
N O R T H - ~

Inference in
Belief Networks:

A Procedural Guide
Cecil Huang

Section of Medical Informatics,
Stanford University School of Medicine, Stanford, California

Adnan Darwiche*
Information Technology, Rockwell Science Center,

Thousand Oaks, California

ABSTRACT

Belief networks are popular tools for encoding uncertainty in expert systems. These
networks rely on inference algorithms to compute beliefs in the context of observed
evidence. One established method for exact inference on belief networks is the probabil-
ity propagation in trees of clusters (PPTC) algorithm, as developed by Lauritzen and
Spiegelhalter and refined by Jensen et al. PPTC converts the belief network into a
secondary structure, then computes probabilities by manipulating the secondary struc-
ture. In this document, we provide a self-contained, procedural guide to understanding
and implementing PPTC. We synthesize various optimizations to PPTC that are
scattered throughout the literature. We articulate undocumented "open secrets" that are
vital to producing a robust and efficient implementation of PPTC. We hope that this
document makes probabilistic inference more accessible and affordable to those without
extensive prior exposure. © 1996 Elsevier Science Inc.

K E Y W O R D S : artificial intelligence, Bayesian network, belief network, causal
network, evidence, expert systems, join tree, probabilistic inference, proba-
bility propagation, reasoning under uncertainty

*Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360.

Address correspondence to Cecil Huang, Section on Medical Informatics, MSOB X-215, Stanford,
CA 94305-5479.
Received January 1996; accepted May 1996.

International Journal of Approximate Reasoning 1996; 15:225-263
© 1996 Elsevier Science Inc. 0888-613X/96/$15.00
655 Avenue of the Americas, New York, NY 10010 PII S0888-613X(96)00069-4

226 Cecil Huang and Adnan Darwiche

1. INTRODUCTION

1.1. Purpose

An increasing number of academic and commercial endeavors use belief
networks] to encode uncertain knowledge in complex domains. These
networks rely on inference algorithms to compute beliefs of alternative
hypotheses in the context of observed evidence. However, the task of
realizing an inference algorithm is not trivial. Much effort is spent synthe-
sizing methods that are scattered throughout the literature and converting
them to algorithmic form. Additional effort is spent addressing undocu-
mented, lower-level issues that are vital to producing a robust and efficient
implementation. These issues exist, in the words of one colleague, as
"open secrets" within the probabilistic-inference community.

This document is addressed to interested researchers and developers
who do not have extensive prior exposure to algorithms for probabilistic
inference. We describe, in procedural fashion, the probability propagation
in trees o f clusters (PPTC) method for probabilistic inference, as developed
by Lauritzen and Spiegelhalter and refined by Jensen et al. [1-3]. We focus
on the steps required to make PPTC work. We synthesize various pub-
lished optimizations to PPTC, and we articulate the "open secrets" that
are crucial to a robust and efficient implementation of PPTC. PPTC is an
established method for exact probabilistic inference; other exact methods
include cutset conditioning [6-8] and symbolic probabilistic inference (SPI)
[9, 10]. A review of approximate methods can be found in [11].

Our goal is for the reader to be able to use this document to implement
PPTC without additional help. We hope that this document makes proba-
bilistic inference more accessible and affordable to those who are not
entrenched in the belief networks community. More effort can then be
spent conducting research and developing applications that make use of
this technology.

1.2. What is PPTC?

PPTC is a method for performing probabilistic inference on a belief
network. Consider the belief network shown in Figure 1. An example of
probabilistic inference would be to compute the probability that A = on,

Belief networks are also referred to as causal networks and Bayesian networks in the
literature. Comprehensive introductions to bclicf networks can be found in [4, 5l.

Inference in BNs: A Procedural Guide 227

P (a }

o: 0, 5,

)

V

ofl~ P(bJa)
a on Off

P I B J A) = on .5 .5

.4 .6

P (c l a)
on o f /

P(CIA) = O .7 ,3

off .2 .8

P~dlb)
o n o f f

P (D 4 B) = o .9 .i

off .5 .5

P i e l c)
on o f f

P(EIc) " o .3 .7

o f t ' .6 . 4

Figure 1. A belief network.

p(FIDE) =

P(GIc)

p (H I ~) =

P (f l d e)
d • o n o f f

on on .01 . 99

on o f f .01 .99

o f f On .01 .99

O f f O f f . 99 . 01

o f f P(glc]

c o n o f f

on ,8 . 2

.I .9

P (h l e g)
g h o n o f f

o n o n . 0 5 . 95

o n o f f . 9 5 . 0 5

off on .95 .05

off off .95 .05

given the knowledge that C = on and E = off. In general, probabilistic
inference on a belief network is the process of computing P(V = viE = e),
or simply P(vle), where v is a value of a variable V and e is an assignment
of values to a set of variables E in the belief network. Basically, P(vle)
asks: Suppose that I observe e on a set of variables E; what is the
probability that the variable V has value v, given e?

PPTC works in two steps. First, a belief network is converted into a
secondary structure. Then, probabilities of interest are computed by oper-
ating on that secondary structure.

1.3. Overview of Document

In Section 2, we describe notational conventions and fundamental
concepts that are used throughout this document. Then, in Section 3, we
introduce belief networks and their secondary structures. In Sections 4 and
5 we describe the creation of the secondary structure, beginning with the
belief network. We integrate evidence into the above framework in Section
6. These sections constitute the essence of PPTC inference. Having laid
these foundations, we discuss some optimization opportunities in Section 7
and low-level implementation issues in Section 8.

2. NOTATION

We specify PPTC using the following notational conventions and funda-
mental concepts:

228 Cecil Huang and Adnan Darwiche

2.1. Variables and Values

We denote variables with italic uppercase letters (A, B, C), and variable
values with italic lowercase letters (a, b, c). We instantiate a variable A by
assigning it a value a; we call a an instantiation of A.

Sets of variables are denoted by boldface uppercase letters (X, Y, Z), and
their instantiations by boldface lowercase letters (x, y, z). We instantiate a
set of variables X by assigning a value to each variable in X; we denote this
assignment with x, and call x an instantiation of X.

2.2. Potentials and Distributions

2.2.1. POTENTIALS We define a potential [1] over a set of variables X as a
function that maps each instantiation x into a nonnegative real number;
we denote this potential as ~b x. We use the notation Sx(X) to denote the
number that ~b x maps x into; we call ~bx(X) an element. Potentials can be
viewed as matrices and implemented as tables, so we will also refer to
them as matrices and tables.

2.2.2. OPERATIONS ON POTENTIALS We define two basic operations on
potentials: marginalization and multiplication [2]. Suppose we have a set of
variables Y, its potential ~b v, and a set of variables X where X _ Y. The
marginalization of ~b v into X is a potential thx, where each ~bx(X) is
computed as follows:

1. Identify the instantiations Yl, Y2 that are consistent with x.
2. Assign to tPx(X) the s u m ~) y (y l) -~- (~ y (y 2) --[- -- .

This marginalization is denoted as follows:

6x = E 6Y.
v~x

Given two sets of variables X and Y and their potentials ~b x and ~b v, the
multiplication of thx and ~b v is a potential ~bz, where Z = X u Y, and each
~bz(Z) is computed as follows:

1. Identify the instantiation x and the instantiation y that are consistent
with z.

2. Assign to ~bz(Z) the product thx(x)~bv(y).

This multiplication of potentials is denoted as follows:

~z = 6 x 6 v .

2.2.3. PROBABILITY DISTRIBUTIONS A probability distribution, or simply
a distribution, is a special case of a potential. Given a set of variables X, we

Inference in BNs: A Procedural Guide 229

use the notation P(X) to denote the probability distribution of X, or simply
the probability of X. P(X) is a potential over X whose elements add up to
1. We denote the elements of P(X) as P(x), and we call each element P(x)
the probability of x. With this notation, we have

~ P (x) = 1.
x

Another important notion is that of conditional probability. Given sets
of variables X and Y, we use the notation P(XIY) to denote the conditional
probability of X given Y, or simply the probability of X given Y. P(XIY) is a
collection of probability distributions indexed by the instantiations of Y;
each P(X[y) is a probability distribution over X. We denote the elements
of P(X[y) as P(x[y), and we call each element P(xly) the probability of x
given y. With this notation, we have, for each instantiation y,

Y'~P(xty) = 1.
x

Note that P(X) is a special case of P(XIY) where Y = 0 .

3. BELIEF NETWORKS AND THEIR SECONDARY STRUCTURES

3.1. Belief Networks

Belief networks are used by experts to encode selected aspects of their
knowledge and beliefs about a domain. Once constructed, the network
induces a probability distribution over its variables.

3.1.1. DEFINITION A belief network over a set of variables U = {V 1 V~}
consists of two components:

• A directed acyclic graph (DAG) ~e: Each vertex in the graph represents
a variable V, which takes on values ca, v 2, etc. 2 The parents of V in
the graph are denoted by I I v, with instantiations 7rv; the family of V,
denoted by F v, is defined as {V} U H v. The D A G structure encodes a
set of independence assertions, which restrict the variety of interactions
that can occur among variables. These assertions are discussed more
precisely in Section 3.1.3 below.

• A quantification of ~': Each variable in ~ is quantified with a
conditional probability table P(VIIIv). While P(V[II v) is technically
a function of F v, it is most helpful to think of it in the following way:

2We will not distinguish between a vertex and the variable it represents.

230 Cecil Huang and Adnan Darwiche

for each instantiation 7rv, real numbers in [0, 1] are assigned to each
value v, such that they add up to 1. When II V ~ O, P(VIII V) is called
the conditionalprobability of Vgiven I Iv; when II v = •, P(VIHv), or
simply P(V), is called the prior probability of V.

These components induce a joint probability distribution over U, given by

n

e(u) = FI e(v, ICv,),
i=1

where F 1 F n are the variables in the network.

3.1.2 EXAMPLE Refer to the example belief network shown in Figure 1.
This network is over the set of variables U = {A, B, C, D, E, F, G, H},
each variable having values {on, off}. P(FIDE) is an example of a condi-
tional probability; P(A) is an example of a prior probability. The network's
joint probability distribution is the product of the conditional and prior
probabilities:

P (U) = P(A)P(BtA)P(CIA)P(DIB)

× P(EIC) P(FIDE) P(G[C) P(HIEG).

3.1.3. INDEPENDENCE ASSERTIONS In addition to the numbers in the
tables, a belief network also encodes independence assertions, which do
not depend on how the network is quantified. An independence assertion
is a statement of the form X and Y are independent given Z: for all
combinations of values x, y, and z, P(xlz) = e(x~z). 3 In other words, if we
are given z, then knowing y will not affect our belief in x. The indepen-
dence assertions in a belief network are important because PPTC uses
them to reduce the complexity of inference.

The pattern of arcs in the D A G encodes the following independence
assertions: each variable is independent of its nondescendants, given its
parents. Two or more independence assertions can logically imply a new
independence assertion, using a mechanism of manipulating such state-
ments known as the graphoid axioms [12]. A graph-theoretic relation
known as d-separation captures all such derivable independences encoded
by the DAG [13]. In other words, Z d-separates X and Y in the D A G iff, in
the network, X and Y are independent given Z, with respect to the
graphoid axioms. 4

3Or, equivalently, P(xylz) = P(xlz)P0'lz).

4An intuitive discussion on d-separation can be found in [14].

Inference in BNs: A Procedural Guide 231

3.2. The Secondary Structure

While experts typically use belief networks to encode their domain,
PPTC performs probabilistic inference on a secondary structure that we
characterize in Section 3.2.1 below.

3.2.1. DEFINITION Given a belief network over a set of variables U =
{V 1 , Vn}, we define a secondary structure that contains a graphical and
a numerical component . The graphical component consists of the follow-
ing:

• An undirected tree 3]. Each node in J is a cluster (nonempty set) of
variables. The clusters satisfy the join-tree property: given two clusters
X and Y in ~,, all dusters on the path between X and Y contain
X n y.5 For each variable V ~ U, the family of II, F v (Section 3.1.1),
is included in at least one of the clusters.

• Sepsets: Each edge in J is labeled with the intersection of the
adjacent clusters; these labels are called separator sets, or sepsets. 6

The numerical component is described using the notion of a belief
potential. A belief potential is a function that maps each instantiation of a
set of variables into a real number (Section 2.2.1). Belief potentials are
defined over the following sets of variables:

• Clusters: Each cluster X is associated with a belief potential ~b x that
maps each instantiation x into a real number.

• Sepsets: Each sepset S is associated with a belief potential ~b s that
maps each instantiation s into a real number.

The belief potentials are not arbitrarily specified; they must satisfy the
following constraints:

• For each cluster X and neighboring sepset S, it holds that

~b x = ~b s. (3.1)
x \ s

When Equation (3.1) is satisfied for a cluster X and neighboring sepset
S, we say that ~b s is consistent with ~b x. When consistency holds for
every cluster-sepset pair, we say that the secondary structure is loca#y
consistent.

5We will not distinguish between a cluster and its variables.
6Note that if a sepset is included as a cluster, the resulting duster tree will still satisfy the join
tree property.

232 Cecil Huang and Adnan Darwiche

• The belief potentials encode the joint distribution P(U) of the belief
network according to

P(U) ~i~bx' (3.2)
FI/4% '

where ~bx, and ~bs, are the cluster and sepset potentials, respectively.
A key step in P F r ~ is the construction of a secondary structure that

satisfies the above constraints. Such a secondary structure has the follow-
ing important property: for each cluster (or sepset) X, it holds that
~b x = P(X) [2]. Using this property, we can compute the probability distri-
bution of any variable V, using any cluster (or sepset) X that contains V, as
follows:

P(V) = ~ ~b x. (3.3)
x\{v}

The secondary structure has been referred to in the literature as a join
tree, junction tree, tree of belief universes, cluster tree, and clique tree, among
other designations. In this document, we use the term join tree to refer to
the graphical component, and the term join-tree potential to refer generi-
cally to a cluster or sepset belief potential. We will also use the term join
tree to refer to the entire secondary structure, as it is being created; the
meaning of join tree will be clear from the context. In Section 4, we show
how to build a join tree from the DAG of a belief network, and in Section
5, we describe how PPTC manipulates the join tree potentials so that they
satisfy Equations (3.1) and (3.2).

3.2.2. EXAMPLE Figure 2 illustrates part of a secondary structure ob-
tained from the belief network in Figure 1. The tree contains clusters
{ABD, ACE, ADE, CEG, DEF, EGH} and sepsets {AD, AE, CE, DE, EG},
each with a belief potential ~b over its variables. For example, thABD and
~bAD are illustrated in Figure 2. Note that qbAB D and ~bAD satisfy the local
consistency requirement, since we have

B

Local consistency also holds for the other cluster-sepset pairs. Finally, the
belief potentials encode the joint distribution of the belief network by
satisfying

4~A no 4~AcE 4~A oE 4~CEG 4~OEF 4'~G.
P(U) =

Inference in BNs: A Procedural Guide 233

¢.,wCaed~
.225

.025

.125

.125

.180

.020

.150

.150

a b d

on on on

on on off

on off on

~A~D = on off off

off on on

off on off

off off on

off off off

a d 14aD(ad)

o n o n . 3 5

_ Oar = o n o f f . 1 5

o f f o n . 3 3

off off .17

etc.

Figure 2. An example of a secondary structure.

3.2.3. INDEPENDENCE ASSERTIONS The complete set of independence
assertions encoded by the join tree can be specified as follows [15]. Begin
with a secondary structure over the set of variables U, in which the sepsets
are included as clusters. Let X, Y, and Z be subsets of U. The tree shows X
to be independent of Y given Z if, for each X ~ X and Y ~ Y, the chain
between any cluster containing X and any cluster containing Y passes
through a cluster Z.

4. BUILDING JOIN TREES FROM BELIEF NETWORKS

In this section, we begin with the DAG of a belief network, and apply a
series of graphical transformations that result in a join tree. These trans-
formations involve a number of intermediate structures, and can be
summarized as follows:

1. Construct an undirected graph, called a moral graph, from the DAG.
2. Selectively add arcs to the moral graph to form a triangulated graph.
3. From the triangulated graph, identify select subsets of nodes, called

cliques.
4. Build a join tree, starting with the cliques as clusters: connect the

clusters to form an undirected tree satisfying the join-tree property,
inserting the appropriate sepsets.

Steps 2 and 4 are nondeterministic; consequently, many different join
trees can be built from the same DAG.

234 Cecil Huang and Adnan Darwiche

4.1. Constructing the Moral Graph

Let ge be the DAG of a belief network. The moral graph ge M corre-
sponding to ge is constructed as follows [1, 16]:

1. Create the undirected graph geu by copying ge, but dropping the
directions of the arcs.

2. Create gem from ge, as follows: For each node V, identify its parents
1-I V in ge. Connect each pair of nodes in II V by adding undirected
arcs to ge,.

Figure 3 illustrates this transformation on the DAG from Figure 1. The
undirected arcs added to ge, are called moral arcs, shown as dashed lines
in the figure.

4.2. Triangulating the Moral Graph

An undirected graph is triangulated iff every cycle of length four or
greater contains an edge that connects two nonadjacent nodes in the cycle.
We describe a procedure for triangulating an arbitrary undirected graph,
adapted from Kjaerulff [17]:

1. Make a copy of geM; call it gent.
2. While there are still nodes left in ge~:

(a) Select a node V from ge~, according to the criterion described
below.

. (

Y
Belief-Network 81bruoture Moral Graph

Figure 3. Constructing the moral graph.

Inference in BNs: A Procedural Guide 235

(b) The node V and its neighbors in ff~ form a cluster. Connect all
of the nodes in this cluster. For each edge added to ~'~, add the
same corresponding edge to ~'M.

(c) Remove V from ~'~t.
3. ffM, modified by the additional arcs introduced in the previous steps,

is now triangulated.

To describe the criterion for selecting the nodes in step 2(a), we rely on
the following notion of a weight:

• The weight of a node V is the number of values of V.
• The weight of a cluster is the product of the weights of its constituent

nodes.
The criterion for selecting nodes to remove is now stated as follows:

Choose the node that causes the least number of edges to be added in step
2(b), breaking ties by choosing the node that induces the cluster with the
smallest weight. 7

Figure 4 depicts the triangulated graph, as obtained from the moral
graph in Figure 3. The dashed lines in the figure indicate the edges added
to triangulate the moral graph. We also show the elimination ordering of
the nodes, so that the interested reader can trace each step in the
triangulation process.

In general, there are many ways to triangulate an undirected graph. An
optimal triangulation is one that minimizes the sum of the state space sizes
of the cliques (Section 4.3) of the triangulated graph. The task of finding
an optimal triangulation is . ,¢'~-complete [19]. However, the node-selection
criterion in step 2(a) is a greedy, polynomial-time heuristic that produces
high-quality triangulations in real-world settings [17].

4.3 Identifying Cliques

A clique in an undirected graph ~" is a subgraph of ~" that is complete
and maximal. Complete mean that every pair of distinct nodes is connected
by an edge. Maximal means that the clique is not properly contained in a
larger, complete subgraph. Golumbic [20] offers an efficient algorithm for
identifying the cliques of an arbitrary triangulated graph; this algorithm

7We access the next node to be removed by keeping the remaining nodes of ~'~ in a binary
heap. Each node V is associated with a primary key (the number of edges added if V were
selected next) and a secondary key (the weight of the cluster included if V were selected
next). When V is removed, each of V's neighbors needs to have its keys recalculated and,
therefore, its position in the heap modified. Removing a node V costs O(k lg n) time, where
k is the number of neighbors of V in g'~, and n is the number of nodes remaining in ~'~t. A
more detailed discussion on binary heaps can be found in [18].

236 Cecil Huang and Adnan Darwiche

Eliminated
Vertex

G

F

C
B
D
E
A

TdangulatlNt Graph Elimination Ordering
Figure 4. Triangulating the moral graph.

Induced Edges
Cluster Added

EGH none

CEG none

DEF none

ACE (A, E)

ABD (A, D)

ADE none

AE none

A none

relies on a particular ordering of the nodes, which can be generated
according to Tarjan and Yannakakis [21].

By adapting the triangulation procedure in Section 4.2, though, we can
identify the cliques of the triangulated graph as it is being constructed.
Our procedure relies on the following two observations:

• Each clique in the triangulated graph is an induced cluster f rom step
2(b) of Section 4.2.

• An induced cluster can never be a subset of a subsequently induced
cluster.

These observations suggest that we can extract the cliques during the
triangulation process by saving each induced cluster that is not a subset of
any previously saved cluster. Revisiting Figure 4, we see that the cliques of
the triangulated graph are EGH, CEG, DEF, ACE, ABD, and ADE.

4.4. Building an Optimal Join Tree

For this point on, we no longer need the undirected graph. We seek to
build an optimal join tree by connecting the cliques obtained in Section 4.3
above. 8 To build an optimal join tree, we must connect the cliques so that
the resulting clique tree satisfies the join-tree property and an optimality

8The cliques of the triangulated graph will become the clusters of the join tree; hence, we will
use the terms clique and cluster interchangeably in this section. However, in general, a join
tree need not be a clique tree.

Inference in BNs: A Procedural Guide 237

criterion that we will define below. The join-tree property is essential for
the tree to be useful for probabilistic inference, and the optimality crite-
rion favors those join trees that minimize the computational time required
for inference.

Given a set of n cliques, we can form a clique tree by iteratively
inserting edges between pairs of cliques, until the cliques are connected by
n - 1 edges. We can also view this task as iteratively inserting sepsets
between pairs of cliques, until the cliques are connected by n - 1 sepsets
[22]. We take this latter approach in specifying how to build an optimal
join tree. We divide our specification of the algorithm into two parts: First,
in Section 4.4.1, we provide a generic procedure that forms a clique tree by
iteratively selecting and inserting candidate sepsets. Then, in Section 4.4.2,
we show how the sepsets must be chosen, in order for the clique tree to be
an optimal join tree.

4.4.1. FORMING THE CLIQUE TREE The following procedure builds an
optimal join tree by iteratively selecting and inserting candidate sepsets
[22]; the criterion in Step 3(a) is specified later in Section 4.4.2 below.

BUILDING AN OPTIMAL JOIN TREE
1. Begin with a set of n trees, each consisting of a single clique, and

an empty set 9 .
2. For each distinct pair 9 of cliques X and Y:

(a) Create a candidate sepset, labeled X n Y, with backpointers to
the cliques X and Y. Refer to this sepset as Sxv.

(b) Insert Sx, ¢ into 2;:.
3. Repeat until n - 1 sepsets have been inserted into the forest:

(a) Select a sepset Sxv from S:, according to the criterion specified
in Section 4.4.2. Delete Sxv from S ~.

(b) Insert the sepset Sxy between the cliques X and Y o n l y i f X

and Y are on different trees in the forest. 1° (Note that the
insertion of such a sepset will merge two trees into a larger
tree.)

4.4.2. CHOOSING THE APPROPRIATE SEPSETS In order to describe how
to choose the next candidate sepset, we define the notions of m a s s and
cos t , as follows:

• T h e m a s s of a sepset Sxv is the number of variables it contains, or the
number of variables in X n Y.

9There will be n(n - 1)/2 such pairs.
l°Otherwise, a cycle would form.

238 Cecil Huang and Adnan Darwiche

• The cost of a sepset Sxv is the weight of X plus the weight of Y, where
weight is defined as follows:
The weight of a variable V is the number of values of V.
The weight of a set of variables X is the product of the weights of the
variables in X.

With these notions established, we can now state how to select the next
candidate sepset from S~ whenever we execute step 3(a) in Section 4.4.1
[22]:

• For the resulting clique tree to satisfy the join-tree property, we must
choose the candidate sepset with the largest mass.

• When two or more sepsets of equal mass can be chosen, we can
optimize the inference time on the resulting join tree by breaking the
tie as follows: choose the candidate sepset with the smallest cost.

The basis for this method of building an optimal join tree can be found
in [22].

4.4.3. EXAMPLE Starting with the clique set {ABD, ACE, ADE,
CEG, DEF, EGH} from Figure 4, we choose the connecting sepsets
AD, AE, CE, DE, and EG based on their mass. These cliques and sepsets
form the join-tree structure illustrated in Figure 2.

4.4.4. IMPLEMENTATION NOTES Similar to the triangulation algorithm,
we can implement the set of candidate sepsets S p as a binary heap, ranking
each sepset according to a primary key (mass) and a secondary key (cost).

Note that some of the candidate sepsets in step 2(a) of Section 4.4.1 are
empty. If the original DAG of the belief network is not fully connected,
then some of these empty candidate sepsets will be included in the final
join tree. This outcome is acceptable; however, one optimization involves
disallowing empty sepsets, and terminating step 3 when n - 1 sepsets have
been chosen, or when S P is empty. If step 3 terminates because of the
latter case alone, the resulting join tree will actually be a join forest.
Section 7.2 discusses how to deal with such forests.

5. PRINCIPLES OF INFERENCE

Having built a join-tree structure, we now provide procedures for
computing the join tree's numerical component, so that it satisfies the
conditions in Section 3.2.1. We show how to compute the probability
distribution P(V), for any variable V, using this join tree. Note that
computing P(V) corresponds to probabilistic inference in the context of
no evidence. We address the more general problem of computing P(Vle),
in the context of evidence e, in Section 6.

Inference in BNs: A Procedural Guide 239

5.1. Overview

Figure 5 illustrates the overall control for PPTC with no evidence. We
trace the steps in this figure as follows:

• Graphical transformation. Transform the DAG of a belief network
into a join-tree structure, using the procedures in Section 4 above.

• Initialization (Section 5.2). Quantify the join tree with belief poten-
tials so that they satisfy Equation (3.2). The result is an inconsistent
join tree, as this initial assignment of belief potentials does not meet
the local consistency requirements of Equation (3.1).

• Globalpropagation (Section 5.3). Perform an ordered series of local
manipulations, called message passes, on the join-tree potentials. The
message passes rearrange the join-tree potentials so that they become
locally consistent; thus, the result of global propagation is a consistent
join tree, which satisfies both Equations (3.1) and (3.2).

• Marginalization (Section 5.4). From the consistent join tree, compute
P (V) for each variable of interest V.

5.2. Initialization

The following procedure assigns initial join-tree potentials, using the
conditional probabilities from the belief network:

1. For each cluster and sepset X, set each ~bx(x) to 1:

4~x ~ 1.

Belief Network 1
Graphical Transformation

[Join Tree Structure [
Initialization

[Inconsistent Join Tree]

Propagation

[C°nsistent J°in Tree]
1 Marginalization

p(-¢)

Figure 5. Block diagram of PPTC with no evidence.

240 Cecil Huang and Adnan Darwiche

2. For each variable V, perform the following: Assign to V a cluster II X
that contains Fv; call X the parent cluster of F v. Multiply 4, x by
P(VIIIv):

Chx *-- ~ x P (V l I I v) .

After initialization, the conditional distribution P(VIII V) of each vari-
able V has been multiplied into some cluster potential. The initialization
procedure satisfies Equation (3.2) as follows:

H~V:'4'x' H~='P(VklCv~) = P(U) ,
H N - 1 ,.~

j = 1 W S j 1

where N is the number of clusters, Q is the number of variables, and Sx,
and Ss are the cluster and sepset potentials, respectively.

•]
Figure 6 illustrates the lmtlahzatlon procedure on the tables of cluster

ACE and sepset CE from the secondary structure of Figure 2. In this

P(C I A) P(E I C)

a c e

on

on

on

on

off on on 1

off on off 1

off off on 1

off off off 1

Figure 6.

on on

on off

off on

off off

CACE]

Initial Values

1 x .7 x .3 -- .21

1 x .7 x .7 = .49

1 x .3 x .6 = .18

1 x .3 x .4 = .12

× .2 x .3 = .06

x .2 x .7 = .14

x .8 x .6 = .48

× .8 × .4 = .32

Initial
c e Values

on on 1

on off 1

off on 1

off off 1

etc.

Initialization of cluster ACE and sepset CE.

11 The triangulation procedure in Section 4.2 guarantees that such a cluster exists.

Inference in BNs: A Procedural Guide 241

example, A C E is the parent cluster of F c and F e, but not FA. Thus, after
initialization, rbAce = P (C I A) P (E I C) , and ~bce = 1.

5.3. Global Propagation

Having initialized the join-tree potentials, we now perform global propa-
gation in order to make them locally consistent. Global propagation
consists of a series of local manipulations, called message passes, that occur
between a cluster X and a neighboring cluster Y. A message pass from X to
Y forces the belief potential of the intervening sepset to be consistent with
~b x [see Equation (3.1)], while preserving the invariance of Equation (3.2).
Global propagation causes each cluster to pass a message to each of its
neighbors; these message passes are ordered so that each message pass
will preserve the consistency introduced by previous message passes. When
global propagation is completed, each cluster-sepset pair is consistent, and
the join tree is locally consistent.

In Section 5.3.1, we describe a single message pass between two adjacent
clusters. Then, in Section 5.3.2, we explain how global propagation achieves
local consistency by coordinating multiple message passes.

5.3.1. SINGLE MESSAGE PASS Consider two adjacent clusters X and Y
with sepset R, and their associated belief potentials ~b x, ~b v, and 4~R. A
message pass from X to Y occurs in two steps:

1. Projection. Assign a new table to R, saving the old table:

q~i ld ~-- q~R,

6R '- E 6x. (5.1)
X\R

2. Absorption. Assign a new table to Y, using both the old and the new
tables of R:

~R
~b v ~ ~b v ~b~l d . (5.2)

For any instantiation r of R, Jensen [23] shows that ~b~ld(r) = 0 only
if 4~R(r) = 0. Whenever this occurs, set 0 / 0 = 0.

Equations (5.1) and (5.2) assign new potentials to R and Y; however, the
left-hand-side of Equation (5.2) remains constant, thus preserving the

242 Cecil Huang and Adnan Darwiche

invariance of Equation (5.2):

0w
~ J ~R ~ ld ~''= ~] I~R ~ld P(U) .

5.3.2. COORDINATING MULTIPLE MESSAGES Given a join tree with n
clusters, the PPTC global propagation algorithm begins by choosing an
arbitrary cluster X, and then performing 2(n - 1) message passes, divided
into two phases. During the COLLECT-EVIDENCE phase, each cluster passes
a message to its neighbor in X's direction, beginning with the clusters
farthest from X. During the DISTRIBUTE-EVIDENCE phase, each duster
passes messages to its neighbors away from X's direction, beginning with X
itself. The COLLECT-EVIDENCE phase causes n - 1 messages to be passed,
and the DISTRIBUTE-EVIDENCE phase causes another n - 1 messages to be
passed.

GLOBAL PROPAGATION
1. Choose an arbitrary cluster X.
2. Unmark all clusters. Call COLLECT-EVIDENCE(X).
3. Unmark all clusters. Call DISTRIBUTE-EVIDENCE(X).

COLLECT-EVIDENCE(X)
1. Mark X.
2. Call COLLECT-EVIDENCE recursively on X's unmarked neighboring

clusters, if any.
3. Pass a message from X to the cluster which invoked COLLECT-Evi-

DENCE(X).

DISTRIBUTE-EVIDENCE(X)
1. Mark X.
2. Pass a message from X to each of its unmarked neighboring

clusters, if any.
3. Call DISTRIBUTE-EVIDENCE recursively on X's unmarked neighbor-

ing clusters, if any.

The net result of this message passing is that each cluster passes its
information, as encoded in its belief potential, to all of the other clusters
in the join tree. Note that in this message-passing scheme, a cluster passes
a message to a neighbor only after it has received messages from all of its other
neighbors. This condition assures local consistency of the join tree when
global propagation is completed [2, 23].

5.3.3. EXAMPLE Figure 7 illustrates the PPTC propagation step on the
join tree from Figure 2. Here, A C E is the starting cluster. During the

Inference in BNs: A Procedural Guide 243

1 3 5

8 i

~ - I ~ , - COLLECT-EVIDENCE ~ DISTRIBUTE-EVIDENCE

Figure 7. Message passing during global propagation.

COLLECT-EVIDENCE phase, messages are passed in ACE's direction, begin-
ning with the clusters ABD, DEF, and EGH; these messages are indi-
cated by the solid arrows. During the DISTRIBUTE-EVIDENCE, phase, mes-
sages are passed away from cluster ACE, beginning with ACE; these
messages are indicated by the dashed arrows. The numbers indicate one
possible message-passing order.

5.4. Marginalization

Once we have a consistent join tree, we can compute P(V) for each
variable of interest V as follows:

1. Identify a cluster (or sepset) X that contains V.]2
2. Compute P(V) by marginalizing ~b x according to Equation (3.3),

repeated for convenience:

P (V) = ~ ~b x.
x\{v}

Figure 8 illustrates an example of marginalization. The cluster potential
C~AB D is from the consistent join tree of Figure 2. ~bAa o is marginalized
once to compute P(A), and then marginalized again to compute P(D).

6. HANDLING EVIDENCE

We are now able to compute P(V) for any variable V. In the following
sections, we show how to modify the procedures in Section 5 in order to

12The parent cluster of F v is a convenient choice, but see Section A.2 for a discussion of

more optimal choices.

244 Cecil Huang and Adnan Darwiche

~ABD =

a b d

on on on

on on off

on off on

on off off

off on on

off on off

off off on

off off off

O~D(abd)
.225

.025

.125

.125

.180

.020

.150

.150

P(A) =

a

E ~ABD = on

off
BD

P (a)

• 225 + .025 + .125 + .125 = .500

.180 + .020 + .150 + .150 = .500

d] P(d)
=~'~ ~AaD~,d = on .225 + .125 + .180 + .150 = .680

P(D)
AB off .025 + .125 + .020 + .150 = .320

FigureS. Marginalization example.

compute P(Vie) in the context of evidence e. First we introduce observa-
tions, the simplest notion of evidence, in Section 6.1. Then, in Sections
6.2-6.6, we show how to compute P(Vle) for sets of observations e. Finally,
in Section 6.7, we extend the above procedures to handle more general
notions of evidence.

6.1. Observations and Likelihoods

Observations are the simplest forms of evidence. An observation is a
statement of the form V = v. Collections of observations may be denoted
by E = e, where e is the instantiation of the set of variables E. Observa-
tions are also referred to as hard evidence.

To encode observations in a form suitable for PPTC, we define the
notion of a likelihood. Given a variable V, the likelihood of V, denoted as
A V, is a potential over {V}; in other words, A V maps each value v to a real
number (see Section 2.2.1). We encode an arbitrary set of observations e
by using a likelihood A V for each variable V, as follows:

• If V ~ E - - t h a t is, if V is observed-- then assign each Av(v) as
follows:

(v) = [1 when v is the observed value of V,
A v 0 otherwise.

Inference in BNs: A Procedural Guide 245

• If V q~ E - - t h a t is, if the value of V is unknown-- then assign Av(v)
= 1 for each value v.

Note that when there is no observations, the likelihood of each variable
consists of all l's. Table 1 illustrates how likelihoods are used to encode
the observations C = o n and E = o f f , where C and E are variables from
the join tree in Figure 2.

6.2. PPTC INFERENCE WITH OBSERVATIONS

Figure 9 illustrates the overall control for PPTC with observations. We
modify the control from Figure 5 to incorporate observations, as follows:

• I n i t i a l i z a t i o n (Section 6.3). We modify initialization from Section 5.2
by introducing an additional step: for each variable V, we initialize the
likelihood A V.

• O b s e r v a t i o n e n t r y (Section 6.4). Following initialization, we encode
and incorporate observations into the join tree; this step results in
further modification of the join-tree potentials.

• N o r m a l i z a t i o n (Section 6.5). To compute P(Vle) for a variable of
interest V, we perform marginalization and an additional step called
n o r m a l i z a t i o n .

6.3. Initialization with Observations

We keep track of observations by maintaining a likelihood for each
variable. We initialize these likelihoods by adding step 2(b) to the initial-
ization procedure below:

1. For each cluster and sepset X, set each ~bx(X) to 1:

~bx ~- 1.

Table 1. Likelihood encoding of C = o n , E = o f f .

Variable Av(v)
V v = o n v = o f f

A 1 1
B 1 1
C 1 0
D 1 1
E 0 1
F 1 1
G 1 1
H 1 1

246 Cecil Huang and Adnan Darwiche

Belief Network 1

Graphical
Transformation

[Join Tin, str.cture I
12 Initialization : Observation entry

[Inconsistent Join Tree [

1 Pr~ptlon

[Consistent Join Tree [
12. Marglnallzation • Normalization

P(V le)
Figure 9. Block diagram of PPTC with observations

2. For each variable V:
(a) Assign to V a cluster X that contains Fv; multiply 4) x by P(VIIIv):

4~x ~- 4~xP(VIIIv).

(b) Set each likelihood e lement A v (v) to 1:

A v ~ l .

6.4. Observation Entry

Note that upon comple t ion o f initialization, the likelihoods encode no
observations. We incorpora te each observat ion V = v by encoding the
observat ion as a likelihood, and then incorporat ing this l ikelihood into the
join tree, as follows:

1. Encode the observat ion V = v as a l ikelihood A~ w.
2. Identify a cluster X that contains V. 13

3. Upda t e 4) x and Av:

4) x ~ S x A ~ w,
(6.1)

Av (- A~ w .

13The parent cluster of F v is a convenient choice, but see Section 10.2 for a discussion of
more optimal choices.

Inference in BNs: A Procedural Guide 247

By entering a set of observations e as described above, we modify the
join-tree potentials, so that all subsequent probabilities derived from the join
tree are probabilities of events that are conjoined with evidence e. In other
words, instead of computing P(X) and P(V), we compute P(X,e) and
P(V, e), respectively. Note also that the join tree encodes P(U, e) instead of
P(U) [see Equation (3.2)].

6.5. Normalization

After the join tree is made consistent through global propagation, we
have, for each cluster (or sepset) X, ~b x = P(X, e), where e denotes the
observations incorporated into the join tree according to Section 6.4 [2].
When we marginalize a cluster potential ~b x into a variable V, we obtain
the probability of V and e:

P(V,e) = ~, dpx.
x\{v}

Our goal is to compute P(VIe), the probability of Vgiven e. We obtain
P(VIe) from P(V, e) by normalizing P(V, e) as follows:

P(V,e) P(V,e)
P(VIe) (6.2)

P(e) EvP(V, e) "

The probability of the observations P(e) is often referred to as a normaliz-
ing constant.

6.6. Handling Dynamic Observations

Suppose that after computing P(VIel), we wish to compute P(VIe2),
where e2 is a different set of observations from el. We could start anew by
building a join-tree structure, initializing its potentials, entering the new
set of observations e2, performing global propagation, and marginalizing
and normalizing. However, this amount of additional work is not neces-
sary, because we can directly modify the join-tree potentials in response to
changes in the set of observations. We can image a dynamic system in
which the consistent join tree is the steady state, and incoming observa-
tions disturb this steady state. In this subsection, we refine the control of
PPTC by adding procedures to handle such dynamic observations.

6.6.1. OVERALL CONTROL Figure 10 shows the control for PPTC with
dynamic observations. Note that there are two dashed paths going from
Consistent Join Tree to Inconsistent Join Tree, one labeled Global Update

248 Cecil Huang and Adnan Darwiche

Belief Network I
rnphl eal

natormatlon

Join Tree Structure
B

1. Initialization
2. Observation entry

inconsistent JoinTree ,,b-,,

1 " Propagation ',

" C / , Global • °nslstent Join TrN, [/' Ul~l~e

Global Retraction M. argirmllzatlon
Normalization

pot le)
Figure 10. Block diagram of PPTC with dynamic observations.

and the other Global Retraction. Depending on how we change the set of
observations, we must perform one of these two procedures. A global
update is used to incorporate new observations, while a global retraction is
required for modifying or retracting previous observations. Global retrac-
tion requires reinitialization of the join-tree potentials, because undoing
an observation involves restoring table elements that have been zeroed out
by previous observations. To describe these procedures more precisely, we
first establish some basic notions of changes in observations.

6.6.2. UPDATES AND RETRACTIONS To describe changes in observa-
tions, we establish the notion of an observed state. The observed state of a
variable V is its observed value v, if V is observed; otherwise, the
observed state of V is unknown, and we say that V is unobserved.

Suppose we change a set of observations e I to a different set of
observations e 2. Then the observed state of each variable V undergoes one
of three changes:

• N o change. If V is unobserved in el, it remains unobserved in e 2. If
V = v in e 1, then V := v in e 2.

Inference in BNs: A Procedural Guide 249

• Update. V is unobserved in e 1, and V = v in e 2 for some value v.
• Retraction. V = v I in e 1. In e2, either V is unobserved, or V = v2,

where v 2 4: v 1.
We can now state how we should handle changes in observations.

Suppose we have a consistent join tree that incorporates the set of
observations el, and we wish to compute P(VJe2) for variables of interest
V, where e2 is different from el. We incorporate e2 into the join tree by
performing one of the following:

• Global update (Section 6.6.3). We perform a global update if, for
each variable 11, the observed state of V is unchanged or updated
from el to e 2.

• Global retraction (Section 6.6.4). We perform a global retraction if,
for some variable V, the observed state of V is retracted.

6.6.3. GLOBAL UPDATE A global update executes an observation entry
(see Section 6.4 above) for each variable V whose observed state is
updated to V = v. Global updating destroys the consistency of the join
tree; we restore consistency by performing a global propagation. However,
if the belief potential of only one cluster X is modified through global
updating, then it is sufficient to unmark all clusters and call
DISTRIBUTE-EVIDENCE(X).

6.6.4. GLOBAL RETRACTION We perform a global retraction as follows:
1. For each variable V, update the likelihood A V to reflect any changes

in V's observed state.
2. Reinitialize the join-tree tables according to Section 6.3.
3. Incorporate each observation in e 2 according to Section 6.4.

We cannot handle retractions in the same way that we handle updates,
because in a retraction, we are trying to recover join-tree potential
elements that have been zeroed out by previous observations. Our only
recourse, therefore, is to reinitialize the join-tree tables and then enter the
new set of observations. TM

14Observations can be introduced without zeroing out the cluster tables by using alternative
propagation methods--examples include "fast retraction" [24, 25] and "cautious propagation"
[26]. Applications of these methods include conflict analysis, sensitivity analysis, and process-
ing counterfactual queries. Compared to PPTC propagation, these alternative methods
require more storage and computation, and generally do not handle all possible retractions of
observations.

250 Cecil Huang and Adnan Darwiche

6.7. More Sophisticated Notions of Evidence

Observations are the simplest and most common type of evidence
encountered. However, we can use likelihoods to represent more sophisti-
cated types of evidence. We introduce these more general notions of
evidence in Section 6.7.1. Then we describe PPTC with evidence in a
manner parallel to our description of PPTC with observations.

6.7.1. EVIDENCE AND LIKELIHOODS In general, a likelihood A V on a
variable V can be interpreted as assigning a relative weight Av(v) to each
value v, according to how likely is the case that V = v. When Av(v) is the
same for all values v, we say that A V encodes no information on variable
1,1.15

The following terminology is commonly used to classify different types
of evidence on a variable V, according to the form that the likelihood A v
takes:

• Virtual evidence. Virtual evidence, or soft evidence, is the most gen-
eral type of evidence. Virtual evidence on a variable V is represented
by a likelihood A v where each Av(v) is a real number in [0, 1] [4].

• Finding. A finding is represented by a likelihood A v where each
A v (v) is a 0 or a 1. Essentially, a finding declares the zeroed values to
be impossible. Naturally, a finding should allow at least one possible
value.

• Observation. An observation is a special case of a finding where
A z (v) = 1 for exactly one value v. An observation declares, with
certainty, that V = v.

6.7.2. EVIDENCE ENTRY Upon completion of initialization, no evidence is
encoded by the likelihoods or incorporated into the join tree. We incorpo-
rate each piece of evidence on a variable V by executing the following
procedure:

1. Encode the evidence on variable V as a likelihood A~ w.
2. Identify a cluster X that contains V. 16

3. Update d~x and Av:
A~ eW

~bx ~ ~bx Av ' (6.3)

Av ,--- A~ w .

Note that Equation (6.1) is a specialized version of Equation (6.3) above.

lSTypically, we encode this no- informat ion state with a vector of l 's.

16The parent cluster of F V is a convenient choice, but see Section A.2 for a discussion of
more optimal choices.

Inference in BNs: A Procedural Guide 251

6.7.3. HANDLING DYNAMIC EVIDENCE We can easily extend PPTC with
dynamic observations (Section 6.6) to handle dynamic evidence. In dis-
cussing changes of evidence, we generalize the notion of observed state to
the notion of evidence state: the evidence state of a variable V is its
likelihood A v. We extend the notation e to represent the combined
evidence state of all variables, and we refer to e as an evidence configura-
tion.

Consider a change in evidence configuration from e I to %. For each
variable V, denote its evidence state in e I as A V, and its evidence state in
e 2 as An~ w. We classify the change from A V to A~ w as one of the
following:

• N o change. A v = An~ w.

• Update. For every value v, Av(v) = 0 implies A~W(v) = 0.
• Retraction. For some value v, Av(v) = 0 and An~W(v) 4: 0.
We can now state how we should handle changes in evidence. Suppose

we have a consistent join tree that incorporates the evidence configuration
el, and we wish to compute P(Vle 2) for variables of interest V, where e 2 is
different from e~. We incorporate e2 into the join tree by performing one
of the following:

• Global update. We perform a global update if, for each variable V,
the evidence state of V is unchanged or updated from e I to e 2.

• Global retraction. We perform a global retraction if, for some vari-
able V, the evidence state of V is retracted.

We perform a global update by executing an evidence entry (Section
6.7.2) for each variable V whose evidence state is updated from A v to
A"~ w. We perform a global retraction as follows:

1. For each variable V, update the likelihood Av to reflect any changes
in V's observed state.

2. Reinitialize the join-tree tables according to Section 6.3.
3. For each variable V where Av(v) ~ 1 for some v, incorporate A v

according to Section 6.7.2.

7. PPTC OPTIMIZATIONS

In this section, we discuss some optimizations to PPTC that we imple-
mented, optimizations that can significantly reduce the computation re-
quired for inference in certain situations. We assume that the reader has
mastered the material in the previous sections and has a basic understand-
ing of computer algorithms.

7.1. Query-Driven Message Passing

In this section, we summarize a modified version of PPTC called
query-driven PPTC. Unlike the version of PPTC presented in previous

252 Cecil Huang and Adnan Darwiche

sections, query-driven PPTC does not establish and maintain consistency
throughout the join tree; instead, it passes messages only in response to
individual variable queries P(Vle). This optimization is useful in diagnostic
applications: for example, where the user constructs a belief network with
many variables, and then queries only a few variables.

Query-driven PPTC exploits the following observation: to marginalize
the cluster potential ~b x to obtain P(I/, e), we need only to ensure that
~b x = P(X, e). A call to COLLECT-EVIDENCE(X) would ensure this condition
[23]. However, query-driven PPTC uses a modified version of
COLLECT-EVIDENCE(X) that recurses on a neighbor Y only if Y has not
previously passed a message to X. Query-driven PPTC keeps track of the
messages that have been passed by maintaining a set of Boolean quantities
called message flags. Each message flag is denoted as ~t'x(¥) and is
interpreted as follows: the message flag .*gx(Y) is TRUE if a message pass
from Y to X would leave ~b x unchanged; otherwise, ~'x(Y) is FALSE. We
use the notation J 'x(Y) to emphasize that the message flags can be stored
locally: given a cluster X, we can store the message flags ~'x(Y), for all
neighbors Y, as part of the local information on X.

A message flag .d'x(¥) is set to TRUE during a message pass from X to
Y. As additional variable queries are processed, additional message flags
are set to TRUE. Message flags, however, can be set to FALSE, or
invalidated, by dynamic evidence:

• Evidence update. Suppose a cluster X incorporates an evidence up-
date according to the procedure in Section 6.7.2. Then all message
passes in the direction away from cluster X are invalidated; these
message passes need to be recomputed if a subsequent variable query
requests them.

• Evidence retraction. To process changes in evidence that involve
retraction, we employ the familiar procedure of reinitializing the
join-tree tables and entering the evidence anew. All message passes
are invalidated.

7.2. Inference on Forests of Join Trees

If the initial belief network is not fully connected, then the procedures
in Section 4 yield a join tree with empty sepsets. We can optimize PPTC by
disallowing these empty sepsets and performing inference on a forest of
join trees. By maintaining each join tree separately, we avoid the computa-
tional cost of passing messages that serve only to rescale the cluster
potentials.

In maintaining separate join trees, we must also, in general, maintain
separate normalization constants for each join tree [27]. First, we note that
the normalization constant P(e) for a join tree that incorporates evidence

Inference in BNs: A Procedural Guide 253

e can be computed, using any cluster X where ~b x = P(X, e), as follows:

P(e) = ~P(X,e) = ~ 4)x.
X X

Therefore, P(e) can be computed by calling COLLECT-EVIDENCE on some
cluster X, and then marginalizing thx as described above. But this
marginalization effectively occurs during the normalization phase of a
variable query, as seen in the denominator of Equation (6.2).

Now let's consider a forest of join trees ~ ~ with corresponding
normalization constants P(e 1) , P(en). Since the disconnected join trees
are independent of one another, the probability of evidence P(e) for the
entire join forest can be calculated as follows:

n

P(e) = P (e I ... e n) = 1 - I P (e i) .
i = l

Suppose we query a variable V in ~ . We choose a cluster X that
contains V, call COLLECT-EVIDENCE(X), and obtain ~b x = P(V , el). But if
we want to compute P (V , e), we must also compute the other normaliza-
tion constants:

P (V , e) = P (V , e I ... e~) = P (V , elle 2 --. e ,) P (e 2 -.. e ,)

= P (V , e l) P (e 2 ... en) = P (V , e 1) 1 - I P (e i) ,
i~=1

where each normalization constant P(e i) is computed by marginalizing a
cluster in the join tree J//.

However, if we are interested only in computing P(VIe), we do not need
the other normalization constants:

P (V , e) P (V , e l) P (e 2 . . . e n) P (V , e 1)
P(Vle) =

P(e) P (e lie 2 " '" e n) P(e 1)

7.3. Evidence Shrinking

Evidence shrinking is an optimization of PPTC that uses findings (and
observations) to reduce effective cluster sizes. A s an example, let us focus
on a particular cluster JKL in a join tree that has just processed the
findings J 4: Jl and L = 11 (Figure 11). How should this evidence affect
cluster JKL? Mathematically, we would multiply all of the shaded cells in
Figure 11 by zero. But in practice, we do not want to do this, because the
O's will not affect the results of subsequent message passes involving JKL.

254 Cecil Huang and Adnan Darwiche

Jo
h
J2

kolo koll kl Io kl I1

JKL

Figure 11. Evidence shrinking on a single cluster. Cluster JKL is shrunk by the
finding J 4~jl and the observation L = l], reducing its effective size from 12 to 4.
The unshaded cells represent the cluster elements that remain active after the
shrinking process.

Both the introduction of these O's and their subsequent propagation would
involve unnecessary, and often costly, computation.

Evidence shrinking avoids this unnecessary processing of O's by restruc-
turing the cluster JKL so that only the unshaded cel ls - - the cells that
would not have been multiplied by 0 - - a r e involved in further computation.
This restructuring process can be performed in time proportional to the
reduced cluster size. Further details on this restructuring are discussed in
Section 8.2.

Two properties of evidence shrinking contribute to its potential for
significant computational savings. First, the O's in a likelihood A v affect all
clusters containing the variable I1. Second, if we restrict our evidence to
observations, as is the case for many existing implementations, then each
observation on a variable V effectively reduces the size of each cluster
(and sepset) containing V by an entire dimension. These two properties of
evidence shrinking are illustrated in Figure 12.

8. ARRAY-LEVEL TECHNIQUES

"The devil is in the details," it is often said. This is definitely the case
when implementing PPTC. In this section, we address some array-level
issues that are not normally discussed in the probabilistic literature; yet,
they must be addressed by any programmer who wishes to build an
efficient implementation of PPTC. We present some techniques that,
through additional precomputation prior to inference, can reduce the

Inference in BNs: A Procedural Guide 255

Figure 12. Evidence shrinking on a join tree. The observation C = on reduces the
matrices of clusters containing C by a dimension. Similarly, the observation
E = o f f reduces the matrices of clusters containing E by a dimension. Note that
the sepset CE becomes empty; it passes a message composed of a single number
P (C = on, E = offleT1), where eTi is the evidence in the subtree T 1 from which
the message through CE originates.

overhead during message passing. Additional array-level techniques are
presented in Section 10.1.

8.1. Cluster-Sepset Mappings

In this section we describe an auxiliary data structure, called a cluster-

sepse t m a p p i n g , that is crucial to an efficient implementat ion of PPTC
inference. Recall that a message pass consists of two steps: projection and
absorption (see Section 5.3.1). Both projection and absorption depend on a
precise interaction between a cluster potential and a sepset potential.
These potentials are typically implemented as arrays, and the interaction
between these arrays is illustrated in Figure 13.

In both projection and absorption, the key step is to locate, for each
cluster element ~bx(X), the corresponding sepset element ~bs(S) [and

old ~b s (s)], where s is consistent with x. But in order to locate ~bs(s), we need
not just the instantiation s, but the array i n d e x of s. Computing the array
index of s requires a number of operations involving x and the array
dimensions of X and S. For a given message pass, this computation needs
to be applied to each cluster instantiation x. Furthermore, these array
indices must be recomputed during the next message pass involving X and
S, unless they are somehow stored for future retrieval.

256 Cecil Huang and Adnan Darwiche

ON ON

ON OFF

OFF ON

I OFF OFF

$

Figure 13. Interaction between cluster and sepset arrays. X denotes a cluster ADE,
and S denotes a neighboring sepset AE. The shaded cells denote potential
elements; next to each potential element is the instantiation of variables that
indexes it. Each cluster element ~bx(x) has a corresponding sepset element ~bs(S)
[and ~b~ld(S)], where s is consistent with x; this correspondence is illustrated by the
dashed arrows.

We avoid unnecessary recomputation of these array indices by precom-
puting them while building the join tree. Specifically, for each cluster X
and neighboring sepset S, we compute an array /Xx, s over the instantia-
tions x, such that each array element /Zx, s(X) stores the array index of the
instantiation s that is consistent with x. We call /Zx, s a cluster-sepset
mapping. Figure 14 illustrates an example of a cluster-sepset mapping.

A cluster-sepset mapping /Zx, s can be computed in time proportional to
the number of instantiations of X. Cluster-sepset mappings significantly
reduce the running time of inference, because they enable corresponding
elements to be located using simple array lookups, not repeated array
index calculations.

8.3. Evidence Shrinking

Suppose we incorporate the observation D = off into the duster X from
Figure 14, using the observation entry procedure in Section 6.4. This will
cause certain elements of X to be zeroed, as illustrated in Figure 15. These
O's will continue to be visited during subsequent message passes involving
X, even though they will not affect the results of any computations.

Evidence shrinking (Section 7.3) seeks to avoid these extraneous and
costly element accesses. The computational gains of evidence shrinking
hinge on restructuring the clusters so that only the active elements--the

Inference in BNs: A Procedural Guide 257

A D E ~X ~8
m

ON ON OH []

I
ON ON OFF

ON OFF ON

ON OFF OFF

OFF ON ON

OFF ON OFF

OFF OFF ON

OFF OFF OFF

X

A E

I ON ON
ON Or~
OFF ON

OFF OFF

$

Figure 14. Example of a cluster-sepset mapping. For each cluster instantiation x,
the cluster-sepset mapping /Xx, s stores the array index of the consistent sepset
instantiation s. The solid arrows illustrate the resulting correspondence between
cluster elements ~bx(X) and sepset elements ~bs(S). Both projection and absorption
use the same cluster-sepset mapping; the only difference is in the actual arithmetic
performed.

elements that are not zeroed by the ev idence - -a re visited during subse-
quent message passes. We can implement this restructuring by maintain-
ing, for each cluster, an auxiliary array of indices called a shrink mapping.
A shrink mapping on a cluster X is an array o" x that points to the active
elements of ~b x. The effective size of the shrink mapping is the number of
active elements in X. During projection or absorption, the active elements
of X are accessed by visiting the elements of the shrink mapping. The

II °'°" ON OFF

~ I I ~rr oFF

Figure 15. Zeroing of cluster elements by the observation D = off.

258 Cecil Huang and Adnan Darwiche

ON ON

ON OFF

OFF ON

1 OFF OFF

S

Figure 16. Shrink-mapping example. Cluster X is shrunk by the observation D =
off. The shrink mapping tr x points to the cluster elements consistent with this
observation. This reduces the effective cluster size, and with it, the running time of
any message passes involving that cluster.

shrink mapping amounts to an additional level of indirection. Figure 16
illustrates an example of a shrink mapping.

Shrink mappings can be updated in time proportional to the reduced
cluster size. One programming solution involves using a procedure that
generates all instantiations of the cluster variables and their element
indices by recursing over the values of each variable. We would implement
evidence shrinking by modifying this procedure to recurse only over the
possible values of the variables in that cluster.

6. CONCLUSION

PPTC is one of the most widely recognized algorithms for exact proba-
bilistic inference in belief networks. In this document, we have provided a
self-contained, procedural guide to understanding and implementing PPTC.
We synthesized methods that are scattered throughout the literature, and
we articulated these methods in algorithmic form. In addition, we dis-
cussed undocumented, lower-level issues that are vital to producing a
robust and efficient implementation of PPTC. We hope that this document
makes probabilistic inference more accessible to the increasing number of
researchers and developers who are making use this technology.

APPENDIX. ADDITIONAL OPTIMIZATIONS

In this appendix, we outline some additional optimization opportunities
for PPTC and provide the relevant references.

Inference in BNs: A Procedural Guide 259

A~I. Zero Compression

Zero compression is an extension of PPTC that can save significant
computation under certain circumstances. Here, we summarize the basic
ideas of zero compression; the interested reader can find a more thorough
treatment in the original paper by Jensen and Andersen [28].

Zero compression is designed to take advantage of conditional probabil-
ity tables P(VIII V) whose row entries:

• contain O's, implying some logical or functional relationship between
the variable V and its parents H v;

• contain extreme probabilities that are close to O.
These situations occur often in prac t ice- - for example, in engineering

applications that model small failure probabilities.

A.1.1. ANNIHILATING ZEROS During initialization, each conditional
probability P(VIII v) is multiplied into some cluster potential ~b x. Let us
first focus on a particular conditional probability distribution P(VIIIv).
The O's in P(VIII v) cause the corresponding elements in ~b x to be zero as
well. After performing global propagation, some of these O's will propagate
throughout the entire join tree.

Suppose now that the user enters evidence and performs another global
propagation. During this propagation, computational resources are ex-
pended adding and multiplying potential elements by 0. This expenditure
becomes more wasteful as the number of O's increases. Zero compression,
as presented in [28], addressed this wasteful propagation as follows:

1. Build a join tree. Initialize the cluster potentials with the conditional
probabilities P(VIHv).

2. Perform a global propagat ion--a COLLECT-EVIDENCE followed by a
DISTRIBUTE-EVIDENCE.

3. For each cluster X, visit each element ~bx(X), identifying and annihi-
lating the 0 elements. The annihilation step should restructure the
internals of X so that subsequent messages passes involving X do not
visit these 0 elements.

A.1.2. ANNIHILATING "SMALL" ELEMENTS Zero compression can speed
up exact inference in a join tree because its effective cluster sizes are
reduced. We can reduce the effective cluster sizes further by annihilating
elements with probabilities close to zero; this elimination of "small"
elements results in a join tree that performs approximate inference. Details
on how to select appropriate annihilation thresholds for each cluster are
contained in [28]. Note that unlike the strict zero-compression scheme in
Section A.I.1 above, annihilating small elements destroys the consistency
of the join tree. This loss of consistency can be remedied by a global

260 Cecil Huang and Adnan Darwiche

propagation; in the case of query-driven PPTC, this loss of consistency can
be properly accounted for by invalidating the appropriate message flags.

The above approximation scheme can result in significant computational
gains, depending on the topology and quantification of the original belief
network and the amount of error tolerated by the user. In some scenarios,
the total number of elements not annihilated may be orders of magnitude
smaller than the original number of elements. For example, [28] discusses
some experiments on a real-world belief network, in which the inference
time is reduced by 96-99 percent for a total removed probability mass of
0.1 percent.

A.1.3. DYNAMIC ZERO COMPRESSION With appropriate data structur-
ing, a form of zero compression that dynamically compresses cluster
matrices during inference can be implemented. When a cluster element
evaluates to 0 or a sufficiently small number, that element would be
annihilated immediately.

A.2. Dynamic Restructuring of Cluster Trees

Recall that for marginalization and evidence entry, we are asked to
"choose a cluster X that contains the variable V." In each of these
situations, we conveniently chose the parent cluster of V. However, by
choosing these clusters more judiciously, we can often, for a given query,
reduce the number of message passes, or choose message passes involving
smaller clusters. 17 The range of message-passing options expands further if
we allow the possibility of dynamically restructuring cluster trees by
translocating sepsets in a manner that preserves the join-tree property [27].

A.3. Optimizations at the Arithmetic-Expression Level

The join tree is a convenient intermediate structure for performing
inference on multiply-connected belief networks. Its construction is vali-
dated by fundamental results from the theory of conditional independence
[12], and the local message-passing and marginalization strategies are both
intuitive and mathematically well founded. However, this formulation of
the inference problem often masks additional opportunities for optimiza-
tion. D'Ambrosio exposes some of these opportunities by redefining the
inference task at a "smaller grain size": optimizing the computation of

17Note that variables can be viewed as sepsets: a cluster incorporates evidence on V by
"absorbing" from V, and a probability distribution P(V) is computed by "projecting" from an
appropriate cluster.

Inference in BNs: A Procedural Guide 261

individual terms, as opposed to individual marginal distributions [29].
Given this formulation, the challenge is to construct optimal arithmetic
expressions for specific queries, taking advantage of conditional indepen-
dences and partial results cached from previous computations. Li and
D'Ambrosio present one approach in their recent improvement of the SPI
algorithm [10]. Darwiche and Provan also address probabilistic inference at
the arithmetic-expression level [30]; their approach generates and opti-
mizes expression DAGs off-line, then evaluates these DAGs on-line in
response to dynamic evidence. They describe a method, based on PPTC,
for generating such expressions; these expressions can be used to answer
queries with respect to evidence about a predefined set of variables. The
size of a generated expression, using their method, is proportional to the
total size of the cluster and sepset tables in the join tree. More impor-
tantly, the method they use for updating these expressions associates
validity flags with individual arithmetic operations, thus leading to opti-
mizations that are more refined than those achieved by the message flags,
as suggested in Section 7.1.

ACKNOWLEDGMENTS

Cecil Huang thanks:
• Adnan Darwiche for his inspiration and intimate involvement in

producing this document.
• Fin Jensen, Frank Jensen, Mark Peot, and Ross Shachter, for sharing

their expertise in probabilistic inference.
• Adam Galper, Paul Dagum, Sampath Srinivas, and Ted Shortliffe, for

helpful discussions.
• Bruce Seely, Mois6s Goldszmidt, and Serdar Uckun, for feedback on

earlier versions of this document.
• The anonymous reviewers, for their contributions to the final version

of this document.
Cecil Huang acknowledges support from the Medical Scientist Training

Program grant 5T32GM07365 from the National Institute of General
Medical Sciences, and from Rockwell Science Center in Palo Alto and
Thousand Oaks, California. Computing facilities were provided by Rock-
well Science Center and the CAMIS resource under NIH grant LM-05305.

References

1. Lauritzen, S. L., and Spiegelhalter, D. J., Local computations with probabilities
on graphical structures and their application to expert systems, J. Roy. Statist.
Soc. Ser B, 50, 157-224, 1988.

262 Cecil Huang and Adnan Darwiche

2. Jensen, F. V., Lauritzen, S. L., and Olesen, K. G., Bayesian updating in causal
probabilistic networks by local computations, Comput. Statist. Quart., 4,
269-292, 1990.

3. Shenoy, P., and Shafer, G., Axioms for probability and belief-function propaga-
tion, in Uncertainty and Artificial Intelligence, Vol. 4 (R. D. Shachter, T. Levitt, J.
F. Lemmer, and L. N. Kanal, Eds.), Elsevier, North-Holland, Amsterdam,
169-198, 1990.

4. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, 2nd ed., Morgan Kaufmann, San Mateo, Calif., 1988.

5. Neapolitan, R. E., Probabilistic Reasoning in Expert Systems: Theory and Algo-
rithms, Wiley, New York, 1990.

6. Pearl, J., A constraint-propagation approach to probabilistic reasoning, in
Uncertainty and Artificial Intelligence (L. N. Kanal and J. F. Lemmer, Eds.),
Elsevier, New York, 357-369, 1986.

7. Peot, M. A., and Shachter, R. D., Fusion and propagation with multiple
observations in belief networks, Artif. InteU., 48(3), 299-318, 1991.

8. Darwiche, A., Conditioning algorithms for exact and approximate inference, in
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence,
99-107, 1995.

9. Shachter, R., D'Ambrosio, B., and Del Favero, B., Symbolic probabilistic
inference in belief networks, in Proceedings of the 8th National Conference on
AI, Boston, Mass., 126-131, 1990.

10. Li, Z., and D'Ambrosio, B., Efficient inference in Bayes nets as a combinatorial
optimization problem, Internat. J. Approx. Reason. 11(1), 55-81, 1994.

11. Dagum, P., and Horvitz, E., A Bayesian analysis of simulation algorithms for
inference in belief networks. Networks, 23, 499-516, 1993.

12. Dawid, A. P., Conditional independence in statistical theory, J. Roy. Statist.
Soc. Ser. B, 41(1), 1-33, 1979.

13. Geiger, D., Verma, T., and Pearl, J., Identifying independence in Bayesian
networks, Networks, 20, 507-534, 1990.

14. Charniak, E., Bayesian networks without tears, AI Mag., 12(4), 50-63, 1991.

15. Shachter, R. D., Background review and terminology, in Making Decisions in
Intelligent Systems: Representing Uncertainty with Belief Networks and Influence
Diagrams, Duxbury, Belmont, Calif., to appear.

16. Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H.-G., Independence
properties of directed Markov fields, Networks, 20, 491-505, 1990.

17. Kjaerulff, U., Triangulation of graphs--algorithms giving small total state
space, Tech. Report R-90-09, Dept. of Mathematics and Computer Science,
Aalborg Univ. Denmark, 1990.

18. Cormen, T. H., Leiserson, C. E., and Rivest, R. L., Heapsort, in Introduction to
Algorithms, MIT Press, Cambridge, Mass., 140-152, 1990.

Inference in BNs: A Procedural Guide 263

19. Arnborg, S., Corneil, D. G., and Proskurowski, A., Complexity of finding
embeddings in a k-tree, SlAM J. Algebraic Discrete Methods, 8(2), 277-284,
1987.

20. Golumbic, M. C., Triangulated graphs, in Algorithmic Graph Theory and Perfect
Graphs, Academic, New York, 98-100, 1980.

21. Tarjan, R. E., and Yannakakis, M., Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs and selectively reduce
hypergraphs, SlAMJ. Comput. 13(3), 566-579, 1984.

22. Jensen, F. V., and Jensen, F., Optimal junction trees, in Proceedings of the lOth
Conference on Uncertainty in Artificial Intelligence, Seattle, Wash., 360-366,
1994.

23. Jensen, F. V., Propagation of DAGs, in Introduction to Bayesian Networks,
UCL Press, London, to appear.

24. Cowell, R. G., and Dawid, A. P., Fast retraction of evidence in a probabilistic
expert system, Statist. Comput. 2, 37-40, 1992.

25. Jensen, F., Implementation aspects of various propagation algorithms in Hugin,
Tech. Report R-94-2014, Dept. of Mathematics and Computer Science, Aal-
borg Univ., Denmark, 1994.

26. Jensen, F. V., Cautious propagation in Bayesian networks, in Proceedings of the
11th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada,
323-328, 1995.

27. Shachter, R. D., Andersen, S. K., and Szolovits, P., Global conditioning for
probabilistic inference in belief networks, in Proceedings of the lOth Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Seattle, Wash.,
514-521, 1994.

28. Jensen, F., and Andersen, S. K., Approximations in Bayesian belief universes
for knowledge-based systems, in Proceedings of the 6th Conference on Uncer-
tainty in Artificial Intelligence, Cambridge, Mass., 162-169, 1990.

29. D'Ambrosio, B., Incremental probabilistic inference, in Proceedings of the 9th
Conference on Uncertainty in Artificial Intelligence, 301-308, 1993.

30. Darwiche, A., and Provan, G., Query DAGs: A practical paradigm for imple-
menting belief-network inference, in Proceedings of the 12th Conference on
Uncertainty in Artificial Intelligence, Portland, Oregon, 203-210, 1996.

