Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

Recall: Two Major Types of Recommendation Systems

- Content based approach
 - Using content to understand user

- Collaborative approach
 - Using other users to understand user
 - Also called collaborative filtering

Example #1 from Amazon.ca

Content based approach

Inspired by your browsing history

CDN\$ 32.98 vprime

I was looking at kids advent calendars... will these recommendations be useful to me today?

Example #2 from Amazon.ca

Collaborative approach

Purchased Jun 2019

Customers who viewed this item also viewed Page 1 of 10 < Learning Resources Learning Resources Botley Learning Resources Botlev Learning Resources Code & Learning Resources Botley Programmable Robot The Coding Robot Activity The Coding Robot Action The Coding Robot, Coding Go Robot Mouse Math, 16 Mouse - LER2841 Set, 77 Pieces Challenge Accessory Set, Pieces STEM Toy, 45 Piece Coding ★★★☆ 20 ★★★★☆ 24 会会会会会1 Multicolor Set, Ages 5+ CDN\$ 29.82 vprime ★★★☆☆ 11 CDN\$ 61.46 **prime ★★★★☆** 2 CDN\$ 25.99 **prime**

CDN\$ 25.99 vprime

CDN\$ 61.93 prime

Collaborative Filtering (CF)

Underlying assumption

Similar users have similar preferences

CF Techniques

Memory Based Approach

User-item filtering

- Find other similar users based on similarity of ratings
- Recommend items those similar users like
- "Users who are similar to you also liked..."

Allows for exploration!

Item-item filtering

- Take an item, find users who liked that item, find other items that those users also like
- "Users who liked this item also liked..."

User-Item Filtering Process

- A database of user preferences
 - Based on explicit and/or implicit ratings
 - E.g. likes or dislikes, 5 stars
 - E.g. num views, add to wishlist, time spent on article
 - Continually updated
- Represent as rating matrix

- Represented as a huge user-by-item matrix $R=[r_{i,i}]$ where $r_{i,i}$ is user i's rating of item j

- Not every user will rate every item
- A sparse matrix has many empty cells

i,	i ₂	i ₃	i ₄	i ₅
5		4	1	
	3		3	
	2	4	4	1
4	4	5		
2	4		5	2
	5	5 3 2 4 4	5 4 3 2 4 4 4 5	5 4 1 3 3 2 4 4 4 4 5

Steps Involved

 Task: Recommend items based on preferences of similar users

• Steps:

- How to determine similar users?
- Given similar users, how to determine a user's missing rating of an item (based on ratings of similar users)?

Finding Similar Users

- How to identify similar users?
 - Not by demographic info like age, type of item, or other info about users or items

- Treat users a vectors of ratings
 - Two users are similar if they have similar ratings to the same items (even if they are 20 years apart!)
 - Apply cosine similarity (previous lecture)
 - Define a k cutoff for number of similar users

- What should be the value for $u_{3,1}$?
- Suppose nobody else rated i₁
 - Estimate using u₃'s average rating
 - No other information available
- Suppose similar users rated i₁
 - Should we still just use u₃'s average rating?

	i,	i ₂	i_3	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

- What should be the value for $u_{3,1}$?
- Suppose nobody else rated i₁
 - Estimate using u₃'s average rating
 - No other information available
- Suppose similar users rated i₁
 - Should we still just use u₃'s average rating?

No – need feedback from similar users

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

- What should be the value for $u_{3,1}$?
- Suppose nobody else rated i₁
 - Estimate using u₃'s average rating
 - No other information available
- Suppose similar users rated i₁
 - Should we just use average of ratings made by k similar users?

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

- What should be the value for $u_{3,1}$?
- Suppose nobody else rated i₁
 - Estimate using u₃'s average rating
 - No other information available
- Suppose similar users rated i₁
 - Should we just use average of ratings made by k similar users?

No – need to know how similar each of those users are to you

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

- What should be the value for $u_{3,1}$?
- Suppose nobody else rated i₁
 - Estimate using u₃'s average rating
 - No other information available
- Suppose similar users rated i₁
 - What if some users are always tougher than others and always give lower ratings?

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

- What should be the value for $u_{3,1}$?
- Suppose nobody else rated i₁
 - Estimate using u₃'s average rating
 - No other information available
- Suppose similar users rated i₁
 - What if some users are always tougher than others and always give lower ratings?

Need to modify each rating by a user's own average rating

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

Predicting the Missing Rating

Predict rating r_{u,i} as:

$$r_{u,i} = \overline{r_u} + \Sigma_{k \text{ users}} w_{u,k} (r_{k,i} - \overline{r_k})$$

- where:
 - \overline{r}_u is the mean rating for user u $w_{u,v}$ is the weight between users u and v
- If no rating of item i is available, prediction returns $\overline{r_{ij}}$

Note: if weights are not in [0,1] then need to normalize ratings

• Suppose we want to predict user 3's rating of item 1: r_{3.1}

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
$u_{\scriptscriptstyle 5}$	2	4		5	2

- Suppose we want to predict user 3's rating of item 1: r_{3.1}
- Weighted average of ratings from k similar

users: $r_{3,1} = \sum_{k \text{ users}} w_{3,k} r_{k,1}$

where:

 $w_{u,v}$ is weight b/w users u and v

	i,	i ₂	i ₃	i ₄	i ₅
u,	5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

- Suppose u₁, u₄, u₅ are equally similar
- We need: $r_{3,1} = \sum_{k \text{ users}} w_{3,k} r_{k,1}$
- Then: $r_{3,1} = w_{3,1}r_{1,1} + w_{3,4}r_{4,1} + w_{3,5}r_{5,1} = 3.67$

Higher than average

	I ₁	2	3	4	15
u, (5)	4	1	
u_2		3		3	
u_3	?	2	4	4	1
u ₄	4	4	5		
$u_{\scriptscriptstyle 5}$	2	4		5	2

Lower than average

- Suppose we want to predict user 3's rating of item 1: r_{3.1}
- Weighted average of ratings from k similar users: $r_{3,1} = \sum_{k \text{ users}} w_{3,k} r_{k,1}$ where:
 - $w_{u,v}$ is weight between users u and v
- Offset ratings by user's mean rating, $\overline{r_u}$: $r_{3,1} = \overline{r_3} + \Sigma_{k \text{ users}} w_{3,k} (r_{k,1} - \overline{r_k})$

- Suppose u₁, u₄, u₅ are equally similar
- We need: $r_{3,1} = \sum_{k \text{ users}} w_{3,k} r_{k,1}$ $r_{3,1} = w_{3,1} r_{1,1} + w_{3,4} r_{4,1} + w_{3,5} r_{5,1} = 3.67$
- Offset by $\overline{r_{ij}}$
- We need: $r_{3,1} = \overline{r_3} + \Sigma_{k \text{ users}} w_{3,k} (r_{k,1} \overline{r_k})$ $r_{3,1} = 2.75$ $+w_{3,1}(1.67) + w_{3,4}(-0.33) + w_{3,5}(-1.25)$ = 2.75 + (0.02778) = 2.78

	i,	i ₂	i ₃	i ₄	i ₅
u, (5		4	1	
u ₂		3		3	
u ₃	?	2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5 2	2

General Problems with CF

Sparsity of data

- Not every user will rate every item
- Matrix R will have (many) missing values
- Possible solutions: use additional sources, cluster users, cluster items, reduce matrix size

Scalability

- Too many users and too many items to maintain
- Especially true with model based techniques
- Possible solutions: cluster users/items, reduce matrix size

Practical Notes

- Many algorithms and implementations of CF
 - Some combine memory based and model based approaches
 - Doesn't consider metadata (e.g. author of book)

- Common recommendation systems use a hybrid approach
 - Combine content based and CF

Key Ideas

- Collaborative filtering (independent of content)
 - Similar users have similar preferences
- Representation:
 - Database of user-item preferences as a matrix
 - Finding similar users
- Algorithm:
 - Predict rating based on weighted average of similar users
- Known computational issues:
 - Sparsity
 - Scalability