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Prototype-Based Clustering
• Partitions data points into clusters 
• Each cluster has a prototype which serves as the 

representative point
• Most popular methods:
– K-means 

• Defines prototype by a centroid (based on a group of points)
• Typically used on continuous n-dimensional data

– K-medoid
• Defines prototype by a medoid (an actual point)
• Applicable to different types of data
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K-Means Clustering
• Partitional clustering method that finds k clusters
– k is given
– Each point is associated with one centroid

• General algorithm:
– Select k points as initial centroids
– Repeat

• Form k clusters by assigning each point to its closest centroid
• Update centroid of each cluster

– Until centroids do not change
• Key operations:
– Compute point-to-point distance
– Update centroid
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K-means Demo
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Calculating Distance Between Points

• 2D space:
– Euclidean distance (L2 norm)
– Also use Manhattan distance (L1 norm)
• Sum of the magnitude of vector
• ||x||1 = ∑#$%& |()|

• For documents:
– Cosine similarity (vector representation)
– Jaccard measure (set theory)
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Updating a Cluster’s Centroid

• Goal is typically expressed by an objective 
function that depends on proximities of points to 
one another or to cluster centroids

• Using the mean:
– Compute mean of points in the cluster

– Minimizes the sum of the squared error (SSE) in the 
clustering

• K-means will converge for common similarity 
measures 
– i.e., Centroids will not change
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SSE as the Objective Function
• A smaller SSE means the centroids of the 

clustering is a better representation of the points 
in the clusters obtained

• Given 2 clusterings, we prefer the one with a 
smaller SSE

• Definition: SSE = ∑"#$% ∑&∈(" )*+, -*, / 2

– Compute squared error between centroid (mean) and 
every point in cluster

– Add up squared error of all the clusters
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SSE as the Objective Function
• A smaller SSE means the centroids of the 
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• Given 2 clusterings, we prefer the one with a 
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– Compute squared error between centroid (mean) and 
every point in cluster

– Add up squared error of all the clusters
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Limitations

• Difficulty when clusters are of differing:
– Sizes
– Densities
– Non-globular shapes

• Difficulty when data have outliers
• One solution:
– Use many clusters
– Find parts of clusters but need to put together
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Original Points K-means 
(3 Clusters)

Differing Sizes

K-means 
(10 Clusters)



Differing Densities

Original Points K-means 
(3 Clusters)

K-means 
(10 Clusters)



Non-Globular Shapes

Original Points K-means 
(2 Clusters)

K-means 
(10 Clusters)



Choosing Initial Centroids

• Often done at random
– Clusters produced vary from one run to another
– Different optimal solutions exist
– Often result in poor initial centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Comparison between Two Initial Choices
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Choosing Initial Centroids

• Often done at random
– Clusters produced vary from one run to another
– Different optimal solutions exist
– Often result in poor initial centroids

• Solution 1: use multiple runs
– Choose smallest SSE of the clusterings
– Effectiveness depends on data set and k
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When Data Set and k Match
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When Data Set and k Don’t Match
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Solutions to Initial Centroid Problem

• Multiple runs using random initials
• Sample and use hierarchical clustering to set initial 

centroids
– Generally works well if sample and k are small

• Select more than k initial centroids then select a subset 
of most widely separated ones to use 
– Bad if selected an outlier

• Postprocessing 
• Generate a larger number of clusters then perform 

hierarchical clustering
• Other variations: k-means++ and bisecting k-means
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Preliminary Case Study: COSC 111

• Understand different approaches to programming 
problem

• Data considered
– Java programming assignments to implement (single 

player) Memory card game
• Limited to 8 pairs of cards
• Displayed on 4x4 board

– Hands-on instructions with grading criteria
– Sample output
– Methods expected

21



Sample Output
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Sample Output (cont.)
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Sample Output (cont.)
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Program Structure

• Basic algorithm
– Shuffle cards and lay out 4x4 board
– While not all pairs have been matched
• Call showBoard() with appropriate whitespace or card
• Get two cards from user and open them on board with 

openCard()
• Check if there’s a match and update variables as 

needed
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Solution’s Code Structure
public class Memory
{
public static void main( String[] args ) { }
public static void showBoard( … ) { }
public static void openCard( … ) { }

}
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main()
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showBoard() and openCard()
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Clustering Student Solutions
• K-medoids clustering 
– Another partitional clustering method
– Medoids are actual data points

• General algorithm:
– Initialize k points as medoids (m)
– Associate each data point (x) to a closest medoid
– Compute cost = ∑"# ∑$∈"# |' − )*|
– Repeat

• For each m and x
– Swap m and x
– Reassign all data points to closest medoid, recompute cost
– If total cost is more than previous step, undo swap

– Until cost does not decrease
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Method

• Preprocess code to obtain sequence of tokens
• Created n-grams of token sequences, n=5
• Cluster using k-medoids and Jaccard similarity
– Definition:

• Results:
– Obtained total of 12 clusters
– Select 4 medoids with varying program structures 

to look at
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Results

• Cluster 1 (num = 5/85; average score 37.7%):
– Overly simplistic structure
– Suggests incomplete solution
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Results
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• Cluster 2 (num = 3/85; average score 85.1%):
– Uses additional helper methods
– Suggests careful planning



Results
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• Cluster 3 (num = 30/85; average score 80.1%):
– Closest solution to instructor’s solution
– Additional conditional branching



Results
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• Cluster 4 
(num = 3/85; 
average score 44.8%):
– Enumerate possible scenarios 

in main()
– Missing openCard() and 

lack structure in showBoard()



Key Ideas
• Prototype based clustering

– Identifies a prototype within each cluster
– K-means
– K-medoids

• Key operations:
– Initialization of default centroid
– Define distance measure: L1 norm, L2 norm, cosine similarity, Jaccard 

similarity
– Update new centroids
– Overall objective function: sum of squared error 

• Algorithm for k-means:
– Select k points as initial centroids
– Repeat

• Form k clusters by assigning each point to its closest centroid
• Update centroid of each cluster

– Until centroids do not change


