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Reference: Faidhi & Robinson (1987). An empirical approach for detecting program similarity 

and plagiarism within a university programming environment, Computing in Education, Vol. 11, 

pp(11-19).



Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion

3



Plagiarism Disguises

• Format alteration
– Insert/remove blanks 
– Insert/remove comments

• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
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Ex: Method to Sum Up Array Elements

int sum( int array[], int count )
{

int i, sum;
sum = 0;
for( i=0; i<count; i++ )

sum = sum + array[i];
return sum;

}
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Ex: Method to Sum Up Array Elements

int sum( int array[], int count )
{

// var declarations
int i, sum;

// tally up each array element
sum = 0;
for( i=0; i<count; i++ )
{

sum = sum + array[i];
}

// return total
return sum;

}
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Added comments and {,}



Plagiarism Disguises

• Format alteration
• Identifier Renaming
– Change identifier names without violating 

correctness
– How to match identifiers in two programs?
– Potentially change data type, split/merge variables

• Statement Reordering
• Control Replacement
• Code Insertion
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Ex: Method to Sum Up Array Elements
int sum( int array[] )
{

// var declarations
int index, sum;
int len = array.length;

// tally up each array element
sum = 0;
for( index=0; index<len; index++ )
{

sum = sum + array[index];
}

// return total
return sum;

}
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Rename i and count
Refactored len as a local var



Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
– Reordering statements without causing errors
– Common: declaration statements split and moved 

all over the code
– Chunks of code can often be reordered

• Control Replacement
• Code Insertion
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Ex: Method to Sum Up Array Elements
int sum( int array[] )
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
for( index=0; index<len; index++ )
{

sum = sum + array[index];
}

// return total
return sum;

}
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Split var declarations



Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
– Exchanging for loop with while loop
– Reversing logical conditions

e.g. if(a) then X else Y ó if(!a) then Y else X
• Code Insertion
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Ex: Method to Sum Up Array Elements
int sum( int array[] )
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while( index<len )
{

sum = add( sum, array[index] );
index++;

}

// return total
return sum;

}
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Replaced for loop
Created add method



Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
– Inject inconsequential code
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Ex: Method to Sum Up Array Elements
int sum( int array[] )
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while( index<len )
{

sum = add( sum, array[index] );
index++;
System.out.println( “sum = “ + sum );

}

// return total
return sum;

}
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Added println statement



Exercise: Insert Disguises
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• Consider the following code:

• Add each of the following plagiarism disguises: 
– Identifier renaming
– Statement reordering

– Control replacement
– Code insertion



How to Detect Disguises?

• Format alteration
– Insert/remove blanks 
– Insert/remove comments

• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
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How to Detect Disguises?

• Format alteration
– Insert/remove blanks 
– Insert/remove comments

• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
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• Tokenize code
• Strip comments



How to Detect Disguises?

• Format alteration
• Identifier Renaming
– Change identifier names without violating 

correctness
– How to match identifiers in two programs?
– Potentially change data type, split/merge variables

• Statement Reordering
• Control Replacement
• Code Insertion
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How to Detect Disguises?

• Format alteration
• Identifier Renaming
– Change identifier names without violating 

correctness
– How to match identifiers in two programs?
– Potentially change data type, split/merge variables

• Statement Reordering
• Control Replacement
• Code Insertion

19

• Easy if program structure is intact

• Create variable space
• Keep track of variables

and modifications
• Compare “distance”



How to Detect Disguises?
• Format alteration
• Identifier Renaming
• Statement Reordering
– Reordering statements without causing errors
– Common: declaration statements split and moved all 

over the code
– Chunks of code can often be reordered

• Control Replacement
• Code Insertion
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How to Detect Disguises?
• Format alteration
• Identifier Renaming
• Statement Reordering
– Reordering statements without causing errors
– Common: declaration statements split and moved all 

over the code
– Chunks of code can often be reordered

• Control Replacement
• Code Insertion
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• Determine type of statement
• Compare changes in

statement dependencies



How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
– Exchanging for loop with while loop
– Reversing logical conditions

e.g. if(a) then X else Y ó if(!a) then Y else X
• Code Insertion
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How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
– Exchanging for loop with while loop
– Reversing logical conditions

e.g. if(a) then X else Y ó if(!a) then Y else X
• Code Insertion
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• Loop label and associated
syntax changes

• Boolean logic evaluation



How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
– Inject inconsequential code
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How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
– Inject inconsequential code
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• Statements with no
dependency on code logic



How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
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Analysis based on 
code dependency



Program Dependency Graph (PDG)

• A program dependency graph for a procedure 
P is a 4-tuple G=(V,E,!, #) where:
– V is the set of vertices in P
– !: V→ S is a function assigning types to vertices
– E ⊆ V × V is the set of dependency edges
– #: E → T is a function assigning types to edges
– |G| = |V|
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PDG Vertices
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• Represent statements
• Each vertex has one and only one type

See GPLAG
paper for
details



PDG Edges
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• Model dependencies between vertices
• Control dependencies: connects a control vertex 

to another vertex whose statement will be 
executed if the condition is evaluated to true

• Data dependencies: connects vertices v1 and v2 if 
there is some variable var such that:
– v1 may be assigned to var
– v2 may use value in var
– There is an execution path from v1 to v2 in the code 

where there is no assignment to var



Example of Control Dependencies
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Example taken from GPLAG paper

Control dependencies



PDG Edges
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• Model dependencies between vertices
• Control dependencies: connects a control vertex 

to another vertex whose statement will be 
executed if the condition is evaluated to true

• Data dependencies: connects vertices v1 and v2 if 
there is some variable var such that:
– v1 may be assigned to var
– v2 may use value in var
– There is an execution path from v1 to v2 in the code 

where there is no assignment to var



Example of Data Dependencies
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Example taken from GPLAG paper

Control dependencies
Data dependencies



PDG History

• Original use in code optimization
– Compilers
– Parallel processing
– Software maintenance, optimization, refactoring

• 2006: GPLAG algorithm
– Efficiently find two pieces of code to check
– Create PDG for each piece of code
– Compare “distance” between two PDGs
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Example
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Control flow graph
Not a PDG



Example (cont.)
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Data

Variations: 
• No vertices for declaration
• Extra “enter” vertex



Example (cont.)
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Example (cont.)

37

Data



Exercise
Given the following code, build its PDG (follow table of vertex types)
int sum( int array[] )
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while( index<len )
{

sum = add( sum, array[index] );
index++;
System.out.println( “sum = “ + sum );

}

// return total
return sum;

} 38



Exercise Solution
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For comparison, 
see next slide



PDG of Original Code

40

03
12

7 6 5 8

10
9

4

Example taken from GPLAG paper

Control dependencies
Data dependencies



Problem Formulation

• Subtasks:
– Given ! ∈ # and !′ ∈ #′, decide if g’ is plagiarized 

from g
– How to efficiently locate code pairs without %×'

comparisons?
41

Original Suspect
Program Source P P’
Number of Procedures n m
Converted PDG G G’
Size |G| = n |G|=m



Main Claims
• Restricted to 5 disguises (see above)
1. If g is subgraph isomorphic to g’,

then the corresponding procedure of g’ is 
considered as plagiarized from g

2. If g is !-isomorphic to g’, 
then the corresponding procedure of g’ is 
considered as plagiarized from g
Note: 0 < ! ≤ 1 and ! is the mature rate of the 
detection
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Recall Disguises

• PDGs generally immune to the following:
– Format alteration
– Identifier Renaming
– Statement Reordering
– Control Replacement

• Assuming correctness is preserved, PDG of 
plagiarized code is “bigger”
– Code Insertion

43
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An inserted extra loop (within loop)
that essentially does nothing

loop loop

Example taken from GPLAG paper

Left graph (g) is subgraph isomorphic to right graph (g’)



Beyond 5 Disguises

• Detect cheats resulting in “similar enough” PDGs
– Example of having two variables merged into one:

Simple code change that modifies vertices in PDG

• Set threshold ! which indicates proportion of 
overlap
– Suggested use of 0.9 
– More than 10% differences in PDGs is like rewriting 

code
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Main Claims
• Restricted to 5 disguises (see above)
1. If g is subgraph isomorphic to g’,

then the corresponding procedure of g’ is 
considered as plagiarized from g

• Beyond 5 disguises
2. If g is !-isomorphic to g’, 

then the corresponding procedure of g’ is 
considered as plagiarized from g
Note: 0 < ! ≤ 1
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Graph Terminology
• Given two graphs, check isomorphism
• Define graph isomorphism

A bijective function !: # → #% is a graph morphism 
from a graph & = (#, *, +, ,)to a graph &′ =
(#′, *′, +′, ,′) if:
– + / = +′ !(/)
– ∀1 = /1, /2 ∈ *,
∃1% = ! /1 , ! /2 ∈ *% such that , 1 = ,(1%)

– ∀1% = /%1, /%2 ∈ *%,
∃1 = !_1 /%1 , !_1 /%2 ∈ * such that , 1% = ,(1)
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One-to-one correspondence



Graph Terminology

• Given two graphs, check isomorphism
• Define graph isomorphism
• Define subgraph isomorphism

An injective function !: # → #% is a subgraph 
& ⊂ (′ such that f is a graph isomorphism 
from G to S
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One-to-one mapping that 
preserves distinctness of elements in domain



Graph Terminology

• Given two graphs, check isomorphism
• Define graph isomorphism
• Define subgraph isomorphism
• Define !-Isomorphic

A graph G is !-isomorphic to G’ if there exists 
a subgraph " ⊂ $ such that S is subgraph 
isomorphic to G’ and " ≥ !|$| where ! ∈
(0,1]
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Similar to computing “distance” between two graphs



Overall GPLAG Algorithm
• Inputs: 
P, P’ (and some parameters)

• Output: 
F, the set of PDG pairs considered to be involved 
in plagiarism (for human consideration)

• Steps:
– Construct G and G’
– Efficiently identify g and g’ pairs to compare
– If g’ is !-isomorphic to g

• Add to suspect set for output: " = " ∪ %, %'
– Return F
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Overall GPLAG Algorithm
• Inputs: 
P, P’ (and some parameters)

• Output: 
F, the set of PDG pairs considered to be involved 
in plagiarism (for human consideration)

• Steps:
– Construct G and G’
– Efficiently identify g and g’ pairs to compare
– If g’ is !-isomorphic to g

• Add to suspect set for output: " = " ∪ %, %'
– Return F
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We skipped this



Key Ideas

• Detecting source code plagiarism is much harder 
than detecting plagiarism in natural language 
– Lack idiosyncrasies
– Trivial changes can modify code logic and flow

• Representation:
– Models source code as program dependency graph 

(ignores superficial code variants)
• Algorithm:
– GPLAG: Uses graph isomorphism to detect plagiarism

53


