
Learning Analytics

Dr. Bowen Hui
Computer Science

University of British Columbia Okanagan

Prototype-Based Clustering
• Partitions data points into clusters
• Each cluster has a prototype which serves as the

representative point
• Most popular methods:
– K-means

• Defines prototype by a centroid (based on a group of points)
• Typically used on continuous n-dimensional data

– K-medoid
• Defines prototype by a medoid (an actual point)
• Applicable to different types of data

2
Images and slides content taken from text chapter

K-Means Clustering
• Partitional clustering method that finds k clusters
– k is given
– Each point is associated with one centroid

• General algorithm:
– Select k points as initial centroids
– Repeat

• Form k clusters by assigning each point to its closest centroid
• Update centroid of each cluster

– Until centroids do not change
• Key operations:
– Compute point-to-point distance
– Update centroid

3

K-means Demo

4
Image taken from towardsdatascience.com

Calculating Distance Between Points

• 2D space:
– Euclidean distance (L2 norm)
– Also use Manhattan distance (L1 norm)
• Sum of the magnitude of vector
• ||x||1 = ∑#$%& |()|

• For documents:
– Cosine similarity (vector representation)
– Jaccard measure (set theory)

5

Updating a Cluster’s Centroid

• Goal is typically expressed by an objective
function that depends on proximities of points to
one another or to cluster centroids

• Using the mean:
– Compute mean of points in the cluster

– Minimizes the sum of the squared error (SSE) in the
clustering

• K-means will converge for common similarity
measures
– i.e., Centroids will not change

6

SSE as the Objective Function
• A smaller SSE means the centroids of the

clustering is a better representation of the points
in the clusters obtained

• Given 2 clusterings, we prefer the one with a
smaller SSE

• Definition: SSE = ∑"#$% ∑&∈(")*+, -*, / 2

– Compute squared error between centroid (mean) and
every point in cluster

– Add up squared error of all the clusters

7
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Sub-optimal Clustering

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Optimal Clustering

SSE as the Objective Function
• A smaller SSE means the centroids of the

clustering is a better representation of the points
in the clusters obtained

• Given 2 clusterings, we prefer the one with a
smaller SSE

• Definition: SSE = ∑"#$% ∑&∈(")*+, -*, / 2

– Compute squared error between centroid (mean) and
every point in cluster

– Add up squared error of all the clusters

8

Limitations

• Difficulty when clusters are of differing:
– Sizes
– Densities
– Non-globular shapes

• Difficulty when data have outliers
• One solution:
– Use many clusters
– Find parts of clusters but need to put together

9

Original Points K-means
(3 Clusters)

Differing Sizes

K-means
(10 Clusters)

Differing Densities

Original Points K-means
(3 Clusters)

K-means
(10 Clusters)

Non-Globular Shapes

Original Points K-means
(2 Clusters)

K-means
(10 Clusters)

Choosing Initial Centroids

• Often done at random
– Clusters produced vary from one run to another
– Different optimal solutions exist
– Often result in poor initial centroids

13

K-means typically converges to local minimum

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 6

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 5

Comparison between Two Initial Choices

16

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Option 1

Option 2 . . .

. . .

Choosing Initial Centroids

• Often done at random
– Clusters produced vary from one run to another
– Different optimal solutions exist
– Often result in poor initial centroids

• Solution 1: use multiple runs
– Choose smallest SSE of the clusterings
– Effectiveness depends on data set and k

17

When Data Set and k Match

18

When Data Set and k Don’t Match

19

Solutions to Initial Centroid Problem

• Multiple runs using random initials
• Sample and use hierarchical clustering to set initial

centroids
– Generally works well if sample and k are small

• Select more than k initial centroids then select a subset
of most widely separated ones to use
– Bad if selected an outlier

• Postprocessing
• Generate a larger number of clusters then perform

hierarchical clustering
• Other variations: k-means++ and bisecting k-means

20

Preliminary Case Study: COSC 111

• Understand different approaches to programming
problem

• Data considered
– Java programming assignments to implement (single

player) Memory card game
• Limited to 8 pairs of cards
• Displayed on 4x4 board

– Hands-on instructions with grading criteria
– Sample output
– Methods expected

21

Sample Output

22

Sample Output (cont.)

23

Sample Output (cont.)

24

. . .

Program Structure

• Basic algorithm
– Shuffle cards and lay out 4x4 board
– While not all pairs have been matched
• Call showBoard() with appropriate whitespace or card
• Get two cards from user and open them on board with

openCard()
• Check if there’s a match and update variables as

needed

25

Solution’s Code Structure
public class Memory
{
public static void main(String[] args) { }
public static void showBoard(…) { }
public static void openCard(…) { }

}

26

main()

27

showBoard() and openCard()

28

Clustering Student Solutions
• K-medoids clustering
– Another partitional clustering method
– Medoids are actual data points

• General algorithm:
– Initialize k points as medoids (m)
– Associate each data point (x) to a closest medoid
– Compute cost = ∑"# ∑$∈"# |' −)*|
– Repeat

• For each m and x
– Swap m and x
– Reassign all data points to closest medoid, recompute cost
– If total cost is more than previous step, undo swap

– Until cost does not decrease

29

Method

• Preprocess code to obtain sequence of tokens
• Created n-grams of token sequences, n=5
• Cluster using k-medoids and Jaccard similarity
– Definition:

• Results:
– Obtained total of 12 clusters
– Select 4 medoids with varying program structures

to look at

30

Results

• Cluster 1 (num = 5/85; average score 37.7%):
– Overly simplistic structure
– Suggests incomplete solution

31

Results

32

• Cluster 2 (num = 3/85; average score 85.1%):
– Uses additional helper methods
– Suggests careful planning

Results

33

• Cluster 3 (num = 30/85; average score 80.1%):
– Closest solution to instructor’s solution
– Additional conditional branching

Results

34

• Cluster 4
(num = 3/85;
average score 44.8%):
– Enumerate possible scenarios

in main()
– Missing openCard() and

lack structure in showBoard()

Key Ideas
• Prototype based clustering

– Identifies a prototype within each cluster
– K-means
– K-medoids

• Key operations:
– Initialization of default centroid
– Define distance measure: L1 norm, L2 norm, cosine similarity, Jaccard

similarity
– Update new centroids
– Overall objective function: sum of squared error

• Algorithm for k-means:
– Select k points as initial centroids
– Repeat

• Form k clusters by assigning each point to its closest centroid
• Update centroid of each cluster

– Until centroids do not change

