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Last Class

• Introduced difference between categorization vs 
decision making

• One specific classification technique: decision trees

– Given labeled dataset

– Learn the underlying decision tree (model)

– Predict label for unseen data

• This class:

– How it works with unlabeled data

– Specific algorithms:

• Agglomerative hierarchical clustering

• K-means
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Common Applications
• Marketing research: discover target customer 

segments
• Biology: categorize genes, derive animal/plant 

taxonomies
• Climate: find patterns in atmospheric pressure 

and ocean temperature
• Health: identify different types of depression, 

detect patterns in spatial/temporal distribution of 
a disease

• Compression: uses prototype to generate lossy 
data (vector quantization)
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Overview

• Cluster analysis is an analysis technique to group 
data into meaningful clusters
– Clusters should capture natural structure of the data
– Goal: data within a cluster should be similar to each other 

and data in different clusters should be dissimilar from 
each other
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Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized

Find clusters to minimize or maximize an objective function



Ambiguous Notion of “Cluster”
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How many clusters?



Ambiguous Notion of “Cluster”
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How many clusters?

Two Clusters

Six Clusters

Four Clusters



Types of Clustering

• Major distinctions
– Hierarchical (nested) vs. Partitional (unnested)
– Exclusive vs. Overlapping vs. Fuzzy
– Complete vs. Partial
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Most Common Distinction

• Hierarchical (nested) vs. Partitional (unnested)
– Partitional: clusters are non-overlapping
– Hierarchical: nested clusters organized as tree
• Clusters may have subclusters
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Visualizing Partitional Clustering
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Original Points A Partitional Clustering



Visualizing Hierarchical Clustering
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Object Membership
• Exclusive vs. Overlapping vs. Fuzzy
– Exclusive: each point belongs to a single cluster
– Overlapping: an point can simultaneously belong to 

multiple clusters
• E.g. a person may be a student and an employee

– Fuzzy: every point belongs to every cluster with a 
weight in [0,1]
• Clusters are treated as fuzzy sets
• Typically impose constraint that for each point, its sum of 

the weights = 1.0
• Doesn’t truly address case when a point belongs to multiple 

clusters (because the weight would exceed 1.0)
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Object Membership

• Complete vs. Partial
– Complete: every point is assigned to a cluster
– Partial: not every point is assigned a cluster
• Motivation: sometimes data has noise or outliers
• E.g. clustering news articles – may only be interested in 

articles that are tightly related to common themes, 
then ignore articles that are “generic”
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Agglomerative Hierarchical Clustering

• General algorithm:
– Start with each point being an individual cluster
– Repeat: merge “closest” pair of clusters
– Stop: when one cluster remains
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Image taken from towardsdatascience.com



Basic Agglomerative Hierarchical 
Clustering Algorithm

• Compute the proximity matrix between all pairs of 
points

• Every point starts as its own cluster
• Repeat
– Merge the two closest clusters
– Update proximity matrix based on new clusters

• Until one cluster remains

• Key operation: distance computation
– Specific choice is that distinguishes between specific 

agglomerative hierarchical techniques
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Proximity Matrix
• Example:

• Given six 2D points, compute pairwise distances 
using Euclidean distance (L2 distance)

• Recall: d(p,q)2 = (q1 – p1)2 + (q2 – p2)2
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Distance Matrix:



Basic Agglomerative Hierarchical 
Clustering Algorithm

• Compute the proximity matrix between all pairs of 
points

• Every point starts as its own cluster
• Repeat
– Merge the two closest clusters
– Update proximity matrix based on new clusters

• Until one cluster remains

• Key operation: distance computation
– Specific choice is that distinguishes between specific 

agglomerative hierarchical techniques
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Cluster Proximity

• Most common:
– MIN
– MAX
– Group average
– Distance between centroids
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Similarity?



Cluster Proximity

• Most common:
– MIN 
– MAX
– Group average
– Distance between centroids
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Example with MIN
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Nested Clusters Dendrogram
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Promixity of two clusters is based on 2 closest 
points in different clusters
• Determined by one pair of points



Example with MIN
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Nested Clusters Distance Matrix
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Example with MIN
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Nested Clusters Distance Matrix
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Example with MIN
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Nested Clusters Distance Matrix
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Example with MIN
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Nested Clusters Distance Matrix
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Example with MIN
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Nested Clusters Distance Matrix

1

2

3

4

5

6

1
2

3

4

Promixity of two clusters is based on 2 closest 
points in different clusters
• Determined by one pair of points



Example with MIN
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Nested Clusters Distance Matrix

1

2

3

4

5

6

1
2

3

4

Promixity of two clusters is based on 2 closest 
points in different clusters
• Determined by one pair of points



Example with MIN
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Nested Clusters Distance Matrix
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Original Points Six Clusters

Handles non-elliptical shapes

Strength of MIN
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Original Points

Two Clusters?

Three Clusters?

Limitations of MIN
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Original Points

Two Clusters

Three Clusters?Sensitive to noise and outliers

Limitations of MIN
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Original Points

Two Clusters

Three ClustersSensitive to noise and outliers

Limitations of MIN
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Cluster Proximity

• Most common:
– MIN
– MAX 
– Group average
– Distance between centroids
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Nested Clusters
3 6 4 1 2 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

2

3

4

5

6
1

2 5

3

4

Promixity of two clusters is based on 2 furthest points in 
different clusters
• Determined by all pairs of points
Still merge based on two closest clusters

Example with MAX

32



Original Points Two Clusters

Less susceptible to noise and outliers

Strength of MAX
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Original Points Two Clusters

Tends to break large clusters
Biased towards globular clusters

Limitations of MAX
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Cluster Proximity

• Most common:
– MIN
– MAX
– Group average
– Distance between centroids
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where mi = |Ci| and mj = |Cj|



Proximity of two clusters is based on average pairwise 
distances between all points in clusters

Still merge based on two closest clusters

Nested Clusters Dendrogram
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Example with Group Average
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Cluster Proximity

• Most common:
– MIN
– MAX
– Group average
– Distance between centroids

37

´ ´

Ward’s method is 
hierarchical analog to k-means



Key Issues in Hierarchical Clustering

• Once clusters are merged, cannot be undone
• Lack of global objective function
– Merge decisions based on local objectives

• Different schemes have one/more problem:
– Sensitive to noise and outliers
– Difficulty with clusters of diff sizes and non-

elliptical shapes
– Breaks up large clusters

• Most often used for creating taxonomy
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Key Ideas
• Clustering
– Forms groups with unlabeled data
– Hierarchical vs. partitional clustering

• Algorithm:
– Agglomerative hierarchical clustering
– Compute and update proximity matrix
– Main operation is to calculate cluster distance

• Specific Methods
– MIN
– MAX
– Group Average
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