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Data About Users

• What kind of data can we collect?

2



Data About Users

• What kind of data can we collect?
– Numbers, images, words, …
– Computer events (e.g., keystrokes, clicks)
– Abstracted behaviours (e.g., words/topics, 

distracted actions, mistakes made)
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Purpose

• What is data used for?
– Providing information on people/things of interest
– Finding correlations and patterns 
– Informing decision making

• What data should we collect?
– Depends on the problem at hand!
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Exercise: Website Preferences

• What data can you collect to figure out what 
kinds of websites your user likes? 
Be as specific as possible.
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Web Data

• Categories of web data:
– Server logs
– Content data
– Website structure
– Demographics / Historical
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Web Data

• Server logs
– user’s IP address
– user’s authentication name
– data-time stamp of access
– HTTP request
– response status
– size of requested resource
– referrer URL (the page the user came from)
– user’s browser identification
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Web Data

• Content data
– includes all the page content accessible by user:
– text
– images
– any other multimedia content
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Web Data

• Website structure (why?)
– available sitemap of a website
– dual roles: 

learn structure info or generate structure
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Web Data

• Demographics / Historical
– explicitly given by users 
– today: data from third-party apps
• Social media integration
• What people like (e.g. purchases)
• What people do (other sites/apps they use)
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Exercise: Programming Difficulty

• What data can you collect to figure out which 
concepts/steps students are having a hard 
time with in a programming assignment? 
Be as specific as possible.

11



Coding Data

12Reference: Educational Data Mining and Learning Analytics in Programming: Literature 
Review and Case Studies (Ihantola et al. 2015)



13Reference: Educational Data Mining and Learning Analytics in Programming: Literature 
Review and Case Studies (Ihantola et al. 2015)



Types of Data

• The kind of data we collect depends heavily 
on the problem of interest

• Implicit feedback
– E.g.: clicked links, content of web pages read, 

errors made, button presses
• Explicit feedback
– E.g.: labeling interesting web pages, rating movies, 

completing survey
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Key Considerations
• Relevance of the data
– Having as much data as possible isn’t necessarily the 

best approach

• Granularity
– Data should be defined at consistent levels 

(e.g. compare “browsing behaviour” vs. a key press)

• Age
– Is data outdated? Should newer data be weighted 

more heavily than older data?
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Aggregating Data

• How to aggregate data to define abstracted
behaviours?

• Case study: Lumiere/Excel 
user study (1998)
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How did the authors use the 
Wizard of Oz study to collect 
data?



Aggregating Data

• How to aggregate data to define abstracted
behaviours?

• Case study: Lumiere/Excel user study (1998)
• Gauge the ability experts can guess user’s goal 

by simply watching the user’s actions through 
a “keyhole” interface

• Interested in seeing how experts infer:
– Likelihood a user needs help
– The type of help the user needs
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Inferring User Needs: 
Classes of Evidence

• Search
• Focus of attention
• Introspection
• Undesired effects
• Inefficient command sequences
• Domain-specific syntactic and semantic 

content
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Reference: The Lumiere Project: Bayesian User Modeling for Inferring the Goals 
and Needs of Software Users (Horvitz et al. 1998)



Inferring User Needs: 
Classes of Evidence

• Search
– Repetitive, scanning patterns associated with 

attempts to search for or access an item or function
– E.g.: user exploring multiple menus, scrolling through 

text, mousing over and clicking on multiple non-active 
regions

• Focus of attention
• Introspection
• Undesired effects
• Inefficient command sequences
• Domain-specific syntactic and semantic content
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Inferring User Needs: 
Classes of Evidence

• Search
• Focus of attention
– Selection and/or dwelling on graphical objects
– Dwelling on portions of document or specific subtext 

after scrolling through document
• Introspection
• Undesired effects
• Inefficient command sequences
• Domain-specific syntactic and semantic content

20



Inferring User Needs: 
Classes of Evidence

• Search
• Focus of attention
• Introspection
– Sudden pause after a period of activity
– Significant slowing of rate of interaction

• Undesired effects
• Inefficient command sequences
• Domain-specific syntactic and semantic content

21



Inferring User Needs: 
Classes of Evidence

• Search
• Focus of attention
• Introspection
• Undesired effects
– Attempts to return to a prior state after an action
– E.g.: Undoing recent action (execute undo command, 

closing dialog box shortly after it is opened)
• Inefficient command sequences
• Domain-specific syntactic and semantic content
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Inferring User Needs: 
Classes of Evidence

• Search
• Focus of attention
• Introspection
• Undesired effects
• Inefficient command sequences
– User performing operations that could be done 

more simply or efficiently via alternate sequence
• Domain-specific syntactic and semantic 

content
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Inferring User Needs: 
Classes of Evidence

• Search
• Focus of attention
• Introspection
• Undesired effects
• Inefficient command sequences
• Domain-specific syntactic and semantic content
– Consideration of special distinctions in content or 

structure of documents and how user interacts with 
these features
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Bridging the Gulf between System 
Events and User Actions
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Image taken from scottlinux.com



General Idea

• Time stamp to indicate recency
• Low-level atomic events

(click on “File”, closed Font dialog box, …)

• Higher-level semantic user actions
(menu surfing, mouse meandering, …)
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Automatic translation



Lumiere Events Language

• Primitives provided in the language:
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Lumiere Events Language
• Models user actions as atomic events directly
– E.g., how fast the user moved the mouse

• Streams of atomic events can be formed into Boolean 
and set-theoretic combinations of low-level events
– E.g., saved a file via toolbar or keyboard shortcut

• Compose new modeled user actions from previously 
defined events
– E.g., user dwelled for at least t seconds after a scroll
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Alternative Data-Driven Approach

• Gather large amounts of data logs
• (Ideally) have corresponding labeled user 

actions
• Example of labeled data:
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Image taken from https://www.producthunt.com/posts/handl-3

https://www.producthunt.com/posts/handl-3


Alternative Data-Driven Approach

• Gather large amounts of data logs
• (Ideally) have corresponding labeled user 

actions
• Develop patterns of events that map to those 

user actions
• Analyze accuracy and coverage
• Iterate process to find best set of patterns
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Learning User Behaviours
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Reference: Who’s Asking for Help? A Bayesian Approach to Intelligent
Assistance (Hui & Boutilier 2006)



How to Get Labeled Data?
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Image taken from www.clipartkid.com



User Study!
• Typing with dvorak keyboard
– Frustration condition – sticky keys
– Distraction condition – popups and sounds
– Neediness condition – difficulty of words
– Independence – questionnaire and word completion

• Specific intervals, asked user to label current 
mental state

• Obtained partially labeled data
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Experiment Design

34

How did the authors get 
labeled data indicating 
when a person is frustrated, 
needy, distracted, or 
independent while the 
person is typing?



User Study!
• Typing with dvorak keyboard
– Frustration condition – sticky keys
– Distraction condition – popups and sounds
– Neediness condition – difficulty of words
– Independence – questionnaire and word completion

• Specific intervals, asked user to label current 
mental state

• Obtained partially labeled data
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Data Analysis Step

• Using the collected partially labeled data 
– Extract patterns associated to labeled data for 

various user conditions
– Extract similar patterns elsewhere
– Estimate missing labels

• Now: Completely labeled data
– Associate extracted patterns to various user 

conditions probabilistically
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Summary

• Different types of data to collect
• Implicit vs. explicit feedback
• Given a problem, identify relevant data to 

address it
• Mining system events to obtain user 

behavioural data
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