Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

Image taken from www.pinterest.com

Image taken from www.ecoruraltrip.org.br

Categorization

Decision Making VS.

Group Exercise

- Form teams of 2, 3, or 4
- Choose a topic to discuss
- Example topics (or pick others):
 - Which job offer should I accept?
 - Should I date while in school?
 - Should I study over midterm break or relax at home for the week?
- Consider possible choices, possible outcomes, and long term consequences

Machine Learning Terminology

- Categorization just means putting things into different groups in some way
- Classification
 - Supervised learning task
 - All data requires labels of what the "right" answer is
 - Based on labeled dataset, learn the model underlying the data and predict labels for unseen data
- Clustering
 - Unsupervised learning task
 - Data does not have labels
 - Based on unlabeled dataset, discover the model underlying the data to find labels for each group

Classification Process

Test Set

Example Classification Tasks

- Predict handwritten digit (0,...,9)
- Classify credit card transaction as fraudulent or not
- Predict if an email is spam or not
- Classify webpages into topics
- Classify students activities/performance into letter grades

Data is usually in CSV format

- Each row is a data point
- Each column is an attribute
- Last column is the class label

categorical continuous

			_	
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

categorical categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Test Set

Start from the root of tree. Refund Yes No NO MarSt Married Single, Divorced TaxInc NO < 80K > 80K YES NO

Test Data

Refund	Marital Status		Cheat
No	Married	80K	?

How to Build a Decision Tree?

- ID3 (iterative dichotomiser 3)
 - Developed in 1986 by Ross Quinlan
 - Builds multiway trees
- C4.5 (successor to ID3)
 - Improves various algorithmic restrictions
- C5.0 (latest version)
 - Proprietary uses less memory and smaller trees while being more accurate
- CART (classification and regression trees)
 - Similar to C4.5
 - Constructs binary trees

	Food	Chat	Speedy	Price	Bar	BigTip
	(3)	(2)	(2)	(2)	(2)	
1	great	yes	yes	adequate	no	yes
2	great	no	yes	adequate	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	adequate	yes	yes

Image taken from http://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/09_decision_trees.pdf

Can you find a simple DT to explain this data?

	Food	Chat	Speedy	Price	Bar	BigTip
	(3)	(2)	(2)	(2)	(2)	
1	great	yes	no	high	no	no
2	great	no	no	adequate	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	adequate	yes	yes

Image taken from http://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/09_decision_trees.pdf

How to derive a tree?

Which attribute to split on? What's left? When to stop?

	Food	Chat	Speedy	Price	Bar	BigTip
	(3)	(2)	(2)	(2)	(2)	
1	great	yes	no	high	no	no
2	great	no	no	adequate	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	adequate	yes	yes

	Food	Chat	Speedy	Price	Bar	BigTip
	(3)	(2)	(2)	(2)	(2)	
1	great	yes	no	high	no	no
2	great	no	no	adequate	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	adequate	yes	yes

	Food (3)	Chat (2)	Speedy (2)	Price (2)	Bar (2)	BigTip
1	great	yes	no	high	no	no
2	great	no	no	adequate	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	adequate	yes	yes

General Induction Algorithm

Pick an attribute and find the "best" split

Repeat until subtree data belongs to same class

General Induction Algorithm

- Pick an attribute and find the "best" split
 - For each attribute:
 - Find the split that yields the largest information gain
- Repeat until subtree data belongs to same class

Intuition Behind Finding a Split

- 20 question game:
 - I choose a number between 1 and 1000
 - You ask a series of yes/no questions
 - Which question would you rather ask?
 - Is the number 500?
 - Is the number prime?
 - Is the number smaller than 500?

Find a question that is most informative

General Induction Algorithm

- Pick an attribute and find the "best" split
 - If no attributes left, return the most common label
 - For each attribute:
 - Find the split that yields the largest information gain
- Repeat until subtree data belongs to same class

General Induction Algorithm

- Pick an attribute and find the "best" split
 - If no attributes left, return the most common label
 - For each attribute:
 - Find the split that yields the largest information gain
- Repeat until subtree data belongs to same class
- Resulting tree may require pruning
 - Returns a smaller tree
 - Better able to generalize to unseen data

Specifying the Split

- Depends on attribute type:
 - Nominal (discrete variable, no order)
 - Ordinal (discrete variable, with order)
 - Continuous

- Depends on number of splits:
 - Binary split
 - Multiway split

Splitting on Nominal Attributes

Multiway split: Use as many partitions as distinct values

Binary split: Find best partition of subset of values

Splitting on Ordinal Attributes

Multiway split: Use as many partitions as distinct values

Binary split: Find best partition of subset of values

Splitting on Ordinal Attributes

Multiway split: Use as many partitions as distinct values

Binary split: Find best partition of subset of values

• What about this split?

{Small, Large}

{Medium}

Splitting on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Splitting on Continuous Attributes

- Discretization to form an ordinal categorical attribute
 - Static discretize once at start of algorithm
 - Dynamic ranges can be found using various methods (e.g. equal interval bucketing, percentiles, clustering)

- Binary decision: (A < v) or (A >= v)
 - Consider all possible splits and find best cut
 - More computationally intensive

Picking the Best Attribute to Split

Occam's razor

All else being equal, choose the simplest explanation

Decision tree induction

- Find the smallest tree that classifies the training data correctly
- Problem: Finding an optimal tree is NP-hard
- Solution: Use a heuristic approach (e.g. greedy algorithm)

Visualizing the Change in Split

What is the information gained after a split?

Before Splitting: 10 records of class 0, 10 records of class 1

Before Splitting: 0000000000 1111111111

Before Splitting:

Split by this:

Before Splitting: 0000000000 1111111111

Before Splitting: 0000000000 1111111111

A Measure of Node Impurity

- Goal is to get homogeneous node
 - All the labels in the subtree are the same
 - Minimize impurity
- Examples:
 - Low degree of impurity

C0: 9

C1: 1

High degree of impurity

C0: 5

C1: 5

Need a quantitative measure of impurity

Before Splitting:

Let M0 be the measure of impurity at the current node

Let M1 to M4 be the impurities at each of those nodes

Image taken from https://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap4_basic_classification.pdf

Image taken from https://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap4 basic classification.pdf

- Default measure used in Matlab fitctree
- Given node n, class c:

GINI(n) =
$$1 - \sum_{c} pr(c|n)^2$$

where pr(c|n) is how likely c is at node n

- Ranges in: [0, 1-1/# classes]
 - 0 when node is homogeneous
 - 1-1/# classes when classes are equally distributed

- Default measure used in Matlab fitctree
- Given node n, class c:

GINI(n) =
$$1 - \sum_{c} pr(c|n)^2$$

where pr(c|n) is how likely c is at node n

pr(c|n) is defined by frequency counts
 e.g. 0 out of 6 possible instances

- Default measure used in Matlab fitctree
- Given node n, class c:

GINI(n) =
$$1 - \sum_{c} pr(c|n)^2$$

where pr(c|n) is how likely c is at node n

Example:

C0: 0

C1: 6

Gini =
$$1 - (0/6)^2 - (6/6)^2 = 1 - 0 - 1 = 0$$

- Default measure used in Matlab fitctree
- Given node n, class c:

GINI(n) =
$$1 - \sum_{c} pr(c|n)^2$$

where pr(c|n) is how likely c is at node n

Example:

C0: 3

C1: 3

Gini =
$$1 - (3/6)^2 - (3/6)^2 = 1 - 0.25 - 0.25 = 0.5$$

- Default measure used in Matlab fitctree
- Given node n, class c:

GINI(n) =
$$1 - \sum_{c} pr(c|n)^2$$

where pr(c|n) is how likely c is at node n

Example:

C0: 1

C1: 5

Gini = $1 - (1/6)^2 - (5/6)^2 = 1 - 0.0278 - 0.694 = 0.278$

Other Impurity Measures

- Common impurity measures
 - Gini diversity index
 - Measures relative frequency of a class at a node
 - Entropy
 - Measures homogeneity of a node
 - Similar to Gini index
 - Misclassification error
 - Measures misclassification error made by a node

Preliminary Case Study: COSC 111

- How to help students do better in the course?
- Course structure (3-hour night class):
 - Exams: MT1, MT2, Final Exam
 - Weekly Labs
 - Weekly Quizzes (unlimited re-takes allowed)
 - In-Class Activities
 - Monthly Assignments

Additional Data Gathered

- Total Sessions
- Total Pageviews
- Total Time on Page
- Discussion Forum Activity
- Number of Replies
- Hours before Submission Data
- Time Spent on Slides
- Pageviews on Slides
- Time Spent on Discussion Forum
- Number of Online Sessions

Decision Tree Induction in Matlab

Simple commands:

```
>> data = csvread( 'cosc111data.csv', 2 );
% read in only rows 2 onward
>> tree = fitctree( data(:, 1:17), data(:, 19) );
% syntax used: fitctree( X, Y )
% X is the set of attribute data
% Y is the actual class labels
>> view( tree )
% text output of tree branches
>> view( tree, 'mode', 'graph' )
% corresponding visualization of tree
```

Initial Tree Learned

Decision tree for classification

- 1 if x8<78.5 then node 2 elseif x8>=78.5 then node 3
- 2 if x8<52 then node 4 elseif x8>=52 then node 5
- 3 class = 1
- 4 class = 6
- 5 if x8<67.5 then node 6 elseif x8>=67.5 then node 7
- 6 class = 3
- 7 class = 2

Debugging: What could x8 be?

Actual Tree

Decision tree for classification

- 1 if x7<44.25 then node 2 elseif x7>=44.25 then node 3
- 2 class = 6
- 3 if x7<65.85 then node 4 elseif x7>=65.85 then
 - node 5
- 4 if x14<32213.5 then node 6 elseif x14>=32213.5
 - then node 7
- 5 if x2<71 then node 8 elseif x2>=71 then node 9
- 6 class = 2
- 7 class = 3
- 8 class = 2
- 9 class = 1

Actual Tree – Better Labels

Classification in the Abstract

The line is a classifier!

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf

Advanced Classifiers

Split up the surface and take a different action for each

decision surface

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf

Tree Classifier

- Axes: x1,x2
- Decision points: t1, t2, t3, t4, t5
- Decision surfaces: A, B, C, D, E, F

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf

Tree Classifier

Image taken from http://www.cs.nyu.edu/~roweis/csc2515-2003/notes/lec2x.pdf

Visualization

Corresponding Tree Graph

Key Ideas

Decision tree

- Models decisions and possible consequences
- Learn model from labeled dataset
- Test/make predictions with unseen data

Representation:

- Nodes represent attribute
- Branches indicate values to split on
- Leaf nodes represent class label

Algorithm:

- Repeatedly pick an attribute to split on
- Stop when node is homogeneous or no attributes left
- Measure quality of split based on impurity and information gain