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Categorization vs. Decision Making



Group Exercise

• Form teams of 2, 3, or 4
• Choose a topic to discuss
• Example topics (or pick others):
– Which job offer should I accept?
– Should I date while in school?
– Should I study over midterm break or relax at 

home for the week?
• Consider possible choices, possible outcomes, 

and long term consequences
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Machine Learning Terminology
• Categorization just means putting things into different 

groups in some way
• Classification
– Supervised learning task
– All data requires labels of what the “right” answer is
– Based on labeled dataset, learn the model underlying the 

data and predict labels for unseen data
• Clustering
– Unsupervised learning task
– Data does not have labels
– Based on unlabeled dataset, discover the model 

underlying the data to find labels for each group
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Classification Process
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Example Classification Tasks

• Predict handwritten digit (0,..,9)
• Classify credit card transaction as fraudulent 

or not
• Predict if an email is spam or not
• Classify webpages into topics
• Classify students activities/performance into 

letter grades
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Example: Tax Evasion
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Data is usually in CSV format
• Each row is a data point
• Each column is an attribute
• Last column is the class label



Example: Tax Evasion
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Example: Tax Evasion
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Example: Tax Evasion
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Example: Tax Evasion
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Assign “No” to Cheat



How to Build a Decision Tree?
• ID3 (iterative dichotomiser 3)
– Developed in 1986 by Ross Quinlan
– Builds multiway trees

• C4.5 (successor to ID3)
– Improves various algorithmic restrictions

• C5.0 (latest version)
– Proprietary – uses less memory and smaller trees while 

being more accurate
• CART (classification and regression trees)
– Similar to C4.5
– Constructs binary trees
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Example: Restaurant Tips
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Can you find a simple DT to explain this data?
Image taken from http://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/09_decision_trees.pdf



Example: Restaurant Tips 2
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Image taken from http://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/09_decision_trees.pdf

How to derive a tree?
Which attribute to split on? What’s left? When to stop?



Example: Restaurant Tips 2
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Example: Restaurant Tips 2
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Example: Restaurant Tips 2
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General Induction Algorithm

• Pick an attribute and find the “best” split
– If no attributes left, return the most common label
– For each attribute:
• Find the split that yields the largest information gain

• Repeat until subtree data belongs to same 
class

• Resulting tree may require pruning
– Returns a smaller tree
– Better able to generalize to unseen data
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Intuition Behind Finding a Split

• 20 question game:
– I choose a number between 1 and 1000
– You ask a series of yes/no questions
– Which question would you rather ask?
• Is the number 500?
• Is the number prime?
• Is the number smaller than 500?

• Find a question that is most informative
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Specifying the Split

• Depends on attribute type:
– Nominal (discrete variable, no order)
– Ordinal (discrete variable, with order)
– Continuous

• Depends on number of splits:
– Binary split
– Multiway split
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Splitting on Nominal Attributes

• Multiway split: Use as many partitions as 
distinct values

• Binary split: Find best partition of subset of 
values
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• Multiway split: Use as many partitions as distinct 
values

• Binary split: Find best partition of subset of 
values

• What about this split?

Splitting on Ordinal Attributes
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• Multiway split: Use as many partitions as distinct 
values

• Binary split: Find best partition of subset of 
values

• What about this split?

Splitting on Ordinal Attributes
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Splitting on Continuous Attributes
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Splitting on Continuous Attributes
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• Discretization to form an ordinal categorical 
attribute
– Static – discretize once at start of algorithm

– Dynamic – ranges can be found using various methods 
(e.g. equal interval bucketing, percentiles, clustering)

• Binary decision: (A < v) or (A >= v)
– Consider all possible splits and find best cut

– More computationally intensive



Picking the Best Attribute to Split

• Occam’s razor
– All else being equal, choose the simplest explanation

• Decision tree induction
– Find the smallest tree that classifies the training data 

correctly
– Problem: Finding an optimal tree is NP-hard
– Solution: Use a heuristic approach (e.g. greedy

algorithm)
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Visualizing the Change in Split
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What is the information gained after a split?



Visualizing the Change in Split (cont.)
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Before Splitting:

Split by this:

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1



Visualizing the Change in Split (cont.)
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Before Splitting:

Split by this:

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1



Visualizing the Change in Split (cont.)
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Before Splitting:

Split by this:

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1



Visualizing the Change in Split (cont.)
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Before Splitting:

Which split is better?

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1

Own car?

Car Type?

Student ID?



A Measure of Node Impurity
• Goal is to get homogeneous node
– All the labels in the subtree are the same
– Minimize impurity

• Examples:
– Low degree of impurity

C0: 9
C1: 1

– High degree of impurity
C0: 5
C1: 5

• Need a quantitative measure of impurity
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Measuring Information Gain 
Before and After the Split
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Let M0 be the measure of impurity at the current node



Measuring Information Gain 
Before and After the Split
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Let M1 to M4 be the impurities at each of those nodes



Measuring Information Gain 
Before and After the Split
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Summarize the impurities in M12 across all the nodes, then M34



Measuring Information Gain 
Before and After the Split
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Compare the gain between the two splits



Impurity Measure: Gini Diversity Index

• Default measure used in Matlab fitctree
• Given node n, class c:

GINI(n) = 1 - Σ pr(c|n)2

where pr(c|n) is how likely c is at node n
• Ranges in: [0, 1-1/# classes]
– 0 when node is homogeneous
– 1-1/# classes when classes are equally distributed
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Impurity Measure: Gini Diversity Index

• Default measure used in Matlab fitctree

• Given node n, class c:

GINI(n) = 1 - Σ pr(c|n)2

where pr(c|n) is how likely c is at node n

• pr(c|n) is defined by frequency counts

e.g. 0 out of 6 possible instances
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Impurity Measure: Gini Diversity Index

• Default measure used in Matlab fitctree
• Given node n, class c:

GINI(n) = 1 - Σ pr(c|n)2

where pr(c|n) is how likely c is at node n
• Example:

C0: 0
C1: 6
Gini = 1 – (0/6)2 – (6/6)2 = 1 – 0 – 1 = 0

43

c



Impurity Measure: Gini Diversity Index

• Default measure used in Matlab fitctree
• Given node n, class c:

GINI(n) = 1 - Σ pr(c|n)2

where pr(c|n) is how likely c is at node n
• Example:

C0: 3
C1: 3
Gini = 1 – (3/6)2 – (3/6)2 = 1 – 0.25 – 0.25 = 0.5
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Impurity Measure: Gini Diversity Index

• Default measure used in Matlab fitctree
• Given node n, class c:

GINI(n) = 1 - Σ pr(c|n)2

where pr(c|n) is how likely c is at node n
• Example:

C0: 1
C1: 5
Gini = 1 – (1/6)2 – (5/6)2 = 1 – 0.0278 – 0.694 = 0.278
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Other Impurity Measures

• Common impurity measures
– Gini diversity index
• Measures relative frequency of a class at a node

– Entropy
• Measures homogeneity of a node
• Similar to Gini index

– Misclassification error
• Measures misclassification error made by a node
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Preliminary Case Study: COSC 111

• How to help students do better in the course?

• Course structure (3-hour night class):
– Exams: MT1, MT2, Final Exam

– Weekly Labs

– Weekly Quizzes (unlimited re-takes allowed)

– In-Class Activities

– Monthly Assignments
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Additional Data Gathered
• Total Sessions
• Total Pageviews
• Total Time on Page
• Discussion Forum Activity
• Number of Replies
• Hours before Submission Data
• Time Spent on Slides
• Pageviews on Slides
• Time Spent on Discussion Forum
• Number of Online Sessions
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Decision Tree Induction in Matlab

• Simple commands:
>> data = csvread( ‘cosc111data.csv’, 2 );
% read in only rows 2 onward

>> tree = fitctree( data(:, 1:17), data( :, 19) );
% syntax used: fitctree( X, Y )
% X is the set of attribute data
% Y is the actual class labels

>> view( tree )
% text output of tree branches

>> view( tree, ‘mode’, ‘graph’ )
% corresponding visualization of tree
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Initial Tree Learned

50

Decision tree for classification
1  if x8<78.5 then node 2 elseif x8>=78.5 then node 3 
2  if x8<52 then node 4 elseif x8>=52 then node 5
3  class = 1
4  class = 6
5  if x8<67.5 then 

node 6 
elseif x8>=67.5 then 
node 7 

6  class = 3
7  class = 2

Debugging: 
What could x8 be?



Actual Tree
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Decision tree for classification
1  if x7<44.25 then node 2 elseif x7>=44.25 then node 3
2  class = 6
3  if x7<65.85 then node 4 

elseif x7>=65.85 then 
node 5 

4  if x14<32213.5 then 
node 6 
elseif x14>=32213.5 
then node 7 

5  if x2<71 then node 8 
elseif x2>=71 then 
node 9 

6  class = 2
7  class = 3
8  class = 2
9  class = 1



Actual Tree – Better Labels
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Final 
Exam 
Mark

Final 
Exam 
Mark

Time 
Spent on 

Slides

Assignment 
Average

F

B C B A

>= 44.25< 44.25

< 65.85 >= 65.85

< 71 >= 71>= 32213.5< 32213.5



Explaining the Result
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Final 
Exam 
Mark

Final 
Exam 
Mark

Time 
Spent on 

Slides

Assignment 
Average

F

B C B A

>= 44.25< 44.25

< 65.85 >= 65.85

< 71 >= 71>= 32213.5< 32213.5

Passing criteria requires
student to pass the final 
exam in order to pass the 
course.



Explaining the Result
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Final 
Exam 
Mark

Final 
Exam 
Mark

Time 
Spent on 

Slides

Assignment 
Average

F

B C B A

>= 44.25< 44.25

< 65.85 >= 65.85

< 71 >= 71>= 32213.5< 32213.5

Data driven – finds that
next most telling split is 
how well student does on
the final exam!



Explaining the Result
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Final 
Exam 
Mark

Final 
Exam 
Mark

Time 
Spent on 

Slides

Assignment 
Average

F

B C B A

>= 44.25< 44.25

< 65.85 >= 65.85

< 71 >= 71>= 32213.5< 32213.5

What differentiates an
A student from a B student
is how well they do on
those monthly assignments!



Explaining the Result
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Final 
Exam 
Mark

Final 
Exam 
Mark

Time 
Spent on 

Slides

Assignment 
Average

F

B C B A

>= 44.25< 44.25

< 65.85 >= 65.85

< 71 >= 71>= 32213.5< 32213.5

What differentiates a
B student from a C student
is how much they read 
slides!

Note: Expectations are
reversed!



Classification in the Abstract
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The line is a classifier!

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf



Advanced Classifiers
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Split up the surface
and take a different
action for each
decision surface

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf



Tree Classifier
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• Axes: x1,x2
• Decision points: t1, t2, t3, t4, t5
• Decision surfaces: A, B, C, D, E, F

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf



Tree Classifier
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Visualization Corresponding Tree Graph

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf



Key Ideas
• Decision tree 

– Models decisions and possible consequences
– Learn model from labeled dataset
– Test/make predictions with unseen data

• Representation:
– Nodes represent attribute
– Branches indicate values to split on
– Leaf nodes represent class label

• Algorithm:
– Repeatedly pick an attribute to split on
– Stop when node is homogeneous or no attributes left
– Measure quality of split based on impurity and information gain


