
4

Classification:
Basic Concepts,
Decision Trees, and
Model Evaluation

Classification, which is the task of assigning objects to one of several predefined
categories, is a pervasive problem that encompasses many diverse applications.
Examples include detecting spam email messages based upon the message
header and content, categorizing cells as malignant or benign based upon the
results of MRI scans, and classifying galaxies based upon their shapes (see
Figure 4.1).

(a) A spiral galaxy. (b) An elliptical galaxy.

Figure 4.1. Classification of galaxies. The images are from the NASA website.

146 Chapter 4 Classification

Classification
model

Input

Attribute set
(x)

Output

Class label
(y)

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

This chapter introduces the basic concepts of classification, describes some
of the key issues such as model overfitting, and presents methods for evaluating
and comparing the performance of a classification technique. While it focuses
mainly on a technique known as decision tree induction, most of the discussion
in this chapter is also applicable to other classification techniques, many of
which are covered in Chapter 5.

4.1 Preliminaries

The input data for a classification task is a collection of records. Each record,
also known as an instance or example, is characterized by a tuple (x, y), where
x is the attribute set and y is a special attribute, designated as the class label
(also known as category or target attribute). Table 4.1 shows a sample data set
used for classifying vertebrates into one of the following categories: mammal,
bird, fish, reptile, or amphibian. The attribute set includes properties of a
vertebrate such as its body temperature, skin cover, method of reproduction,
ability to fly, and ability to live in water. Although the attributes presented
in Table 4.1 are mostly discrete, the attribute set can also contain continuous
features. The class label, on the other hand, must be a discrete attribute.
This is a key characteristic that distinguishes classification from regression,
a predictive modeling task in which y is a continuous attribute. Regression
techniques are covered in Appendix D.

Definition 4.1 (Classification). Classification is the task of learning a tar-
get function f that maps each attribute set x to one of the predefined class
labels y.

The target function is also known informally as a classification model.
A classification model is useful for the following purposes.

Descriptive Modeling A classification model can serve as an explanatory
tool to distinguish between objects of different classes. For example, it would
be useful—for both biologists and others—to have a descriptive model that

4.1 Preliminaries 147

Table 4.1. The vertebrate data set.

Name Body Skin Gives Aquatic Aerial Has Hiber- Class
Temperature Cover Birth Creature Creature Legs nates Label

human warm-blooded hair yes no no yes no mammal
python cold-blooded scales no no no no yes reptile
salmon cold-blooded scales no yes no no no fish
whale warm-blooded hair yes yes no no no mammal
frog cold-blooded none no semi no yes yes amphibian
komodo
dragon

cold-blooded scales no no no yes no reptile

bat warm-blooded hair yes no yes yes yes mammal
pigeon warm-blooded feathers no no yes yes no bird
cat warm-blooded fur yes no no yes no mammal
leopard
shark

cold-blooded scales yes yes no no no fish

turtle cold-blooded scales no semi no yes no reptile
penguin warm-blooded feathers no semi no yes no bird
porcupine warm-blooded quills yes no no yes yes mammal
eel cold-blooded scales no yes no no no fish
salamander cold-blooded none no semi no yes yes amphibian

summarizes the data shown in Table 4.1 and explains what features define a
vertebrate as a mammal, reptile, bird, fish, or amphibian.

Predictive Modeling A classification model can also be used to predict
the class label of unknown records. As shown in Figure 4.2, a classification
model can be treated as a black box that automatically assigns a class label
when presented with the attribute set of an unknown record. Suppose we are
given the following characteristics of a creature known as a gila monster:

Name Body Skin Gives Aquatic Aerial Has Hiber- Class
Temperature Cover Birth Creature Creature Legs nates Label

gila monster cold-blooded scales no no no yes yes ?

We can use a classification model built from the data set shown in Table 4.1
to determine the class to which the creature belongs.

Classification techniques are most suited for predicting or describing data
sets with binary or nominal categories. They are less effective for ordinal
categories (e.g., to classify a person as a member of high-, medium-, or low-
income group) because they do not consider the implicit order among the
categories. Other forms of relationships, such as the subclass–superclass re-
lationships among categories (e.g., humans and apes are primates, which in

148 Chapter 4 Classification

turn, is a subclass of mammals) are also ignored. The remainder of this chapter
focuses only on binary or nominal class labels.

4.2 General Approach to Solving a Classification
Problem

A classification technique (or classifier) is a systematic approach to building
classification models from an input data set. Examples include decision tree
classifiers, rule-based classifiers, neural networks, support vector machines,
and näıve Bayes classifiers. Each technique employs a learning algorithm
to identify a model that best fits the relationship between the attribute set and
class label of the input data. The model generated by a learning algorithm
should both fit the input data well and correctly predict the class labels of
records it has never seen before. Therefore, a key objective of the learning
algorithm is to build models with good generalization capability; i.e., models
that accurately predict the class labels of previously unknown records.

Figure 4.3 shows a general approach for solving classification problems.
First, a training set consisting of records whose class labels are known must

Induction

Deduction

Model

Learn
Model

Apply
Model

Learning
Algorithm

Training Set

Test Set

Tid ClassAttrib1 Attrib2 Attrib3

1

2

3

4

5

6

7

8

9

10

Yes

No

No

Yes

No

No

Yes

No

No

No

No

No

No

No

Yes

No

No

Yes

No

Yes

125K

100K

70K

120K

95K

60K

220K

85K

75K

90K

Large

Medium

Small

Medium

Large

Medium

Large

Small

Medium

Small

Tid ClassAttrib1 Attrib2 Attrib3

11

12

13

14

15

No

Yes

Yes

No

No

?

?

?

?

?

55K

80K

110K

95K

67K

Small

Medium

Large

Small

Large

Figure 4.3. General approach for building a classification model.

4.2 General Approach to Solving a Classification Problem 149

Table 4.2. Confusion matrix for a 2-class problem.

Predicted Class
Class = 1 Class = 0

Actual Class = 1 f11 f10

Class Class = 0 f01 f00

be provided. The training set is used to build a classification model, which is
subsequently applied to the test set, which consists of records with unknown
class labels.

Evaluation of the performance of a classification model is based on the
counts of test records correctly and incorrectly predicted by the model. These
counts are tabulated in a table known as a confusion matrix. Table 4.2
depicts the confusion matrix for a binary classification problem. Each entry
fij in this table denotes the number of records from class i predicted to be
of class j. For instance, f01 is the number of records from class 0 incorrectly
predicted as class 1. Based on the entries in the confusion matrix, the total
number of correct predictions made by the model is (f11 + f00) and the total
number of incorrect predictions is (f10 + f01).

Although a confusion matrix provides the information needed to determine
how well a classification model performs, summarizing this information with
a single number would make it more convenient to compare the performance
of different models. This can be done using a performance metric such as
accuracy, which is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
=

f11 + f00

f11 + f10 + f01 + f00
. (4.1)

Equivalently, the performance of a model can be expressed in terms of its
error rate, which is given by the following equation:

Error rate =
Number of wrong predictions

Total number of predictions
=

f10 + f01

f11 + f10 + f01 + f00
. (4.2)

Most classification algorithms seek models that attain the highest accuracy, or
equivalently, the lowest error rate when applied to the test set. We will revisit
the topic of model evaluation in Section 4.5.

150 Chapter 4 Classification

4.3 Decision Tree Induction

This section introduces a decision tree classifier, which is a simple yet widely
used classification technique.

4.3.1 How a Decision Tree Works

To illustrate how classification with a decision tree works, consider a simpler
version of the vertebrate classification problem described in the previous sec-
tion. Instead of classifying the vertebrates into five distinct groups of species,
we assign them to two categories: mammals and non-mammals.

Suppose a new species is discovered by scientists. How can we tell whether
it is a mammal or a non-mammal? One approach is to pose a series of questions
about the characteristics of the species. The first question we may ask is
whether the species is cold- or warm-blooded. If it is cold-blooded, then it is
definitely not a mammal. Otherwise, it is either a bird or a mammal. In the
latter case, we need to ask a follow-up question: Do the females of the species
give birth to their young? Those that do give birth are definitely mammals,
while those that do not are likely to be non-mammals (with the exception of
egg-laying mammals such as the platypus and spiny anteater).

The previous example illustrates how we can solve a classification problem
by asking a series of carefully crafted questions about the attributes of the
test record. Each time we receive an answer, a follow-up question is asked
until we reach a conclusion about the class label of the record. The series of
questions and their possible answers can be organized in the form of a decision
tree, which is a hierarchical structure consisting of nodes and directed edges.
Figure 4.4 shows the decision tree for the mammal classification problem. The
tree has three types of nodes:

• A root node that has no incoming edges and zero or more outgoing
edges.

• Internal nodes, each of which has exactly one incoming edge and two
or more outgoing edges.

• Leaf or terminal nodes, each of which has exactly one incoming edge
and no outgoing edges.

In a decision tree, each leaf node is assigned a class label. The non-
terminal nodes, which include the root and other internal nodes, contain
attribute test conditions to separate records that have different characteris-
tics. For example, the root node shown in Figure 4.4 uses the attribute Body

4.3 Decision Tree Induction 151

Body
Temperature Root

node

Leaf
nodes

ColdWarmInternal
node

Gives Birth

Yes No

Non-
mammals

Non-
mammals

Mammals

Figure 4.4. A decision tree for the mammal classification problem.

Temperature to separate warm-blooded from cold-blooded vertebrates. Since
all cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals

is created as the right child of the root node. If the vertebrate is warm-blooded,
a subsequent attribute, Gives Birth, is used to distinguish mammals from
other warm-blooded creatures, which are mostly birds.

Classifying a test record is straightforward once a decision tree has been
constructed. Starting from the root node, we apply the test condition to the
record and follow the appropriate branch based on the outcome of the test.
This will lead us either to another internal node, for which a new test condition
is applied, or to a leaf node. The class label associated with the leaf node is
then assigned to the record. As an illustration, Figure 4.5 traces the path in
the decision tree that is used to predict the class label of a flamingo. The path
terminates at a leaf node labeled Non-mammals.

4.3.2 How to Build a Decision Tree

In principle, there are exponentially many decision trees that can be con-
structed from a given set of attributes. While some of the trees are more accu-
rate than others, finding the optimal tree is computationally infeasible because
of the exponential size of the search space. Nevertheless, efficient algorithms
have been developed to induce a reasonably accurate, albeit suboptimal, de-
cision tree in a reasonable amount of time. These algorithms usually employ
a greedy strategy that grows a decision tree by making a series of locally op-

152 Chapter 4 Classification

Body
Temperature

Non-
 mammals

ColdWarm

Flamingo Warm No ... ?

Unlabeled
data

Gives Birth

Yes No

Non-
mammals

Non-
mammals

Mammals

Name Gives Birth ... ClassBody temperature

Figure 4.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying

various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to

the Non-mammal class.

timum decisions about which attribute to use for partitioning the data. One
such algorithm is Hunt’s algorithm, which is the basis of many existing de-
cision tree induction algorithms, including ID3, C4.5, and CART. This section
presents a high-level discussion of Hunt’s algorithm and illustrates some of its
design issues.

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let Dt be the set
of training records that are associated with node t and y = {y1, y2, . . . , yc} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in Dt belong to the same class yt, then t is a leaf
node labeled as yt.

Step 2: If Dt contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in Dt are distributed to the children based on the
outcomes. The algorithm is then recursively applied to each child node.

4.3 Decision Tree Induction 153

bin
ary

cate
goric

al

contin
uous

cla
ss

Tid
Defaulted
Borrower

Home
Owner

Marital
Status

Annual
Income

1

2

3

4

5

6

7

8

9

10

Yes

No

No

Yes

No

No

Yes

No

No

No

No

No

No

No

Yes

No

No

Yes

No

Yes

125K

100K

70K

120K

95K

60K

220K

85K

75K

90K

Single

Married

Single

Married

Divorced

Married

Divorced

Single

Married

Single

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

To illustrate how the algorithm works, consider the problem of predicting
whether a loan applicant will repay her loan obligations or become delinquent,
subsequently defaulting on her loan. A training set for this problem can be
constructed by examining the records of previous borrowers. In the example
shown in Figure 4.6, each record contains the personal information of a bor-
rower along with a class label indicating whether the borrower has defaulted
on loan payments.

The initial tree for the classification problem contains a single node with
class label Defaulted = No (see Figure 4.7(a)), which means that most of
the borrowers successfully repaid their loans. The tree, however, needs to be
refined since the root node contains records from both classes. The records are
subsequently divided into smaller subsets based on the outcomes of the Home

Owner test condition, as shown in Figure 4.7(b). The justification for choosing
this attribute test condition will be discussed later. For now, we will assume
that this is the best criterion for splitting the data at this point. Hunt’s
algorithm is then applied recursively to each child of the root node. From
the training set given in Figure 4.6, notice that all borrowers who are home
owners successfully repaid their loans. The left child of the root is therefore a
leaf node labeled Defaulted = No (see Figure 4.7(b)). For the right child, we
need to continue applying the recursive step of Hunt’s algorithm until all the
records belong to the same class. The trees resulting from each recursive step
are shown in Figures 4.7(c) and (d).

154 Chapter 4 Classification

Defaulted = No

Yes No

Home
Owner

MarriedSingle,
Divorced

Defaulted = No

Marital
Status

(a) (b)

Defaulted = No

Defaulted = No

Yes No

Defaulted = No

Home
Owner

(d)(c)

Defaulted = No

< 80K >= 80K

Defaulted = Yes

Annual
Income

Defaulted = No

Yes No

Home
Owner

MarriedSingle,
Divorced

Defaulted = NoDefaulted = Yes

Marital
Status

Figure 4.7. Hunt’s algorithm for inducing decision trees.

Hunt’s algorithm will work if every combination of attribute values is
present in the training data and each combination has a unique class label.
These assumptions are too stringent for use in most practical situations. Ad-
ditional conditions are needed to handle the following cases:

1. It is possible for some of the child nodes created in Step 2 to be empty;
i.e., there are no records associated with these nodes. This can happen
if none of the training records have the combination of attribute values
associated with such nodes. In this case the node is declared a leaf
node with the same class label as the majority class of training records
associated with its parent node.

2. In Step 2, if all the records associated with Dt have identical attribute
values (except for the class label), then it is not possible to split these
records any further. In this case, the node is declared a leaf node with
the same class label as the majority class of training records associated
with this node.

4.3 Decision Tree Induction 155

Design Issues of Decision Tree Induction

A learning algorithm for inducing decision trees must address the following
two issues.

1. How should the training records be split? Each recursive step
of the tree-growing process must select an attribute test condition to
divide the records into smaller subsets. To implement this step, the
algorithm must provide a method for specifying the test condition for
different attribute types as well as an objective measure for evaluating
the goodness of each test condition.

2. How should the splitting procedure stop? A stopping condition is
needed to terminate the tree-growing process. A possible strategy is to
continue expanding a node until either all the records belong to the same
class or all the records have identical attribute values. Although both
conditions are sufficient to stop any decision tree induction algorithm,
other criteria can be imposed to allow the tree-growing procedure to
terminate earlier. The advantages of early termination will be discussed
later in Section 4.4.5.

4.3.3 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an
attribute test condition and its corresponding outcomes for different attribute
types.

Binary Attributes The test condition for a binary attribute generates two
potential outcomes, as shown in Figure 4.8.

Body
Temperature

Warm-
blooded

Cold-
blooded

Figure 4.8. Test condition for binary attributes.

156 Chapter 4 Classification

{Married} {Single,
Divorced}

(a) Multiway split

Single Divorced Married

{Single} {Married,
Divorced}

(b) Binary split {by grouping attribute values}

{Single,
Married}

{Divorced}

OR OR

Marital
Status

Marital
Status

Marital
Status

Marital
Status

Figure 4.9. Test conditions for nominal attributes.

Nominal Attributes Since a nominal attribute can have many values, its
test condition can be expressed in two ways, as shown in Figure 4.9. For
a multiway split (Figure 4.9(a)), the number of outcomes depends on the
number of distinct values for the corresponding attribute. For example, if
an attribute such as marital status has three distinct values—single, married,
or divorced—its test condition will produce a three-way split. On the other
hand, some decision tree algorithms, such as CART, produce only binary splits
by considering all 2k−1 − 1 ways of creating a binary partition of k attribute
values. Figure 4.9(b) illustrates three different ways of grouping the attribute
values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multiway
splits. Ordinal attribute values can be grouped as long as the grouping does
not violate the order property of the attribute values. Figure 4.10 illustrates
various ways of splitting training records based on the Shirt Size attribute.
The groupings shown in Figures 4.10(a) and (b) preserve the order among
the attribute values, whereas the grouping shown in Figure 4.10(c) violates
this property because it combines the attribute values Small and Large into

4.3 Decision Tree Induction 157

Shirt
Size

{Small,
Medium}

{Large,
Extra Large}

(a)

Shirt
Size

{Small} {Medium, Large,
Extra Large}

(b)

Shirt
Size

{Small,
Large}

{Medium,
Extra Large}

(c)

Figure 4.10. Different ways of grouping ordinal attribute values.

the same partition while Medium and Extra Large are combined into another
partition.

Continuous Attributes For continuous attributes, the test condition can
be expressed as a comparison test (A < v) or (A ≥ v) with binary outcomes, or
a range query with outcomes of the form vi ≤ A < vi+1, for i = 1, . . . , k. The
difference between these approaches is shown in Figure 4.11. For the binary
case, the decision tree algorithm must consider all possible split positions v,
and it selects the one that produces the best partition. For the multiway
split, the algorithm must consider all possible ranges of continuous values.
One approach is to apply the discretization strategies described in Section
2.3.6 on page 57. After discretization, a new ordinal value will be assigned to
each discretized interval. Adjacent intervals can also be aggregated into wider
ranges as long as the order property is preserved.

(b)(a)

Yes No

Annual
Income
> 80K

{10K, 25K} {25K, 50K} {50K, 80K}

Annual
Income

> 80K< 10K

Figure 4.11. Test condition for continuous attributes.

158 Chapter 4 Classification

Male Female

C0: 6
C1: 4

C0: 4
C1: 6

(a)

Gender

Family Luxury

Sports

C0:1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

(b)

Car
Type

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

C0: 0
C1: 1

(c)

v1 v20
v10 v11

Customer
ID

Figure 4.12. Multiway versus binary splits.

4.3.4 Measures for Selecting the Best Split

There are many measures that can be used to determine the best way to split
the records. These measures are defined in terms of the class distribution of
the records before and after splitting.

Let p(i|t) denote the fraction of records belonging to class i at a given node
t. We sometimes omit the reference to node t and express the fraction as pi.
In a two-class problem, the class distribution at any node can be written as
(p0, p1), where p1 = 1 − p0. To illustrate, consider the test conditions shown
in Figure 4.12. The class distribution before splitting is (0.5, 0.5) because
there are an equal number of records from each class. If we split the data
using the Gender attribute, then the class distributions of the child nodes are
(0.6, 0.4) and (0.4, 0.6), respectively. Although the classes are no longer evenly
distributed, the child nodes still contain records from both classes. Splitting
on the second attribute, Car Type, will result in purer partitions.

The measures developed for selecting the best split are often based on the
degree of impurity of the child nodes. The smaller the degree of impurity, the
more skewed the class distribution. For example, a node with class distribu-
tion (0, 1) has zero impurity, whereas a node with uniform class distribution
(0.5, 0.5) has the highest impurity. Examples of impurity measures include

Entropy(t) = −
c−1∑

i=0

p(i|t) log2 p(i|t), (4.3)

Gini(t) = 1 −
c−1∑

i=0

[p(i|t)]2, (4.4)

Classification error(t) = 1 − max
i

[p(i|t)], (4.5)

where c is the number of classes and 0 log2 0 = 0 in entropy calculations.

4.3 Decision Tree Induction 159

Entropy

Gini

Misclassification error

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Figure 4.13. Comparison among the impurity measures for binary classification problems.

Figure 4.13 compares the values of the impurity measures for binary classi-
fication problems. p refers to the fraction of records that belong to one of the
two classes. Observe that all three measures attain their maximum value when
the class distribution is uniform (i.e., when p = 0.5). The minimum values for
the measures are attained when all the records belong to the same class (i.e.,
when p equals 0 or 1). We next provide several examples of computing the
different impurity measures.

Node N1 Count
Class=0 0
Class=1 6

Gini = 1 − (0/6)2 − (6/6)2 = 0
Entropy = −(0/6) log2(0/6) − (6/6) log2(6/6) = 0
Error = 1 − max[0/6, 6/6] = 0

Node N2 Count
Class=0 1
Class=1 5

Gini = 1 − (1/6)2 − (5/6)2 = 0.278
Entropy = −(1/6) log2(1/6) − (5/6) log2(5/6) = 0.650
Error = 1 − max[1/6, 5/6] = 0.167

Node N3 Count
Class=0 3
Class=1 3

Gini = 1 − (3/6)2 − (3/6)2 = 0.5
Entropy = −(3/6) log2(3/6) − (3/6) log2(3/6) = 1
Error = 1 − max[3/6, 3/6] = 0.5

160 Chapter 4 Classification

The preceding examples, along with Figure 4.13, illustrate the consistency
among different impurity measures. Based on these calculations, node N1 has
the lowest impurity value, followed by N2 and N3. Despite their consistency,
the attribute chosen as the test condition may vary depending on the choice
of impurity measure, as will be shown in Exercise 3 on page 198.

To determine how well a test condition performs, we need to compare the
degree of impurity of the parent node (before splitting) with the degree of
impurity of the child nodes (after splitting). The larger their difference, the
better the test condition. The gain, ∆, is a criterion that can be used to
determine the goodness of a split:

∆ = I(parent) −
k∑

j=1

N(vj)

N
I(vj), (4.6)

where I(·) is the impurity measure of a given node, N is the total number of
records at the parent node, k is the number of attribute values, and N(vj)
is the number of records associated with the child node, vj . Decision tree
induction algorithms often choose a test condition that maximizes the gain
∆. Since I(parent) is the same for all test conditions, maximizing the gain is
equivalent to minimizing the weighted average impurity measures of the child
nodes. Finally, when entropy is used as the impurity measure in Equation 4.6,
the difference in entropy is known as the information gain, ∆info.

Splitting of Binary Attributes

Consider the diagram shown in Figure 4.14. Suppose there are two ways to
split the data into smaller subsets. Before splitting, the Gini index is 0.5 since
there are an equal number of records from both classes. If attribute A is chosen
to split the data, the Gini index for node N1 is 0.4898, and for node N2, it
is 0.480. The weighted average of the Gini index for the descendent nodes is
(7/12) × 0.4898 + (5/12) × 0.480 = 0.486. Similarly, we can show that the
weighted average of the Gini index for attribute B is 0.375. Since the subsets
for attribute B have a smaller Gini index, it is preferred over attribute A.

Splitting of Nominal Attributes

As previously noted, a nominal attribute can produce either binary or multi-
way splits, as shown in Figure 4.15. The computation of the Gini index for a
binary split is similar to that shown for determining binary attributes. For the
first binary grouping of the Car Type attribute, the Gini index of {Sports,

4.3 Decision Tree Induction 161

Gini = 0.375

N1

1

4

5

2

N2

C0

C1

Gini = 0.500

Parent

6

6

C0

C1

Gini = 0.486

N1

4

3

2

3

N2

C0

Node N1

C1

Node N2

A

Yes No

Node N1 Node N2

B

Yes No

Figure 4.14. Splitting binary attributes.

Car Type Car Type Car Type
{Sports,
Luxury}

{Sports,
Luxury}

{Family,
Luxury}{Family}

{Family}

9

7

1

3

{Sports}
Family Luxury

Sports

Car Type

C0

C1

Gini 0.468

{Sports}
{Family,
Luxury}

8

0

2

10

Car Type

C0

C1

Gini 0.167

1

3

8

0

1

7

Car Type

C0

C1

Gini 0.163

Family Sports Luxury

(a) Binary split (b) Multiway split

Figure 4.15. Splitting nominal attributes.

Luxury} is 0.4922 and the Gini index of {Family} is 0.3750. The weighted
average Gini index for the grouping is equal to

16/20 × 0.4922 + 4/20 × 0.3750 = 0.468.

Similarly, for the second binary grouping of {Sports} and {Family, Luxury},
the weighted average Gini index is 0.167. The second grouping has a lower
Gini index because its corresponding subsets are much purer.

162 Chapter 4 Classification

Sorted Values

Split Positions

No No No No No No NoYes Yes Yes

Annual Income

60 70 90 100 120 22012575 9585

Class

Yes

No

Gini

55 65 72 80 87 92 97 110 122 172 230

<= <=> > <= > <= > <= > <= > <= > <= > <= > <= > <= >

0 3

0 7

0 3

1 6

0 3

2 5

0 3

3 4

1 2

3 4

2 1

3 4

3 0

3 4

3 0

4 3

3 0

5 2

3 0

6 1

3 0

7 0

0.420 0.400 0.375 0.343 0.417 0.400 0.400 0.4200.343 0.3750.300

Figure 4.16. Splitting continuous attributes.

For the multiway split, the Gini index is computed for every attribute value.
Since Gini({Family}) = 0.375, Gini({Sports}) = 0, and Gini({Luxury}) =
0.219, the overall Gini index for the multiway split is equal to

4/20 × 0.375 + 8/20 × 0 + 8/20 × 0.219 = 0.163.

The multiway split has a smaller Gini index compared to both two-way splits.
This result is not surprising because the two-way split actually merges some
of the outcomes of a multiway split, and thus, results in less pure subsets.

Splitting of Continuous Attributes

Consider the example shown in Figure 4.16, in which the test condition Annual

Income ≤ v is used to split the training records for the loan default classifica-
tion problem. A brute-force method for finding v is to consider every value of
the attribute in the N records as a candidate split position. For each candidate
v, the data set is scanned once to count the number of records with annual
income less than or greater than v. We then compute the Gini index for each
candidate and choose the one that gives the lowest value. This approach is
computationally expensive because it requires O(N) operations to compute
the Gini index at each candidate split position. Since there are N candidates,
the overall complexity of this task is O(N2). To reduce the complexity, the
training records are sorted based on their annual income, a computation that
requires O(N log N) time. Candidate split positions are identified by taking
the midpoints between two adjacent sorted values: 55, 65, 72, and so on. How-
ever, unlike the brute-force approach, we do not have to examine all N records
when evaluating the Gini index of a candidate split position.

For the first candidate, v = 55, none of the records has annual income less
than $55K. As a result, the Gini index for the descendent node with Annual

4.3 Decision Tree Induction 163

Income < $55K is zero. On the other hand, the number of records with annual
income greater than or equal to $55K is 3 (for class Yes) and 7 (for class No),
respectively. Thus, the Gini index for this node is 0.420. The overall Gini
index for this candidate split position is equal to 0 × 0 + 1 × 0.420 = 0.420.

For the second candidate, v = 65, we can determine its class distribution
by updating the distribution of the previous candidate. More specifically, the
new distribution is obtained by examining the class label of the record with
the lowest annual income (i.e., $60K). Since the class label for this record is
No, the count for class No is increased from 0 to 1 (for Annual Income ≤ $65K)
and is decreased from 7 to 6 (for Annual Income > $65K). The distribution
for class Yes remains unchanged. The new weighted-average Gini index for
this candidate split position is 0.400.

This procedure is repeated until the Gini index values for all candidates are
computed, as shown in Figure 4.16. The best split position corresponds to the
one that produces the smallest Gini index, i.e., v = 97. This procedure is less
expensive because it requires a constant amount of time to update the class
distribution at each candidate split position. It can be further optimized by
considering only candidate split positions located between two adjacent records
with different class labels. For example, because the first three sorted records
(with annual incomes $60K, $70K, and $75K) have identical class labels, the
best split position should not reside between $60K and $75K. Therefore, the
candidate split positions at v = $55K, $65K, $72K, $87K, $92K, $110K, $122K,
$172K, and $230K are ignored because they are located between two adjacent
records with the same class labels. This approach allows us to reduce the
number of candidate split positions from 11 to 2.

Gain Ratio

Impurity measures such as entropy and Gini index tend to favor attributes that
have a large number of distinct values. Figure 4.12 shows three alternative
test conditions for partitioning the data set given in Exercise 2 on page 198.
Comparing the first test condition, Gender, with the second, Car Type, it
is easy to see that Car Type seems to provide a better way of splitting the
data since it produces purer descendent nodes. However, if we compare both
conditions with Customer ID, the latter appears to produce purer partitions.
Yet Customer ID is not a predictive attribute because its value is unique for
each record. Even in a less extreme situation, a test condition that results in a
large number of outcomes may not be desirable because the number of records
associated with each partition is too small to enable us to make any reliable
predictions.

164 Chapter 4 Classification

There are two strategies for overcoming this problem. The first strategy is
to restrict the test conditions to binary splits only. This strategy is employed
by decision tree algorithms such as CART. Another strategy is to modify the
splitting criterion to take into account the number of outcomes produced by
the attribute test condition. For example, in the C4.5 decision tree algorithm,
a splitting criterion known as gain ratio is used to determine the goodness
of a split. This criterion is defined as follows:

Gain ratio =
∆info

Split Info
. (4.7)

Here, Split Info = −
∑k

i=1 P (vi) log2 P (vi) and k is the total number of splits.
For example, if each attribute value has the same number of records, then
∀i : P (vi) = 1/k and the split information would be equal to log2 k. This
example suggests that if an attribute produces a large number of splits, its
split information will also be large, which in turn reduces its gain ratio.

4.3.5 Algorithm for Decision Tree Induction

A skeleton decision tree induction algorithm called TreeGrowth is shown
in Algorithm 4.1. The input to this algorithm consists of the training records
E and the attribute set F . The algorithm works by recursively selecting the
best attribute to split the data (Step 7) and expanding the leaf nodes of the

Algorithm 4.1 A skeleton decision tree induction algorithm.
TreeGrowth (E, F)
1: if stopping cond(E,F) = true then
2: leaf = createNode().
3: leaf.label = Classify(E).
4: return leaf .
5: else
6: root = createNode().
7: root.test cond = find best split(E, F).
8: let V = {v|v is a possible outcome of root.test cond }.
9: for each v ∈ V do

10: Ev = {e | root.test cond(e) = v and e ∈ E}.
11: child = TreeGrowth(Ev, F).
12: add child as descendent of root and label the edge (root → child) as v.
13: end for
14: end if
15: return root.

4.3 Decision Tree Induction 165

tree (Steps 11 and 12) until the stopping criterion is met (Step 1). The details
of this algorithm are explained below:

1. The createNode() function extends the decision tree by creating a new
node. A node in the decision tree has either a test condition, denoted as
node.test cond, or a class label, denoted as node.label.

2. The find best split() function determines which attribute should be
selected as the test condition for splitting the training records. As pre-
viously noted, the choice of test condition depends on which impurity
measure is used to determine the goodness of a split. Some widely used
measures include entropy, the Gini index, and the χ2 statistic.

3. The Classify() function determines the class label to be assigned to a
leaf node. For each leaf node t, let p(i|t) denote the fraction of training
records from class i associated with the node t. In most cases, the leaf
node is assigned to the class that has the majority number of training
records:

leaf.label = argmax
i

p(i|t), (4.8)

where the argmax operator returns the argument i that maximizes the
expression p(i|t). Besides providing the information needed to determine
the class label of a leaf node, the fraction p(i|t) can also be used to es-
timate the probability that a record assigned to the leaf node t belongs
to class i. Sections 5.7.2 and 5.7.3 describe how such probability esti-
mates can be used to determine the performance of a decision tree under
different cost functions.

4. The stopping cond() function is used to terminate the tree-growing pro-
cess by testing whether all the records have either the same class label
or the same attribute values. Another way to terminate the recursive
function is to test whether the number of records have fallen below some
minimum threshold.

After building the decision tree, a tree-pruning step can be performed
to reduce the size of the decision tree. Decision trees that are too large are
susceptible to a phenomenon known as overfitting. Pruning helps by trim-
ming the branches of the initial tree in a way that improves the generalization
capability of the decision tree. The issues of overfitting and tree pruning are
discussed in more detail in Section 4.4.

166 Chapter 4 Classification

Session IP Address Timestamp Protocol Status Referrer User AgentNumber
of Bytes

Requested Web PageRequest
Method

08/Aug/2004
10:15:21

160.11.11.111 GET http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 6424 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:34

160.11.11.111 GET http://www.cs.umn.edu/
~kumar/MINDS

http://www.cs.umn.edu/
~kumar

http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 41378 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:41

160.11.11.111 GET

08/Aug/2004
10:16:11

160.11.11.111 GET

08/Aug/2004
10:16:15

35.9.2.22 GET

http://www.cs.umn.edu/
~kumar/MINDS/MINDS
_papers.htm
http://www.cs.umn.edu/
~kumar/papers/papers.
html
http://www.cs.umn.edu/
~steinbac

http://www.cs.umn.edu/
~kumar/MINDS

HTTP/1.1 200

HTTP/1.1 200

HTTP/1.0

Attribute Name Description

200

1018516

7463

3149

Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US;
rv:1.7) Gecko/20040616

(a) Example of a Web server log.

http://www.cs.umn.edu/~kumar

MINDS
papers/papers.html

MINDS/MINDS_papers.htm

(b) Graph of a Web session. (c) Derived attributes for Web robot detection.

totalPages Total number of pages retrieved in a Web session

Total number of image pages retrieved in a Web session

Total amount of time spent by Web site visitor
The same page requested more than once in a Web session

Errors in requesting for Web pages

Breadth of Web traversal
Depth of Web traversal

Session with multiple IP addresses

Session with multiple user agents

Percentage of requests made using GET method

Percentage of requests made using POST method

Percentage of requests made using HEAD method

TotalTime
RepeatedAccess

ErrorRequest

Breadth

Depth

MultilP
MultiAgent

GET

POST

HEAD

ImagePages

Figure 4.17. Input data for Web robot detection.

4.3.6 An Example: Web Robot Detection

Web usage mining is the task of applying data mining techniques to extract
useful patterns from Web access logs. These patterns can reveal interesting
characteristics of site visitors; e.g., people who repeatedly visit a Web site and
view the same product description page are more likely to buy the product if
certain incentives such as rebates or free shipping are offered.

In Web usage mining, it is important to distinguish accesses made by hu-
man users from those due to Web robots. A Web robot (also known as a Web
crawler) is a software program that automatically locates and retrieves infor-
mation from the Internet by following the hyperlinks embedded in Web pages.
These programs are deployed by search engine portals to gather the documents
necessary for indexing the Web. Web robot accesses must be discarded before
applying Web mining techniques to analyze human browsing behavior.

