Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

When There Are Too Many Choices

- Browsing can be time consuming
 - May miss out relevant choices
 - Only view first few items
- Solution: Recommendation systems
- Applications in education:
 - Academic choices (e.g. electives)
 - Learning activities
 - Learning resources
 - Etc.

Learner Profiles and Personalization

 Idea: the more I know about a student, the more I can adapt my lesson to the student

Learner Profiles and Personalization

 Idea: the more I know about a student, the more I can adapt my lesson to the student

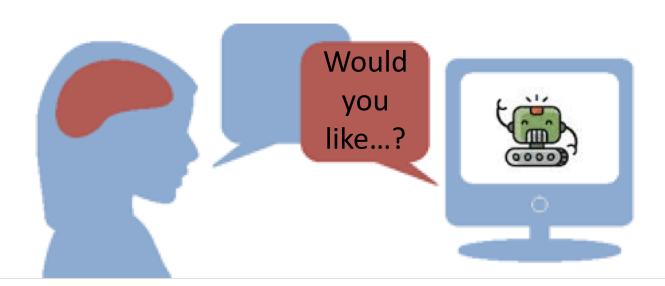
- Key questions:
 - How and what to learn about a student?
 - Which parts of the lesson can be adapted?
 - How do each adaptation affect different types of students?
- Open research questions!

Viewing System Actions as Recommendations

- Example system actions
 - Hiding unused information
 - Moving objects to better locations
 - Auto-completions

Viewing System Actions as Recommendations

- Example system actions
 - Hiding unused information
 - Moving objects to better locations
 - Autø-completions



Two Major Types of Recommendation Systems

- Content based approach
 - Using content to understand what user likes

- Collaborative approach
 - Using other users to understand a given user likes
 - Also called collaborative filtering

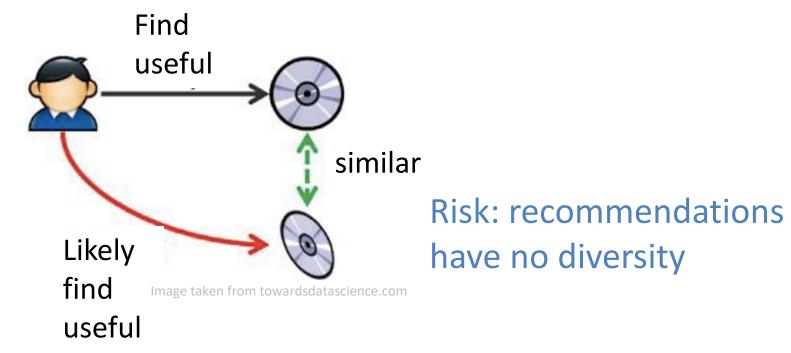
How do these apply to learning and personalization?

Content Based Recommendations

- What content interests the user?
 - Webpage browsing history
 - Documents previously read
 - Books/movies/etc. the user liked
- Focus on implicit feedback and text content
- Task: Given a history of browsed documents and a new document, will the user like this new document?

Underlying Assumption

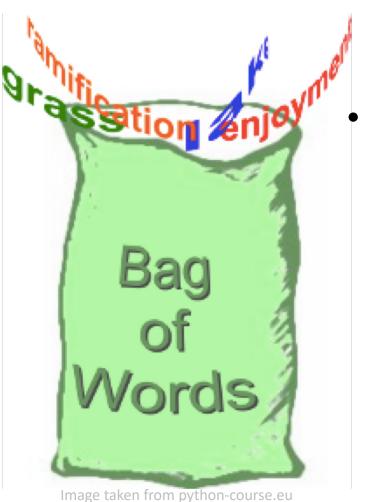
 Task: Given a history of browsed documents and a new document, will the user like this new document?



How to Represent Documents?

Data Representation

 Ignores word order, syntax, semantics, higher level language context

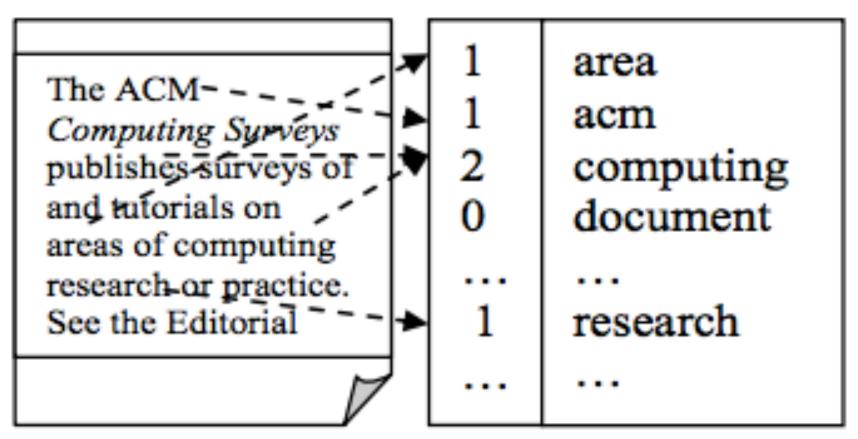


Represent document as word vector

"John is quicker than Mary" treated same as "Mary is quicker than John"

Building a Document Vector

Term frequency



Reference: User Profiling for the Web (Grear et al. 2006)

Space savings!

Need for Preprocessing

Try creating a document vector for:

The dog jumped over the cat that was sitting on a log next to the swamp by the park yesterday. That was the highest jump the dog has ever jumped!

 Can we approximate overall meaning without keeping all the content?

Selection of Words

- Remove stop-words that do not contribute to document uniqueness
 - E.g., "a", "the", "with"
 - Stoplists exist for English
- Preprocess words to arrive at their stems (via a stemming process)
 - E.g., "singing" and "sings" both become "sing"
 - Look up the Porter stemmer algorithm
- Rule of thumb: Keep top 10% of most frequently occurring words to reduce complexity

Term Frequency, tf

- Raw term frequency doesn't work well
 - A doc with 10 occurrences of t may be more relevant than another doc with 1 occurrence of t
 - But not necessarily 10 times more relevant
 - Need: tf to increase proportionally w.r.t. relevance
- Given term t and document d:

$$tf(t,d) = \frac{frequency of t in d}{total number of terms in d}$$

Why do we divide by the number of terms in d?

Term Frequency, tf

- Raw term frequency doesn't work well
 - A doc with 10 occurrences of t may be more relevant than another doc with 1 occurrence of t
 - But not necessarily 10 times more relevant
 - Need: tf to increase proportionally w.r.t. relevance
- Given term t and document d:

$$tf(t,d) = \frac{\text{frequency of t in d}}{\text{total number of terms in d}}$$

 Normalized so to not bias frequently occurring words in long documents

Frequency and Relevance to Meaning

- Most frequent word may not be the most relevant word to a document
- Less frequently occurring words may serve to better identify document relevance
- Need to consider how rare a word is in all other documents

Inverse Document Frequency, idf

Given term t and set of documents D:

$$idf(t,D) = log \frac{|D|}{df(t,D)}$$

Log is used to dampen the effect of idf

where df(t,D) is the document frequency

- Document frequency defined as the number of documents that contain t
 - Measures informativeness of t

idf example

Suppose |D| = 1 million

Term	df	idf
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

What are the idf values?

Every term has one idf value in a collection

idf example

Suppose |D| = 1 million

Term	df	idf
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Weigh down common terms but scale up rare ones

Every term has one idf value in a collection

Overall Definition of thidf

Given document set D, a document d, and a term
 t:

$$tf-idf(t,d,D) = tf(t,d) \times idf(t,D)$$

- Increases with
 - The number of occurrences within a document
 - The rarity of the term in the document collection
- Best known weighting scheme in information retrieval

Document Representation

Each document can be represented as a vector
 d = (tfidf₁, tfidf₂, tfidf₃, ...)

More generally:

$$d_j = (w_{1,j}, w_{2,j}, w_{3,j}, ...)$$

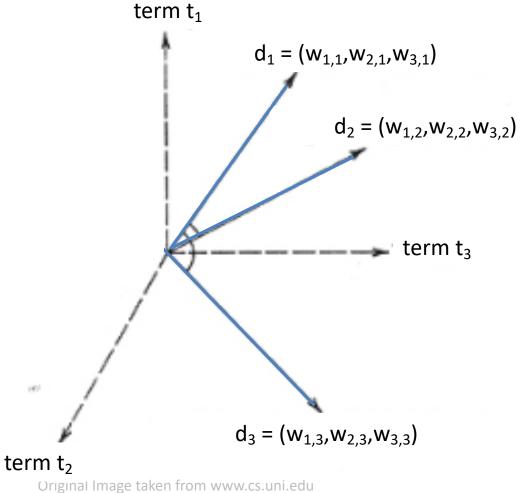
– where $w_{i,j}$ is the tfidf weight for term i and document j in the collection of documents

Representing a Document Collection

As a matrix:

	t ₁	t ₂	•••	t _i
d_1	$W_{1,1}$	W _{2,1}	•••	$W_{i,1}$
d_2		W _{2,2}	•••	$W_{i,2}$
•••	•••	•••		•••
d _j	$W_{1,j}$	W _{2,j}	•••	W _{i,j}

Document Space



So Far...

- We gathered a set of documents that the user has browsed through recently
- Each document is represented as a weighted vector
- There is a new document we don't know anything about
- Original task:
 Will the user like a new document at hand?

Measuring Document Similarity

- Need to compute degree of similarity between two vectors
 - Not just if two vectors are similar or not
 - But how similar they are

• How should we define sim(d_1 , d_2) = ?

Inner Product

- Suppose sim(d_1 , d_2) = d_1 d_2
- Recall definition:

$$d_1 \cdot d_2 = \sum_{i=1}^t d_{i1} di_2$$

• Simple (binary) example:

	Mary	run	dog	jump	house	lives	today
d_1	1	1	1	0	1	1	0
d_2	1	0	1	0	0	1	1

$$sim(d_1, d_2) = 3$$

Properties of Inner Product

- Two identical vectors:
 - Dot product = their squared magnitude
- Two orthogonal vectors (i.e., perpendicular):
 - Dot product = 0
- Properties of inner product:
 - Unbounded
 - Favours long documents with large number of unique terms
 - Measures how many terms matched but not how many terms did not match

Cosine Similarity

- Normalize inner product by vector lengths
- Given two vectors, d_1 and d_2 , then cosine angle θ is the angle between the two vectors
- Cosine similarity is defined as: $cos(\theta) = \frac{d_1 \cdot d_2}{||d_1|| ||d_2||}$
 - where $||\mathbf{d}_j|| = \sqrt{\sum_{i=1}^t d_{i,j}^2}$ is the vector magnitude
- Measures the cosine of the angle between two vectors
 - Two identical vectors: cosine sim = 1
 - Two orthogonal vectors: cosine sim = 0

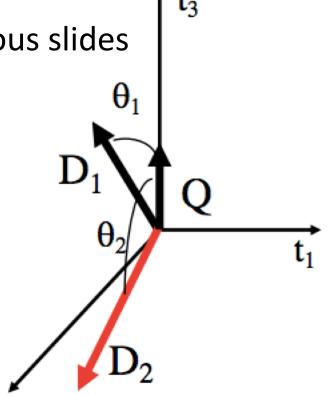
Document Comparison Task

 Task: will a user like a new document Q, given he liked D1 but does not like D2?

Follow calculation steps from previous slides

- Suppose we get:
 - $-\cos(D1, Q) = 0.80$
 - $-\cos(D2, Q) = 0.20$
- Conclusion:

 Q is 4 times more like D1 than D2
 So user is likely to like Q



Variations

- Other definitions of tf and idf exist
- Document vectors are not restricted to word vectors
 - n-gram vectors are possible
- Represent document profile in a similar way
 - View a set of documents as one big long document
 - View a set of documents as averages of multiple documents
 - Gather set of documents that user likes as his personal document profile
- tfidf is used in various natural language processing tasks, including text summarization and text classification

Key Ideas

- Content based recommendations (focus on text)
- Representation:
 - Bag of words
 - Documents as (word) vectors
 - Document space based on vector space model
- Algorithm:
 - tf-idf to create document profile
 - Cosine similarity to compare two documents