Learning Analytics

Dr. Bowen Huli
Computer Science
University of British Columbia Okanagan

Recall: Two Major Types of
Recommendation Systems

* Content based approach

— Using content to understand user

* Collaborative approach

— Using other users to understand user
— Also called collaborative filtering

x*

Example #1 from Amazon.ca

* Content based approach

Inspired by your browsing history Page 1 of 13

mmmmm

LEGO Harry PotterAdvent Hatchimals - Colleggtibles NINTENDO 400312 Super Paw Patrol - Advent
Calendar 75964 Building - Advent Calendar - Mario Advent Calendar Calendar - Includes 24
Kit (305 P|ece) Exclusive Hatchimals & rYrYr iy 60 Collectible Figures - Ages
X 7 159 Nests - Ages 5+ CDN$ 69 03 vprime 3+,2018 Release
‘16 offersfrom CDN$ 39.16 ; rirvir 151 rirvr 163
‘|1 of‘Fers from CDN$ 40.00 CDN$ 32 98 prime

| was looking at kids advent calendars...
will these recommendations be useful to me today?

Example #2 from Amazon.ca

* Collaborative approach

Customers who viewed this item also viewed Page 1 of 10

Y- - . 7 :
J!'. v, 2
Q."‘“l.. L" 5. \ h;:?
Z : <
- -
< RN K

Learning Resources Learning Resources Botley Learning Resources Botley Learning Resources Code & Learning Resources Botley
Programmable Robot The Coding Robot Activity = The Coding Robot Action Go Robot Mouse Math, 16 The Coding Robot, Coding
Mouse - LER2841 Set, 77 Pieces Challenge Accessory Set, Pieces STEM Toy, 45 Piece Coding
W W WY 20 W W W Wiy 24 Multicolor ' 2 o & & &I Set, Ages 5+
CDN$ 29.82 prime CDN$ 61.46 /prime ARA R 2 CDN$ 25.99 sprime ARARY 11

Purchased Jun 2019 CDN$ 25.99 prime CDN$ 61.93 ,prime

Collaborative Filtering (CF)

* Underlying assumption

— Similar users have similar preferences

Collaborative

Filtering (CF)

CF Techniques

Techniques

Definitions

Find similar users based on cosine
Memory based

approach

similarity or pearson correlation
and take weighted avg. of ratings

Use machine learning to find user

Model based ratings of unrated items. e.g. PCA,

approach

SVD, Neural Nets, Matrix
Factorization

Image taken from towardsdatascience.com

Advantage/
Disadvantage

Advantage
Easy creation and
explanability of results

Disadvantage
Performance reduces
when data is sparse.

So, non scalable

Advantage
Dimentionality
reduction deals with
missing/ sparse data

Disadvantage
Inference is intracable
because of
hidden/latent factors

Memory Based Approach

* User-item filtering
— Find other similar users based on similarity of ratings
— Recommend items those similar users like
— “Users who are similar to you also liked...”

Allows for

. oL ion!
* |tem-item filtering exploration!

— Take an item, find users who liked that item, find
other items that those users also like

— “Users who liked this item also liked...”

User-Item Filtering Process

* A database of user preferences

— Based on explicit and/or implicit ratings
e E.g. likes or dislikes, 5 stars
* E.g. num views, add to wishlist, time spent on article

— Continually updated

* Represent as rating matrix

— Represented as a huge user-by-item matrix, |
R=[r;;] where r;; is user i’s rating of item j_

—
r
-—

— Not every user will rate every item " -
. 2
— A sparse matrix has many empty cells " 2 | &
u (|4 | 4 |5
u. 2 4

Steps Involved

* Task: Recommend items based on preferences
of similar users

* Steps:
— How to determine similar users?

— Given similar users, how to determine a user’s
missing rating of an item (based on ratings of
similar users)?

Finding Similar Users

 How to identify similar users?

— Not by demographic info like age, type of item, or
other info about users or items

* Treat users a vectors of ratings

— Two users are similar if they have similar ratings to the
same items
(even if they are 20 years apart!)

— Apply cosine similarity (previous lecture)
— Define a k cutoff for number of similar users

Estimating Missing Rating

* What should be the value for u; ,?

* Suppose nobody else rated i,
— Estimate using uy’s average rating

— No other information available

* Suppose similar users rated i,

— Should we still just use i
u;’s average rating?

: “C “C I = c <
~J

AN W

= (%] — N

Estimating Missing Rating

* What should be the value for u; ,?

* Suppose nobody else rated i,
— Estimate using uy’s average rating

— No other information available

* Suppose similar users rated i,

— Should we still just use i
u;’s average rating?

No — need feedback from similar users

¢ ’I: &C < C : —-C
)

AN W

= (%) — N

Estimating Missing Rating

* What should be the value for u; ,?

* Suppose nobody else rated i,
— Estimate using uy’s average rating

— No other information available

* Suppose similar users rated i,

— Should we just use average of]
ratings made by k similar users?

i "C “C I = c <
~J

AN W

S (%) —_ o

Estimating Missing Rating

* What should be the value for u; ,?

* Suppose nobody else rated i,
— Estimate using uy’s average rating

— No other information available

* Suppose similar users rated i,

— Should we just use average of]
ratings made by k similar users?

No — need to know how similar
each of those users are to you

¢ n: :-C ¢ » = --C
~

AN W

S (e —_ o

Estimating Missing Rating

* What should be the value for u; ,?

* Suppose nobody else rated i,
— Estimate using uy’s average rating

— No other information available

* Suppose similar users rated i,

— What if some users are always i
tougher than others and always
give lower ratings?

i "C “C I = c <
~J

AN W

S (%) —_ o

Estimating Missing Rating

* What should be the value for u; ,?

* Suppose nobody else rated i,
— Estimate using uy’s average rating

— No other information available

* Suppose similar users rated i,

— What if some users are always]

tougher than others and always u, 5
give lower ratings? u,
?

Need to modify each rating by a s
user’s own average rating ‘

AN W

= (%) — N

Predicting the Missing Rating

* Predict rating r; as:

ru,i =ry+ zk users Wu k (rk,i_ rk)

e where:

r, is the mean rating for user u
W, , is the weight between users u and v

* |f no rating of item i is available, prediction
returnsr,

Note: if weights are not in [0,1] then need to normalize ratings

17

Rating Example

e Suppose we want to predict user 3’s rating of
item 1:r5,

c cC c c =
~J

A AN w
o

S (%) —_ o

Rating Example

e Suppose we want to predict user 3’s rating of
item 1:r5,

* Weighted average of ratings from k similar
USETS: r3,1 = zk users W3,k rk,1
where:

w,, is weight b/w users u and v

i "IC “C I = c __C
~J

N
2 AN W
on

S (%) —_ o

Rating Example

* Suppose uy, Uy, Us are equally similar
* We HEEdZ r3,1 = zk users W3,k rk,1

* Then:ry, =Ws 1+ Wzl + W3l =3.67

Higher than average | U, @ 4 1
u, 3 3
u, ([? |24 4|1
u, 4 5
Lower than average
u 4 9 | 2

20

Rating Example

e Suppose we want to predict user 3’s rating of
item 1:r5,

* Weighted average of ratings from k similar
USErs: r3,1 = zk users W3,k rk,1
where:
W, , is weight between users u and v

 Offset ratings by user’s mean rating, r:
r3,1 =r3+ zk users W3 k (rk,l_ rk)

Rating Example

Suppose u,, u,, Uc are equally similar

We need: r31 = zk users W3 k rk1
r3,1= W31l 1+ W3aly + Wsls) = 3.67

Offset by r,

We need: r3,1 = r3 + zk users W3,k (rk,l_ rk)
=2.75

+w3 1(1.67) + W, 4(-0.33) + w5 5(-1.25)

= 2.75 + (0.02778) = 2.78

| 1

.
£

e W -

n

General Problems with CF

* Sparsity of data
— Not every user will rate every item
— Matrix R will have (many) missing values

— Possible solutions: use additional sources, cluster
users, cluster items, reduce matrix size

e Scalability
— Too many users and too many items to maintain
— Especially true with model based techniques

— Possible solutions: cluster users/items, reduce matrix
size

Practical Notes

* Many algorithms and implementations of CF

— Some combine memory based and model based
approaches

— Doesn’t consider metadata (e.g. author of book)

e Common recommendation systems use a
hybrid approach

— Combine content based and CF

Key ldeas

Collaborative filtering (independent of content)
— Similar users have similar preferences
Representation:
— Database of user-item preferences as a matrix
— Finding similar users
Algorithm:

— Predict rating based on weighted average of similar
users

Known computational issues:
— Sparsity
— Scalability

