA)P(CIA)P(DIB)  

× P( EIC ) P( FIDE) P( G[C ) P( HIEG ). 

3.1.3. INDEPENDENCE ASSERTIONS In addition to the numbers in the 
tables, a belief network also encodes independence assertions, which do 
not depend on how the network is quantified. An independence assertion 
is a statement of the form X and Y are independent given Z: for all 
combinations of values x, y, and z, P(xlz) = e(x~z).  3 In other words, if we 
are given z, then knowing y will not affect our belief in x. The indepen- 
dence assertions in a belief network are important because PPTC uses 
them to reduce the complexity of inference. 

The pattern of arcs in the D A G  encodes the following independence 
assertions: each variable is independent of its nondescendants, given its 
parents. Two or more independence assertions can logically imply a new 
independence assertion, using a mechanism of manipulating such state- 
ments known as the graphoid axioms [12]. A graph-theoretic relation 
known as d-separation captures all such derivable independences encoded 
by the DAG [13]. In other words, Z d-separates X and Y in the D A G  iff, in 
the network, X and Y are independent given Z, with respect to the 
graphoid axioms. 4 

3Or, equivalently, P(xylz) = P(xlz)P0'lz). 

4An intuitive discussion on d-separation can be found in [14]. 
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3.2. The Secondary Structure 

While experts typically use belief networks to encode their domain, 
PPTC performs probabilistic inference on a secondary structure that we 
characterize in Section 3.2.1 below. 

3.2.1. DEFINITION Given a belief network over a set of variables U = 
{V 1 . . . .  , Vn}, we define a secondary structure that contains a graphical and 
a numerical component .  The graphical component  consists of the follow- 
ing: 

• An undirected tree 3]. Each node in J is a cluster (nonempty set) of  
variables. The clusters satisfy the join-tree property: given two clusters 
X and Y in ~,, all dusters  on the path between X and Y contain 
X n y.5 For each variable V ~ U, the family of II, F v (Section 3.1.1), 
is included in at least one of the clusters. 

• Sepsets: Each edge in J is labeled with the intersection of the 
adjacent clusters; these labels are called separator  sets, or sepsets. 6 

The numerical component  is described using the notion of a belief 
potential. A belief potential is a function that maps each instantiation of a 
set of  variables into a real number  (Section 2.2.1). Belief potentials are 
defined over the following sets of  variables: 

• Clusters: Each cluster X is associated with a belief potential ~b x that 
maps each instantiation x into a real number.  

• Sepsets: Each sepset S is associated with a belief potential ~b s that 
maps each instantiation s into a real number.  

The belief potentials are not arbitrarily specified; they must satisfy the 
following constraints: 

• For each cluster X and neighboring sepset S, it holds that 

~b x = ~b s. (3.1) 
x \ s  

When Equation (3.1) is satisfied for a cluster X and neighboring sepset 
S, we say that ~b s is consistent with ~b x. When consistency holds for 
every cluster-sepset pair, we say that the secondary structure is loca#y 
consistent. 

5We will not distinguish between a cluster and its variables. 
6Note that if a sepset is included as a cluster, the resulting duster tree will still satisfy the join 
tree property. 
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• The belief potentials encode the joint distribution P(U) of the belief 
network according to 

P(U) ~i~bx' (3.2) 
FI/4% ' 

where ~bx, and ~bs, are the cluster and sepset potentials, respectively. 
A key step in P F r ~  is the construction of a secondary structure that 

satisfies the above constraints. Such a secondary structure has the follow- 
ing important property: for each cluster (or sepset) X, it holds that 
~b x = P(X) [2]. Using this property, we can compute the probability distri- 
bution of any variable V, using any cluster (or sepset) X that contains V, as 
follows: 

P(V)  = ~ ~b x. (3.3) 
x\{v} 

The secondary structure has been referred to in the literature as a join 
tree, junction tree, tree of belief universes, cluster tree, and clique tree, among 
other designations. In this document, we use the term join tree to refer to 
the graphical component, and the term join-tree potential to refer generi- 
cally to a cluster or sepset belief potential. We will also use the term join 
tree to refer to the entire secondary structure, as it is being created; the 
meaning of join tree will be clear from the context. In Section 4, we show 
how to build a join tree from the DAG of a belief network, and in Section 
5, we describe how PPTC manipulates the join tree potentials so that they 
satisfy Equations (3.1) and (3.2). 

3.2.2. EXAMPLE Figure 2 illustrates part of a secondary structure ob- 
tained from the belief network in Figure 1. The tree contains clusters 
{ABD, ACE, ADE, CEG, DEF, EGH} and sepsets {AD, AE, CE, DE, EG}, 
each with a belief potential ~b over its variables. For example, thABD and 
~bAD are illustrated in Figure 2. Note that qbAB D and ~bAD satisfy the local 
consistency requirement, since we have 

B 

Local consistency also holds for the other cluster-sepset pairs. Finally, the 
belief potentials encode the joint distribution of the belief network by 
satisfying 

4~A no 4~AcE 4~A oE 4~CEG 4~OEF 4'~G. 
P(U) = 
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Figure 2. An example of a secondary structure. 

3.2.3. INDEPENDENCE ASSERTIONS The complete set of independence 
assertions encoded by the join tree can be specified as follows [15]. Begin 
with a secondary structure over the set of variables U, in which the sepsets 
are included as clusters. Let X, Y, and Z be subsets of U. The tree shows X 
to be independent of Y given Z if, for each X ~ X and Y ~ Y, the chain 
between any cluster containing X and any cluster containing Y passes 
through a cluster Z. 

4. BUILDING JOIN TREES FROM BELIEF NETWORKS 

In this section, we begin with the DAG of a belief network, and apply a 
series of graphical transformations that result in a join tree. These trans- 
formations involve a number of intermediate structures, and can be 
summarized as follows: 

1. Construct an undirected graph, called a moral graph, from the DAG. 
2. Selectively add arcs to the moral graph to form a triangulated graph. 
3. From the triangulated graph, identify select subsets of nodes, called 

cliques. 
4. Build a join tree, starting with the cliques as clusters: connect the 

clusters to form an undirected tree satisfying the join-tree property, 
inserting the appropriate sepsets. 

Steps 2 and 4 are nondeterministic; consequently, many different join 
trees can be built from the same DAG. 
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4.1. Constructing the Moral Graph 

Let ge be the DAG of a belief network. The moral graph ge M corre- 
sponding to ge is constructed as follows [1, 16]: 

1. Create the undirected graph geu by copying ge, but dropping the 
directions of the arcs. 

2. Create gem from ge, as follows: For each node V, identify its parents 
1-I V in ge. Connect each pair of nodes in II V by adding undirected 
arcs to ge,. 

Figure 3 illustrates this transformation on the DAG from Figure 1. The 
undirected arcs added to ge, are called moral arcs, shown as dashed lines 
in the figure. 

4.2. Triangulating the Moral Graph 

An undirected graph is triangulated iff every cycle of length four or 
greater contains an edge that connects two nonadjacent nodes in the cycle. 
We describe a procedure for triangulating an arbitrary undirected graph, 
adapted from Kjaerulff [17]: 

1. Make a copy of geM; call it gent. 
2. While there are still nodes left in ge~: 

(a) Select a node V from ge~, according to the criterion described 
below. 

. . . . .  ( 

Y 
Belief-Network 81bruoture Moral Graph 

Figure 3. Constructing the moral graph. 
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(b) The node V and its neighbors in ff~ form a cluster. Connect all 
of  the nodes in this cluster. For each edge added to ~'~, add the 
same corresponding edge to ~'M. 

(c) Remove  V from ~'~t. 
3. ffM, modified by the additional arcs introduced in the previous steps, 

is now triangulated. 

To describe the criterion for selecting the nodes in step 2(a), we rely on 
the following notion of a weight: 

• The weight of a node V is the number  of  values of V. 
• The weight of a cluster is the product of  the weights of  its constituent 

nodes. 
The criterion for selecting nodes to remove is now stated as follows: 

Choose the node that causes the least number of edges to be added in step 
2(b), breaking ties by choosing the node that induces the cluster with the 
smallest weight. 7 

Figure 4 depicts the triangulated graph, as obtained from the moral 
graph in Figure 3. The dashed lines in the figure indicate the edges added 
to triangulate the moral  graph. We also show the elimination ordering of 
the nodes, so that the interested reader can trace each step in the 
triangulation process. 

In general, there are many ways to triangulate an undirected graph. An 
optimal triangulation is one that minimizes the sum of the state space sizes 
of  the cliques (Section 4.3) of  the triangulated graph. The task of finding 
an optimal triangulation is . ,¢'~-complete [19]. However,  the node-selection 
criterion in step 2(a) is a greedy, polynomial-time heuristic that produces 
high-quality triangulations in real-world settings [17]. 

4.3 Identifying Cliques 

A clique in an undirected graph ~" is a subgraph of ~" that is complete 
and maximal. Complete mean that every pair of  distinct nodes is connected 
by an edge. Maximal means that the clique is not properly contained in a 
larger, complete subgraph. Golumbic [20] offers an efficient algorithm for 
identifying the cliques of  an arbitrary triangulated graph; this algorithm 

7We access the next node to be removed by keeping the remaining nodes of ~'~ in a binary 
heap. Each node V is associated with a primary key (the number of edges added if V were 
selected next) and a secondary key (the weight of the cluster included if V were selected 
next). When V is removed, each of V's neighbors needs to have its keys recalculated and, 
therefore, its position in the heap modified. Removing a node V costs O(k lg n) time, where 
k is the number of neighbors of V in g'~, and n is the number of nodes remaining in ~'~t. A 
more detailed discussion on binary heaps can be found in [18]. 
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Figure 4. Triangulating the moral graph. 
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relies on a particular ordering of the nodes, which can be generated 
according to Tarjan and Yannakakis [21]. 

By adapting the triangulation procedure in Section 4.2, though, we can 
identify the cliques of  the triangulated graph as it is being constructed. 
Our  procedure relies on the following two observations: 

• Each clique in the triangulated graph is an induced cluster f rom step 
2(b) of  Section 4.2. 

• An induced cluster can never be a subset of  a subsequently induced 
cluster. 

These observations suggest that we can extract the cliques during the 
triangulation process by saving each induced cluster that is not a subset of 
any previously saved cluster. Revisiting Figure 4, we see that the cliques of  
the triangulated graph are EGH, CEG, DEF, ACE, ABD, and ADE. 

4.4. Building an Optimal Join Tree 

For this point on, we no longer need the undirected graph. We seek to 
build an optimal join tree by connecting the cliques obtained in Section 4.3 
above. 8 To build an optimal join tree, we must connect the cliques so that 
the resulting clique tree satisfies the join-tree property and an optimality 

8The cliques of the triangulated graph will become the clusters of the join tree; hence, we will 
use the terms clique and cluster interchangeably in this section. However, in general, a join 
tree need not be a clique tree. 
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criterion that we will define below. The join-tree property is essential for 
the tree to be useful for probabilistic inference, and the optimality crite- 
rion favors those join trees that minimize the computational time required 
for inference. 

Given a set of n cliques, we can form a clique tree by iteratively 
inserting edges between pairs of cliques, until the cliques are connected by 
n - 1 edges. We can also view this task as iteratively inserting sepsets 
between pairs of cliques, until the cliques are connected by n - 1 sepsets 
[22]. We take this latter approach in specifying how to build an optimal 
join tree. We divide our specification of the algorithm into two parts: First, 
in Section 4.4.1, we provide a generic procedure that forms a clique tree by 
iteratively selecting and inserting candidate sepsets. Then, in Section 4.4.2, 
we show how the sepsets must be chosen, in order for the clique tree to be 
an optimal join tree. 

4.4.1. FORMING THE CLIQUE TREE The following procedure builds an 
optimal join tree by iteratively selecting and inserting candidate sepsets 
[22]; the criterion in Step 3(a) is specified later in Section 4.4.2 below. 

BUILDING AN OPTIMAL JOIN TREE 
1. Begin with a set of n trees, each consisting of a single clique, and 

an empty set 9 .  
2. For  each distinct pair 9 of cliques X and Y: 

(a) Create a candidate sepset, labeled X n Y, with backpointers to 
the cliques X and Y. Refer  to this sepset as Sxv. 

(b) Insert Sx, ¢ into 2;:. 
3. Repeat  until n - 1 sepsets have been inserted into the forest: 

(a) Select a sepset Sxv from S:, according to the criterion specified 
in Section 4.4.2. Delete Sxv from S ~. 

(b) Insert the sepset Sxy between the cliques X and Y o n l y  i f  X 

and Y are on different trees in the forest. 1° (Note that the 
insertion of such a sepset will merge two trees into a larger 
tree.) 

4.4.2. CHOOSING THE APPROPRIATE SEPSETS In order to describe how 
to choose the next candidate sepset, we define the notions of m a s s  and 
cos t ,  as follows: 

• T h e  m a s s  of a sepset Sxv is the number of variables it contains, or the 
number of variables in X n Y. 

9There will be n(n - 1)/2 such pairs. 
l°Otherwise, a cycle would form. 
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• The cost of a sepset Sxv is the weight of X plus the weight of Y, where 
weight is defined as follows: 
The weight of a variable V is the number of values of V. 
The weight of a set of variables X is the product of the weights of the 
variables in X. 

With these notions established, we can now state how to select the next 
candidate sepset from S~ whenever we execute step 3(a) in Section 4.4.1 
[22]: 

• For the resulting clique tree to satisfy the join-tree property, we must 
choose the candidate sepset with the largest mass. 

• When two or more sepsets of equal mass can be chosen, we can 
optimize the inference time on the resulting join tree by breaking the 
tie as follows: choose the candidate sepset with the smallest cost. 

The basis for this method of building an optimal join tree can be found 
in [22]. 

4.4.3. EXAMPLE Starting with the clique set {ABD, ACE, ADE, 
CEG, DEF, EGH} from Figure 4, we choose the connecting sepsets 
AD, AE, CE, DE, and EG based on their mass. These cliques and sepsets 
form the join-tree structure illustrated in Figure 2. 

4.4.4. IMPLEMENTATION NOTES Similar to the triangulation algorithm, 
we can implement the set of candidate sepsets S p as a binary heap, ranking 
each sepset according to a primary key (mass) and a secondary key (cost). 

Note that some of the candidate sepsets in step 2(a) of Section 4.4.1 are 
empty. If the original DAG of the belief network is not fully connected, 
then some of these empty candidate sepsets will be included in the final 
join tree. This outcome is acceptable; however, one optimization involves 
disallowing empty sepsets, and terminating step 3 when n - 1 sepsets have 
been chosen, or when S P is empty. If step 3 terminates because of the 
latter case alone, the resulting join tree will actually be a join forest. 
Section 7.2 discusses how to deal with such forests. 

5. PRINCIPLES OF INFERENCE 

Having built a join-tree structure, we now provide procedures for 
computing the join tree's numerical component,  so that it satisfies the 
conditions in Section 3.2.1. We show how to compute the probability 
distribution P(V), for any variable V, using this join tree. Note that 
computing P(V) corresponds to probabilistic inference in the context of 
no evidence. We address the more general problem of computing P(Vle), 
in the context of evidence e, in Section 6. 
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5.1. Overview 

Figure 5 illustrates the overall control for PPTC with no evidence. We 
trace the steps in this figure as follows: 

• Graphical transformation. Transform the DAG of a belief network 
into a join-tree structure, using the procedures in Section 4 above. 

• Initialization (Section 5.2). Quantify the join tree with belief poten- 
tials so that they satisfy Equation (3.2). The result is an inconsistent 
join tree, as this initial assignment of belief potentials does not meet 
the local consistency requirements of Equation (3.1). 

• Globalpropagation (Section 5.3). Perform an ordered series of local 
manipulations, called message passes, on the join-tree potentials. The 
message passes rearrange the join-tree potentials so that they become 
locally consistent; thus, the result of global propagation is a consistent 
join tree, which satisfies both Equations (3.1) and (3.2). 

• Marginalization (Section 5.4). From the consistent join tree, compute 
P ( V )  for each variable of interest V. 

5.2. Initialization 

The following procedure assigns initial join-tree potentials, using the 
conditional probabilities from the belief network: 

1. For each cluster and sepset X, set each ~bx(x) to 1: 

4~x ~ 1. 

Belief Network 1 
Graphical Transformation 

[ Join Tree Structure [ 
Initialization 

[ Inconsistent Join Tree ] 

Propagation 

[ C°nsistent J°in Tree ] 
1 Marginalization 

p(-¢) 

Figure 5. Block diagram of PPTC with no evidence. 
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2. For each variable V, perform the following: Assign to V a cluster II X 
that contains Fv; call X the parent cluster of F v. Multiply 4, x by 
P(VIIIv):  

Chx *-- ~ x P ( V l I I v ) .  

After initialization, the conditional distribution P(VIII  V) of each vari- 
able V has been multiplied into some cluster potential. The initialization 
procedure satisfies Equation (3.2) as follows: 

H~V:'4'x' H~='P(VklCv~) = P(U) ,  
H N - 1  ,.~ 

j = 1 W S j  1 

where N is the number of clusters, Q is the number of variables, and Sx, 
and Ss are the cluster and sepset potentials, respectively. 

• ] . . . . . .  
Figure 6 illustrates the lmtlahzatlon procedure on the tables of cluster 

ACE and sepset CE from the secondary structure of Figure 2. In this 

P(C I A) P(E I C) 

a c e 

on 

on 

on 

on 

off on on 1 

off on off 1 

off off on 1 

off off off 1 

Figure 6. 

on on 

on off 

off on 

off off 

CACE ] 

Initial Values 

1 x .7 x .3 -- .21 

1 x .7 x .7 = .49 

1 x .3 x .6 = .18 

1 x .3 x .4 = .12 

× .2 x .3 = .06 

x .2 x .7 = .14 

x .8 x .6 = .48 

× .8 × .4 = .32 

Initial 
c e Values 

on on 1 

on off 1 

off on 1 

off off 1 

etc. 

Initialization of cluster ACE and sepset CE. 

11 The triangulation procedure in Section 4.2 guarantees that such a cluster exists. 
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example, A C E  is the parent cluster of F c and F e, but not FA. Thus, after 
initialization, rbAce = P ( C I A ) P ( E I C ) ,  and ~bce = 1. 

5.3. Global Propagation 

Having initialized the join-tree potentials, we now perform global propa- 
gation in order  to make them locally consistent. Global propagation 
consists of a series of local manipulations, called message passes, that occur 
between a cluster X and a neighboring cluster Y. A message pass from X to 
Y forces the belief potential of the intervening sepset to be consistent with 
~b x [see Equation (3.1)], while preserving the invariance of Equation (3.2). 
Global propagation causes each cluster to pass a message to each of its 
neighbors; these message passes are ordered so that each message pass 
will preserve the consistency introduced by previous message passes. When 
global propagation is completed, each cluster-sepset pair is consistent, and 
the join tree is locally consistent. 

In Section 5.3.1, we describe a single message pass between two adjacent 
clusters. Then, in Section 5.3.2, we explain how global propagation achieves 
local consistency by coordinating multiple message passes. 

5.3.1. SINGLE MESSAGE PASS Consider two adjacent clusters X and Y 
with sepset R, and their associated belief potentials ~b x, ~b v, and 4~R. A 
message pass from X to Y occurs in two steps: 

1. Projection. Assign a new table to R, saving the old table: 

q~i ld ~-- q~R, 

6R '- E 6x. (5.1) 
X\R 

2. Absorption. Assign a new table to Y, using both the old and the new 
tables of R: 

~R 
~b v ~ ~b v ~b~l d . (5.2) 

For any instantiation r of R, Jensen [23] shows that ~b~ld(r) = 0 only 
if 4~R(r) = 0. Whenever this occurs, set 0 / 0  = 0. 

Equations (5.1) and (5.2) assign new potentials to R and Y; however, the 
left-hand-side of Equation (5.2) remains constant, thus preserving the 
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invariance of Equation (5.2): 

0w 
~ J  ~R ~ ld ~''= ~ ]  I~R ~ld P(U) .  

5.3.2. COORDINATING MULTIPLE MESSAGES Given a join tree with n 
clusters, the PPTC global propagation algorithm begins by choosing an 
arbitrary cluster X, and then performing 2(n - 1) message passes, divided 
into two phases. During the COLLECT-EVIDENCE phase, each cluster passes 
a message to its neighbor in X's direction, beginning with the clusters 
farthest from X. During the DISTRIBUTE-EVIDENCE phase, each duster  
passes messages to its neighbors away from X's direction, beginning with X 
itself. The COLLECT-EVIDENCE phase causes n - 1 messages to be passed, 
and the DISTRIBUTE-EVIDENCE phase causes another n - 1 messages to be 
passed. 

GLOBAL PROPAGATION 
1. Choose an arbitrary cluster X. 
2. Unmark all clusters. Call COLLECT-EVIDENCE(X). 
3. Unmark all clusters. Call DISTRIBUTE-EVIDENCE(X). 

COLLECT-EVIDENCE(X) 
1. Mark X. 
2. Call COLLECT-EVIDENCE recursively on X's unmarked neighboring 

clusters, if any. 
3. Pass a message from X to the cluster which invoked COLLECT-Evi- 

DENCE(X). 

DISTRIBUTE-EVIDENCE(X) 
1. Mark X. 
2. Pass a message from X to each of its unmarked neighboring 

clusters, if any. 
3. Call DISTRIBUTE-EVIDENCE recursively on X's unmarked neighbor- 

ing clusters, if any. 

The net result of this message passing is that each cluster passes its 
information, as encoded in its belief potential, to all of  the other clusters 
in the join tree. Note that in this message-passing scheme, a cluster passes 
a message to a neighbor only after it has received messages from all of  its other 
neighbors. This condition assures local consistency of the join tree when 
global propagation is completed [2, 23]. 

5.3.3. EXAMPLE Figure 7 illustrates the PPTC propagation step on the 
join tree from Figure 2. Here,  A C E  is the starting cluster. During the 
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1 3 5 

8 i 

~ - I ~ , -  COLLECT-EVIDENCE . . . .  ~ DISTRIBUTE-EVIDENCE 

Figure 7. Message passing during global propagation. 

COLLECT-EVIDENCE phase, messages are passed in ACE's direction, begin- 
ning with the clusters ABD, DEF, and EGH; these messages are indi- 
cated by the solid arrows. During the DISTRIBUTE-EVIDENCE, phase, mes- 
sages are passed away from cluster ACE, beginning with ACE; these 
messages are indicated by the dashed arrows. The numbers indicate one 
possible message-passing order. 

5.4. Marginalization 

Once we have a consistent join tree, we can compute P(V) for each 
variable of interest V as follows: 

1. Identify a cluster (or sepset) X that contains V. ]2 
2. Compute P(V) by marginalizing ~b x according to Equation (3.3), 

repeated for convenience: 

P (V)  = ~ ~b x. 
x\{v} 

Figure 8 illustrates an example of marginalization. The cluster potential 
C~AB D is from the consistent join tree of Figure 2. ~bAa o is marginalized 
once to compute P(A), and then marginalized again to compute P(D). 

6. HANDLING EVIDENCE 

We are now able to compute P(V) for any variable V. In the following 
sections, we show how to modify the procedures in Section 5 in order to 

12The parent  cluster of F v is a convenient choice, but see Section A.2 for a discussion of 

more optimal choices. 
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~ABD = 

a b d 

on on on 

on on off 

on off on 

on off off 

off on on 

off on off 

off off on 

off off off 

O~D(abd) 
.225 

.025 

.125 

.125 

.180 

.020 

.150 

.150 

P(A) = 

a 

E ~ABD = on 

off 
BD 

P ( a )  

• 225 + .025 + .125 + .125 = .500 

.180 + .020 + .150 + .150 = .500 

d ] P(d) 
=~'~ ~AaD~,d = on .225 + .125 + .180 + .150 = .680 

P(D) 
AB off .025 + .125 + .020 + .150 = .320 

FigureS. Marginalization example. 

compute P(Vie) in the context of evidence e. First we introduce observa- 
tions, the simplest notion of evidence, in Section 6.1. Then, in Sections 
6.2-6.6, we show how to compute P(Vle) for sets of observations e. Finally, 
in Section 6.7, we extend the above procedures to handle more general 
notions of evidence. 

6.1. Observations and Likelihoods 

Observations are the simplest forms of evidence. An observation is a 
statement of the form V = v. Collections of observations may be denoted 
by E = e, where e is the instantiation of the set of variables E. Observa- 
tions are also referred to as hard evidence. 

To encode observations in a form suitable for PPTC, we define the 
notion of a likelihood. Given a variable V, the likelihood of V, denoted as 
A V, is a potential over {V}; in other words, A V maps each value v to a real 
number (see Section 2.2.1). We encode an arbitrary set of observations e 
by using a likelihood A V for each variable V, as follows: 

• If V ~ E - - t h a t  is, if V is observed-- then  assign each Av(v)  as 
follows: 

(v)  = [ 1 when v is the observed value of V, 
A v 0 otherwise. 
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• If V q~ E - - t h a t  is, if the value of V is unknown-- then  assign Av(v)  
= 1 for each value v. 

Note that when there is no observations, the likelihood of each variable 
consists of all l's. Table 1 illustrates how likelihoods are used to encode 
the observations C = o n  and E = o f f ,  where C and E are variables from 
the join tree in Figure 2. 

6.2. PPTC INFERENCE WITH OBSERVATIONS 

Figure 9 illustrates the overall control for PPTC with observations. We 
modify the control from Figure 5 to incorporate observations, as follows: 

• I n i t i a l i z a t i o n  (Section 6.3). We modify initialization from Section 5.2 
by introducing an additional step: for each variable V, we initialize the 
likelihood A V. 

• O b s e r v a t i o n  e n t r y  (Section 6.4). Following initialization, we encode 
and incorporate observations into the join tree; this step results in 
further modification of the join-tree potentials. 

• N o r m a l i z a t i o n  (Section 6.5). To compute P(Vle) for a variable of 
interest V, we perform marginalization and an additional step called 
n o r m a l i z a t i o n .  

6.3. Initialization with Observations 

We keep track of observations by maintaining a likelihood for each 
variable. We initialize these likelihoods by adding step 2(b) to the initial- 
ization procedure below: 

1. For each cluster and sepset X, set each ~bx(X) to 1: 

~bx ~- 1. 

Table 1. Likelihood encoding of C = o n ,  E = o f f .  

Variable Av(v) 
V v = o n  v = o f f  

A 1 1 
B 1 1 
C 1 0 
D 1 1 
E 0 1 
F 1 1 
G 1 1 
H 1 1 
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Belief Network 1 

Graphical 
Transformation 

[ Join Tin, str.cture I 
12 Initialization : Observation entry 

[ Inconsistent Join Tree [ 

1 Pr~ptlon 

[ Consistent Join Tree [ 
12. Marglnallzation • Normalization 

P(V le)  
Figure 9. Block diagram of PPTC with observations 

2. For  each variable V: 
(a) Assign to V a cluster X that  contains Fv;  multiply 4) x by P(VIIIv): 

4~x ~- 4~xP(VIIIv). 

(b) Set each likelihood e lement  A v ( v )  to 1: 

A v ~ l .  

6.4. Observation Entry 

Note  that  upon  comple t ion  o f  initialization, the likelihoods encode  no 
observations.  We  incorpora te  each observat ion V = v by encoding the 
observat ion as a likelihood, and then incorporat ing this l ikelihood into the 
join tree, as follows: 

1. Encode  the observat ion V = v as a l ikelihood A~ w. 
2. Identify a cluster X that  contains V. 13 

3. Upda t e  4) x and Av:  

4) x ~ S x A ~  w, 
(6.1) 

Av  ( -  A~ w . 

13The parent cluster of F v is a convenient choice, but see Section 10.2 for a discussion of 
more optimal choices. 
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By entering a set of observations e as described above, we modify the 
join-tree potentials, so that all subsequent probabilities derived from the join 
tree are probabilities of events that are conjoined with evidence e. In other 
words, instead of computing P(X) and P(V), we compute P(X,e) and 
P(V, e), respectively. Note also that the join tree encodes P(U, e) instead of 
P(U) [see Equation (3.2)]. 

6.5. Normalization 

After the join tree is made consistent through global propagation, we 
have, for each cluster (or sepset) X, ~b x = P(X, e), where e denotes the 
observations incorporated into the join tree according to Section 6.4 [2]. 
When we marginalize a cluster potential ~b x into a variable V, we obtain 
the probability of V and e: 

P(V,e)  = ~, dpx. 
x\{v} 

Our goal is to compute P(VIe), the probability of Vgiven e. We obtain 
P(VIe) from P(V, e) by normalizing P(V, e) as follows: 

P(V,e)  P(V,e)  
P(VIe) (6.2) 

P(e) EvP(V,  e) " 

The probability of the observations P(e) is often referred to as a normaliz- 
ing constant. 

6.6. Handling Dynamic Observations 

Suppose that after computing P(VIel), we wish to compute P(VIe2), 
where e2 is a different set of observations from el. We could start anew by 
building a join-tree structure, initializing its potentials, entering the new 
set of observations e2, performing global propagation, and marginalizing 
and normalizing. However, this amount of additional work is not neces- 
sary, because we can directly modify the join-tree potentials in response to 
changes in the set of observations. We can image a dynamic system in 
which the consistent join tree is the steady state, and incoming observa- 
tions disturb this steady state. In this subsection, we refine the control of 
PPTC by adding procedures to handle such dynamic observations. 

6.6.1. OVERALL CONTROL Figure 10 shows the control for PPTC with 
dynamic observations. Note that there are two dashed paths going from 
Consistent Join Tree to Inconsistent Join Tree, one labeled Global Update 
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pot le) 
Figure 10. Block diagram of PPTC with dynamic observations. 

and the other Global Retraction. Depending on how we change the set of 
observations, we must perform one of these two procedures. A global 
update is used to incorporate new observations, while a global retraction is 
required for modifying or retracting previous observations. Global retrac- 
tion requires reinitialization of the join-tree potentials, because undoing 
an observation involves restoring table elements that have been zeroed out 
by previous observations. To describe these procedures more precisely, we 
first establish some basic notions of  changes in observations. 

6.6.2. UPDATES AND RETRACTIONS To describe changes in observa- 
tions, we establish the notion of an observed state. The observed state of a 
variable V is its observed value v, if V is observed; otherwise, the 
observed state of V is unknown, and we say that V is unobserved. 

Suppose we change a set of observations e I to a different set of 
observations e 2. Then the observed state of each variable V undergoes one 
of three changes: 

• N o  change. If  V is unobserved in el, it remains unobserved in e 2. If  
V = v in e 1, then V := v in e 2. 
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• Update. V is unobserved in e 1, and V = v in e 2 for some value v. 
• Retraction. V = v I in e 1. In e2, either V is unobserved, or V = v2, 

where v 2 4: v 1. 
We can now state how we should handle changes in observations. 

Suppose we have a consistent join tree that incorporates the set of 
observations el, and we wish to compute P(VJe2) for variables of interest 
V, where e2 is different from el. We incorporate e2 into the join tree by 
performing one of the following: 

• Global update (Section 6.6.3). We perform a global update if, for 
each variable 11, the observed state of V is unchanged or updated 
from el to e 2. 

• Global retraction (Section 6.6.4). We perform a global retraction if, 
for some variable V, the observed state of V is retracted. 

6.6.3. GLOBAL UPDATE A global update executes an observation entry 
(see Section 6.4 above) for each variable V whose observed state is 
updated to V = v. Global updating destroys the consistency of the join 
tree; we restore consistency by performing a global propagation. However, 
if the belief potential of only one cluster X is modified through global 
updating, then it is sufficient to unmark all clusters and call 
DISTRIBUTE-EVIDENCE(X). 

6.6.4. GLOBAL RETRACTION We perform a global retraction as follows: 
1. For each variable V, update the likelihood A V to reflect any changes 

in V's observed state. 
2. Reinitialize the join-tree tables according to Section 6.3. 
3. Incorporate each observation in e 2 according to Section 6.4. 

We cannot handle retractions in the same way that we handle updates, 
because in a retraction, we are trying to recover join-tree potential 
elements that have been zeroed out by previous observations. Our only 
recourse, therefore, is to reinitialize the join-tree tables and then enter the 
new set of observations. TM 

14Observations can be introduced without zeroing out the cluster tables by using alternative 
propagation methods--examples include "fast retraction" [24, 25] and "cautious propagation" 
[26]. Applications of these methods include conflict analysis, sensitivity analysis, and process- 
ing counterfactual queries. Compared to PPTC propagation, these alternative methods 
require more storage and computation, and generally do not handle all possible retractions of 
observations. 
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6.7. More Sophisticated Notions of Evidence 

Observations are the simplest and most common type of evidence 
encountered.  However,  we can use likelihoods to represent more  sophisti- 
cated types of evidence. We introduce these more  general notions of  
evidence in Section 6.7.1. Then we describe PPTC with evidence in a 
manner  parallel to our description of PPTC with observations. 

6.7.1. EVIDENCE AND LIKELIHOODS In general, a likelihood A V on a 
variable V can be interpreted as assigning a relative weight Av(v )  to each 
value v, according to how likely is the case that V = v. When Av(v )  is the 
same for all values v, we say that A V encodes no information on variable 
1,1.15 

The following terminology is commonly used to classify different types 
of  evidence on a variable V, according to the form that the likelihood A v 
takes: 

• Virtual evidence.  Virtual evidence, or soft  evidence, is the most gen- 
eral type of evidence. Virtual evidence on a variable V is represented 
by a likelihood A v where each Av(v )  is a real number  in [0, 1] [4]. 

• Finding.  A finding is represented by a likelihood A v where each 
A v ( v )  is a 0 or a 1. Essentially, a finding declares the zeroed values to 
be impossible. Naturally, a finding should allow at least one possible 
value. 

• Observation.  An observation is a special case of a finding where 
A z ( v )  = 1 for exactly one value v. An observation declares, with 
certainty, that V = v. 

6.7.2. EVIDENCE ENTRY Upon  completion of initialization, no evidence is 
encoded by the likelihoods or incorporated into the join tree. We incorpo- 
rate each piece of evidence on a variable V by executing the following 
procedure: 

1. Encode the evidence on variable V as a likelihood A~ w. 
2. Identify a cluster X that contains V. 16 

3. Update  d~x and Av: 
A~ eW 

~bx ~ ~bx Av ' (6.3) 

Av ,--- A~ w . 

Note that Equation (6.1) is a specialized version of Equation (6.3) above. 

lSTypically, we encode this no- informat ion state with a vector of  l 's.  

16The parent  cluster of  F V is a convenient  choice, but  see Section A.2 for a discussion of  
more  optimal  choices. 
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6.7.3. HANDLING DYNAMIC EVIDENCE We can easily extend PPTC with 
dynamic observations (Section 6.6) to handle dynamic evidence. In dis- 
cussing changes of evidence, we generalize the notion of observed state to 
the notion of evidence state: the evidence state of a variable V is its 
likelihood A v. We extend the notation e to represent the combined 
evidence state of all variables, and we refer to e as an evidence configura- 
tion. 

Consider a change in evidence configuration from e I to %. For each 
variable V, denote its evidence state in e I as A V, and its evidence state in 
e 2 as An~ w. We classify the change from A V to A~ w as one of the 
following: 

• N o  change. A v =  An~ w. 

• Update. For every value v, Av(v )  = 0 implies A~W(v) = 0. 
• Retraction. For some value v, Av(v )  = 0 and An~W(v) 4: 0. 
We can now state how we should handle changes in evidence. Suppose 

we have a consistent join tree that incorporates the evidence configuration 
el, and we wish to compute P(Vle 2) for variables of interest V, where e 2 is 
different from e~. We incorporate e2 into the join tree by performing one 
of the following: 

• Global update. We perform a global update if, for each variable V, 
the evidence state of V is unchanged or updated from e I to e 2. 

• Global retraction. We perform a global retraction if, for some vari- 
able V, the evidence state of V is retracted. 

We perform a global update by executing an evidence entry (Section 
6.7.2) for each variable V whose evidence state is updated from A v to 
A"~ w. We perform a global retraction as follows: 

1. For each variable V, update the likelihood Av to reflect any changes 
in V's observed state. 

2. Reinitialize the join-tree tables according to Section 6.3. 
3. For each variable V where Av(v )  ~ 1 for some v, incorporate A v 

according to Section 6.7.2. 

7. PPTC OPTIMIZATIONS 

In this section, we discuss some optimizations to PPTC that we imple- 
mented, optimizations that can significantly reduce the computation re- 
quired for inference in certain situations. We assume that the reader has 
mastered the material in the previous sections and has a basic understand- 
ing of computer  algorithms. 

7.1. Query-Driven Message Passing 

In this section, we summarize a modified version of PPTC called 
query-driven PPTC.  Unlike the version of PPTC presented in previous 



252 Cecil Huang and Adnan Darwiche 

sections, query-driven PPTC does not establish and maintain consistency 
throughout the join tree; instead, it passes messages only in response to 
individual variable queries P(Vle). This optimization is useful in diagnostic 
applications: for example, where the user constructs a belief network with 
many variables, and then queries only a few variables. 

Query-driven PPTC exploits the following observation: to marginalize 
the cluster potential ~b x to obtain P(I/, e), we need only to ensure that 
~b x = P(X, e). A call to COLLECT-EVIDENCE(X) would ensure this condition 
[23]. However, query-driven PPTC uses a modified version of 
COLLECT-EVIDENCE(X) that recurses on a neighbor Y only if Y has not 
previously passed a message to X. Query-driven PPTC keeps track of the 
messages that have been passed by maintaining a set of Boolean quantities 
called message flags. Each message flag is denoted as ~t'x(¥) and is 
interpreted as follows: the message flag .*gx(Y) is TRUE if a message pass 
from Y to X would leave ~b x unchanged; otherwise, ~'x(Y) is FALSE.  We 
use the notation J 'x(Y) to emphasize that the message flags can be stored 
locally: given a cluster X, we can store the message flags ~'x(Y), for all 
neighbors Y, as part of the local information on X. 

A message flag .d'x(¥) is set to TRUE during a message pass from X to 
Y. As additional variable queries are processed, additional message flags 
are set to TRUE. Message flags, however, can be set to FALSE,  or 
invalidated, by dynamic evidence: 

• Evidence update. Suppose a cluster X incorporates an evidence up- 
date according to the procedure in Section 6.7.2. Then all message 
passes in the direction away from cluster X are invalidated; these 
message passes need to be recomputed if a subsequent variable query 
requests them. 

• Evidence retraction. To process changes in evidence that involve 
retraction, we employ the familiar procedure of reinitializing the 
join-tree tables and entering the evidence anew. All message passes 
are invalidated. 

7.2. Inference on Forests of Join Trees 

If the initial belief network is not fully connected, then the procedures 
in Section 4 yield a join tree with empty sepsets. We can optimize PPTC by 
disallowing these empty sepsets and performing inference on a forest of 
join trees. By maintaining each join tree separately, we avoid the computa- 
tional cost of passing messages that serve only to rescale the cluster 
potentials. 

In maintaining separate join trees, we must also, in general, maintain 
separate normalization constants for each join tree [27]. First, we note that 
the normalization constant P(e) for a join tree that incorporates evidence 
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e can be computed, using any cluster X where ~b x = P(X, e), as follows: 

P(e) = ~P(X,e) = ~ 4)x. 
X X 

Therefore,  P(e) can be computed by calling COLLECT-EVIDENCE on some 
cluster X, and then marginalizing thx as described above. But this 
marginalization effectively occurs during the normalization phase of a 
variable query, as seen in the denominator of Equation (6.2). 

Now let's consider a forest of join trees ~ . . . . .  ~ with corresponding 
normalization constants P(e  1) . . . .  , P(en). Since the disconnected join trees 
are independent of one another, the probability of evidence P(e) for the 
entire join forest can be calculated as follows: 

n 

P(e)  = P (e  I ... e n) = 1 - I P ( e i ) .  
i = l  

Suppose we query a variable V in ~ .  We choose a cluster X that 
contains V, call COLLECT-EVIDENCE(X), and obtain ~b x = P(V ,  el). But if 
we want to compute P ( V ,  e), we must also compute the other normaliza- 
tion constants: 

P ( V ,  e) = P ( V ,  e I ... e~) = P ( V ,  elle 2 --. e , ) P ( e  2 -.. e , )  

= P ( V ,  e l ) P ( e  2 ... en) = P ( V , e  1) 1 - I P ( e i ) ,  
i~=1 

where each normalization constant P(e  i) is computed by marginalizing a 
cluster in the join tree J//. 

However, if we are interested only in computing P(VIe), we do not need 
the other normalization constants: 

P ( V , e )  P ( V ,  e l ) P ( e  2 . . . e  n) P ( V , e  1) 
P(Vle)  = 

P(e)  P (e  lie 2 " '"  e n )  P(e  1) 

7.3. Evidence Shrinking 

Evidence shrinking is an optimization of PPTC that uses findings (and 
observations) to reduce effective cluster sizes. A s  an example, let us focus 
on a particular cluster JKL in a join tree that has just processed the 
findings J 4: Jl and L = 11 (Figure 11). How should this evidence affect 
cluster JKL? Mathematically, we would multiply all of the shaded cells in 
Figure 11 by zero. But in practice, we do not want to do this, because the 
O's will not affect the results of subsequent message passes involving JKL. 
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Figure 11. Evidence shrinking on a single cluster. Cluster JKL is shrunk by the 
finding J 4~jl and the observation L = l], reducing its effective size from 12 to 4. 
The unshaded cells represent the cluster elements that remain active after the 
shrinking process. 

Both the introduction of these O's and their subsequent propagation would 
involve unnecessary, and often costly, computation. 

Evidence shrinking avoids this unnecessary processing of O's by restruc- 
turing the cluster JKL so that only the unshaded cel ls - - the  cells that 
would not have been multiplied by 0 - - a r e  involved in further computation. 
This restructuring process can be performed in time proportional to the 
reduced cluster size. Further details on this restructuring are discussed in 
Section 8.2. 

Two properties of evidence shrinking contribute to its potential for 
significant computational savings. First, the O's in a likelihood A v affect all 
clusters containing the variable I1. Second, if we restrict our evidence to 
observations, as is the case for many existing implementations, then each 
observation on a variable V effectively reduces the size of each cluster 
(and sepset) containing V by an entire dimension. These two properties of 
evidence shrinking are illustrated in Figure 12. 

8. ARRAY-LEVEL TECHNIQUES 

"The  devil is in the details," it is often said. This is definitely the case 
when implementing PPTC. In this section, we address some array-level 
issues that are not normally discussed in the probabilistic literature; yet, 
they must be addressed by any programmer who wishes to build an 
efficient implementation of PPTC. We present some techniques that, 
through additional precomputation prior to inference, can reduce the 
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Figure 12. Evidence shrinking on a join tree. The observation C = on reduces the 
matrices of clusters containing C by a dimension. Similarly, the observation 
E = o f f  reduces the matrices of clusters containing E by a dimension. Note that 
the sepset CE becomes empty; it passes a message composed of a single number 
P ( C  = on, E = offleT1), where eTi is the evidence in the subtree T 1 from which 
the message through CE originates. 

overhead during message passing. Additional array-level techniques are 
presented in Section 10.1. 

8.1. Cluster-Sepset Mappings 

In this section we describe an auxiliary data structure, called a cluster-  

sepse t  m a p p i n g ,  that is crucial to an efficient implementat ion of PPTC 
inference. Recall that a message pass consists of two steps: projection and 
absorption (see Section 5.3.1). Both projection and absorption depend on a 
precise interaction between a cluster potential and a sepset potential. 
These potentials are typically implemented as arrays, and the interaction 
between these arrays is illustrated in Figure 13. 

In both projection and absorption, the key step is to locate, for each 
cluster element ~bx(X), the corresponding sepset element ~bs(S) [and 

old ~b s (s)], where s is consistent with x. But in order to locate ~bs(s), we need 
not just the instantiation s, but the array i n d e x  of s. Computing the array 
index of s requires a number  of  operations involving x and the array 
dimensions of X and S. For a given message pass, this computation needs 
to be applied to each cluster instantiation x. Furthermore,  these array 
indices must be recomputed during the next message pass involving X and 
S, unless they are somehow stored for future retrieval. 
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Figure 13. Interaction between cluster and sepset arrays. X denotes a cluster ADE, 
and S denotes a neighboring sepset AE. The shaded cells denote potential 
elements; next to each potential element is the instantiation of variables that 
indexes it. Each cluster element ~bx(x) has a corresponding sepset element ~bs(S) 
[and ~b~ld(S)], where s is consistent with x; this correspondence is illustrated by the 
dashed arrows. 

We avoid unnecessary recomputation of these array indices by precom- 
puting them while building the join tree. Specifically, for each cluster X 
and neighboring sepset S, we compute an array /Xx, s over the instantia- 
tions x, such that each array element /Zx, s(X) stores the array index of the 
instantiation s that is consistent with x. We call /Zx, s a cluster-sepset 
mapping. Figure 14 illustrates an example of a cluster-sepset mapping. 

A cluster-sepset mapping /Zx, s can be computed in time proportional to 
the number of instantiations of X. Cluster-sepset mappings significantly 
reduce the running time of inference, because they enable corresponding 
elements to be located using simple array lookups, not repeated array 
index calculations. 

8.3. Evidence Shrinking 

Suppose we incorporate the observation D = off into the duster  X from 
Figure 14, using the observation entry procedure in Section 6.4. This will 
cause certain elements of X to be zeroed, as illustrated in Figure 15. These 
O's will continue to be visited during subsequent message passes involving 
X, even though they will not affect the results of any computations. 

Evidence shrinking (Section 7.3) seeks to avoid these extraneous and 
costly element accesses. The computational gains of evidence shrinking 
hinge on restructuring the clusters so that only the active elements--the 
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Figure 14. Example of a cluster-sepset mapping. For each cluster instantiation x, 
the cluster-sepset mapping /Xx, s stores the array index of the consistent sepset 
instantiation s. The solid arrows illustrate the resulting correspondence between 
cluster elements ~bx(X) and sepset elements ~bs(S). Both projection and absorption 
use the same cluster-sepset mapping; the only difference is in the actual arithmetic 
performed. 

elements that are not zeroed by the ev idence - -a re  visited during subse- 
quent message passes. We can implement this restructuring by maintain- 
ing, for each cluster, an auxiliary array of indices called a shrink mapping. 
A shrink mapping on a cluster X is an array o" x that points to the active 
elements of  ~b x. The effective size of the shrink mapping is the number  of 
active elements in X. During projection or absorption, the active elements 
of X are accessed by visiting the elements of the shrink mapping. The 

II °'°" ON OFF 

~ I I ~rr oFF 

Figure 15. Zeroing of cluster elements by the observation D = off. 
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Figure 16. Shrink-mapping example. Cluster X is shrunk by the observation D = 
off. The shrink mapping tr x points to the cluster elements consistent with this 
observation. This reduces the effective cluster size, and with it, the running time of 
any message passes involving that cluster. 

shrink mapping amounts to an additional level of indirection. Figure 16 
illustrates an example of a shrink mapping. 

Shrink mappings can be updated in time proportional to the reduced 
cluster size. One programming solution involves using a procedure that 
generates all instantiations of the cluster variables and their element 
indices by recursing over the values of each variable. We would implement 
evidence shrinking by modifying this procedure to recurse only over the 
possible values of the variables in that cluster. 

6. CONCLUSION 

PPTC is one of the most widely recognized algorithms for exact proba- 
bilistic inference in belief networks. In this document, we have provided a 
self-contained, procedural guide to understanding and implementing PPTC. 
We synthesized methods that are scattered throughout the literature, and 
we articulated these methods in algorithmic form. In addition, we dis- 
cussed undocumented, lower-level issues that are vital to producing a 
robust and efficient implementation of PPTC. We hope that this document 
makes probabilistic inference more accessible to the increasing number of 
researchers and developers who are making use this technology. 

APPENDIX. ADDITIONAL OPTIMIZATIONS 

In this appendix, we outline some additional optimization opportunities 
for PPTC and provide the relevant references. 
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A~I. Zero Compression 

Zero compression is an extension of PPTC that can save significant 
computation under certain circumstances. Here,  we summarize the basic 
ideas of zero compression; the interested reader can find a more thorough 
treatment in the original paper by Jensen and Andersen [28]. 

Zero compression is designed to take advantage of conditional probabil- 
ity tables P(VIII V) whose row entries: 

• contain O's, implying some logical or functional relationship between 
the variable V and its parents H v; 

• contain extreme probabilities that are close to O. 
These situations occur often in prac t ice- - for  example, in engineering 

applications that model small failure probabilities. 

A.1.1. ANNIHILATING ZEROS During initialization, each conditional 
probability P(VIII v) is multiplied into some cluster potential ~b x. Let us 
first focus on a particular conditional probability distribution P(VIIIv). 
The O's in P(VIII v) cause the corresponding elements in ~b x to be zero as 
well. After performing global propagation, some of these O's will propagate 
throughout the entire join tree. 

Suppose now that the user enters evidence and performs another global 
propagation. During this propagation, computational resources are ex- 
pended adding and multiplying potential elements by 0. This expenditure 
becomes more wasteful as the number of O's increases. Zero compression, 
as presented in [28], addressed this wasteful propagation as follows: 

1. Build a join tree. Initialize the cluster potentials with the conditional 
probabilities P(VIHv ). 

2. Perform a global propagat ion--a  COLLECT-EVIDENCE followed by a 
DISTRIBUTE-EVIDENCE. 

3. For each cluster X, visit each element ~bx(X), identifying and annihi- 
lating the 0 elements. The annihilation step should restructure the 
internals of X so that subsequent messages passes involving X do not 
visit these 0 elements. 

A.1.2. ANNIHILATING "SMALL" ELEMENTS Zero compression can speed 
up exact inference in a join tree because its effective cluster sizes are 
reduced. We can reduce the effective cluster sizes further by annihilating 
elements with probabilities close to zero; this elimination of "small" 
elements results in a join tree that performs approximate inference. Details 
on how to select appropriate annihilation thresholds for each cluster are 
contained in [28]. Note that unlike the strict zero-compression scheme in 
Section A.I.1 above, annihilating small elements destroys the consistency 
of the join tree. This loss of consistency can be remedied by a global 
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propagation; in the case of query-driven PPTC, this loss of consistency can 
be properly accounted for by invalidating the appropriate message flags. 

The above approximation scheme can result in significant computational 
gains, depending on the topology and quantification of the original belief 
network and the amount of error tolerated by the user. In some scenarios, 
the total number of elements not annihilated may be orders of magnitude 
smaller than the original number of elements. For example, [28] discusses 
some experiments on a real-world belief network, in which the inference 
time is reduced by 96-99 percent for a total removed probability mass of 
0.1 percent. 

A.1.3. DYNAMIC ZERO COMPRESSION With appropriate data structur- 
ing, a form of zero compression that dynamically compresses cluster 
matrices during inference can be implemented. When a cluster element 
evaluates to 0 or a sufficiently small number, that element would be 
annihilated immediately. 

A.2. Dynamic Restructuring of Cluster Trees 

Recall that for marginalization and evidence entry, we are asked to 
"choose a cluster X that contains the variable V." In each of these 
situations, we conveniently chose the parent cluster of V. However, by 
choosing these clusters more judiciously, we can often, for a given query, 
reduce the number of message passes, or choose message passes involving 
smaller clusters. 17 The range of message-passing options expands further if 
we allow the possibility of dynamically restructuring cluster trees by 
translocating sepsets in a manner that preserves the join-tree property [27]. 

A.3. Optimizations at the Arithmetic-Expression Level 

The join tree is a convenient intermediate structure for performing 
inference on multiply-connected belief networks. Its construction is vali- 
dated by fundamental results from the theory of conditional independence 
[12], and the local message-passing and marginalization strategies are both 
intuitive and mathematically well founded. However, this formulation of 
the inference problem often masks additional opportunities for optimiza- 
tion. D'Ambrosio exposes some of these opportunities by redefining the 
inference task at a "smaller grain size": optimizing the computation of 

17Note that variables can be viewed as sepsets: a cluster incorporates evidence on V by 
"absorbing" from V, and a probability distribution P(V) is computed by "projecting" from an 
appropriate cluster. 
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individual terms, as opposed to individual marginal distributions [29]. 
Given this formulation, the challenge is to construct optimal arithmetic 
expressions for specific queries, taking advantage of conditional indepen- 
dences and partial results cached from previous computations. Li and 
D'Ambrosio present one approach in their recent improvement of the SPI 
algorithm [10]. Darwiche and Provan also address probabilistic inference at 
the arithmetic-expression level [30]; their approach generates and opti- 
mizes expression DAGs off-line, then evaluates these DAGs on-line in 
response to dynamic evidence. They describe a method, based on PPTC, 
for generating such expressions; these expressions can be used to answer 
queries with respect to evidence about a predefined set of variables. The 
size of a generated expression, using their method, is proportional to the 
total size of the cluster and sepset tables in the join tree. More impor- 
tantly, the method they use for updating these expressions associates 
validity flags with individual arithmetic operations, thus leading to opti- 
mizations that are more refined than those achieved by the message flags, 
as suggested in Section 7.1. 
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