Learning Analytics

Dr. Bowen Huli
Computer Science
University of British Columbia Okanagan

Control logic

Program statements
Procedure combination

Variable position

Identifiers

Comments

No changes

LO
L1

Increasing levels
\ of modification

Level x plagiarism
|

L2
L3
L4

L5
L6

Reference: Faidhi & Robinson (1987). An empirical approach for detecting program similarity
and plagiarism within a university programming environment, Computing in Education, V02I. 11,

pp(11-19).

Plagiarism Disguises

Format alteration
ldentifier Renaming
Statement Reordering
Control Replacement
Code Insertion

Plagiarism Disguises

e Format alteration
— Insert/remove blanks

— Insert/remove comments

Ex: Method to Sum Up Array Elements

int sum(int array[], int count)
{
int 1, sum;
sum = 0;
for(1=0; i<count; 1i++)
sum = sum + array[i];
return sum;

Ex: Method to Sum Up Array Elements

int sum(int array[], int count)

{

// var declarations
int i, sum;

// tally up each array element
sum = 0;
for(1=0; i<count; 1i++)

{

}

// return total
return sum;
} Added comments and {,}

sum = sum + array[i];

6

Plagiarism Disguises

* |dentifier Renaming

— Change identifier names without violating
correctness

— How to match identifiers in two programs?
— Potentially change data type, split/merge variables

Ex: Method to Sum Up Array Elements

int sum(int array[]
{ O,

/] v larations
int(index,) sum;
: en = array.lengthy—

// tally up each array element
sum = 0;
for(<index=0; index<len; index+¥>)

sum = sum + array

}

// return total
return sum;

Rename i and count
Refactored len as a local var

8

Plagiarism Disguises

e Statement Reordering
— Reordering statements without causing errors

— Common: declaration statements split and moved
all over the code

— Chunks of code can often be reordered

Ex: Method to Sum Up Array Elements

int sum(int array[])
// var declarations

int index
int len = array.length;

tally up each array element
Cint)sum = 0;
Oor (index=0; index<len; index++)

{
sum = sum + array[index];
}
// return total
return sum; Split var declarations

10

Plagiarism Disguises

* Control Replacement

— Exchanging for loop with while loop

— Reversing logical conditions
e.g. if(a) then X else Y < if(!a) then Y else X

Ex: Method to Sum Up Array Elements

int sum(int array[])

{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;

index<len)
sum_=Cadd() sum, array[index]);
1ndex++;

/ Replaced for loop

// return total Created add method
return sum,

}

12

Plagiarism Disguises

e Code Insertion

— Inject inconsequential code

Ex: Method to Sum Up Array Elements

int sum(int array[])
{
// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while(index<len)

{
sum = add(sum, array[index]);
index++:
<System.out.println(“sum = “ + sum)7 >
}
// return total .
return sum; Added println statement

14

Exercise: Insert Disguises

* Consider the following code:

public class Factorial
{
public static void main(String[]) args)
{ final int NUM FACTS = 100;
for(int i = 0; i < NUM _FACTS; i++)

System.out.println{ i + "! is " + factorial(i));
}
public static int factorial(int n)
{ int result = 1;
for(int i = 2; 1 <= n; i++)

result *= j;
return result;

}
« Add each of the following plagiarism disguises:

— ldentifier renaming — Control replacement
— Statement reordering — Code insertion

15

How to Detect Disguises?

e Format alteration
— Insert/remove blanks

— Insert/remove comments

How to Detect Disguises?

e Format alteration
— Insert/remove blanks

— Insert/remove comments

* Tokenize code
* Strip comments

17

How to Detect Disguises?

* |dentifier Renaming

— Change identifier names without violating
correctness

— How to match identifiers in two programs?
— Potentially change data type, split/merge variables

How to Detect Disguises?

* |dentifier Renaming

— Change identifier names without violating
correctness e Easy if program structure is intact

— How to match identifiers in two programs?

— Potentially change data type, split/merge variables
* Create variable space
e Keep track of variables

and modifications
 Compare “distance”

19

How to Detect Disguises?

e Statement Reordering
— Reordering statements without causing errors

— Common: declaration statements split and moved all
over the code

— Chunks of code can often be reordered

How to Detect Disguises?

e Statement Reordering
— Reordering statements without causing errors

— Common: declaration statements split and moved all
over the code

— Chunks of code can often be reordered

* Determine type of statement
e Compare changesin
statement dependencies

21

How to Detect Disguises?

* Control Replacement

— Exchanging for loop with while loop

— Reversing logical conditions
e.g. if(a) then X else Y < if(!a) then Y else X

How to Detect Disguises?

* Loop label and associated
syntax changes
* Boolean logic evaluation

* Control Replacement

— Exchanging for loop with while loop

— Reversing logical conditions
e.g. if(a) then X else Y < if(!a) then Y else X

23

How to Detect Disguises?

e Code Insertion

— Inject inconsequential code

How to Detect Disguises?

e Code Insertion

— Inject inconsequential code

e Statements with no
dependency on code logic

25

How to Detect Disguises?

Format alteration

ldentifier Renaming

Statement Reordering

Control Replacement

Code Insertion

é

N\

— Analysis based on
code dependency

26

Program Dependency Graph (PDG)

 Aprogram dependency graph for a procedure
P is a 4-tuple G=(V,E,u,) where:
— Vis the set of vertices in P
— u:V — Sis a function assigning types to vertices
— E €V X Vis the set of dependency edges
— 0: E — Tis a function assigning types to edges
- |G| =]V|

27

PDG Vertices

° Represe nt statements

* Each vertex has one and only one type

See GPLAG
paper for
details

Type Description
call-site Call to procedures.
control If, switch, while, do-while, or for.
declaration | Declaration for a variable or formal parameter.
assignment | Assignment expression.
increment | 4+ or —— expression
return Function return expression.
expression | General expression except the above three,
like one with 7 operator
jump Goto, break, or continue
label Program labels

switch-case

Case or Default

28

PDG Edges

* Model dependencies between vertices

* Control dependencies: connects a control vertex
to another vertex whose statement will be
executed if the condition is evaluated to true

Example of Control Dependencies

int sum(inl:3an'.ay[], int:omxﬂ:)

{ 2 1
int i, sum;
/ sam = 0;g 5 8

for(i = 0; i < cant; i++){
9smm=addl(gun. array[i]);
}

.. retum sum;
} 4

.
{_ 9: assignment, sum = add(’ DI _ 3: declaration, int arra
~J: amsig 0 y[l

‘—’‘/.‘

2: declaration, int 1
6: assignment,i=0
5: control, 1 < count _

7: assignment, sum = ()

(: declaration, int count

w C__ 10: call-site, add(sum, array[i]) >
‘E-——‘_'_’_‘/ﬂ"

Example taken from GPLAG paper

Control dependencies ------

30

PDG Edges

* Model dependencies between vertices

* Control dependencies: connects a control vertex
to another vertex whose statement will be
executed if the condition is evaluated to true

* Data dependencies: connects vertices v, and v, if
there is some variable var such that:
— v, may be assigned to var

— V, may use value in var

— There is an execution path from v, to v, in the code
where there is no assighnment to var

Example of Data Dependencies

int Stm(i.m:3a::r.ay[], :i.nl:ocnmt)

{ 2 1
int i, sum;

/ sam = 0;g 5 8
for(i = 0; i < cant; i++){
0 sum = add(sum, array[i]);

2: declaration, int 1

} 10
_ 0: declaration, int count } 4 g
7: assignment, sum = () (_ 9: assignment, sum = add() > (_ 3: declaration, int array[]

w C__ 10: call-site, add(sum, array[i]) >
"E-_’_'_'_‘_ﬂ-ﬂ"

Example taken from GPLAG paper

Control dependencies ------
Data dependencies

32

PDG History

* Original use in code optimization
— Compilers
— Parallel processing
— Software maintenance, optimization, refactoring

e 2006: GPLAG algorithm

— Efficiently find two pieces of code to check
— Create PDG for each piece of code
— Compare “distance” between two PDGs

Example

int main() {
int sum = 0;
int i = 1;
while (i < 11) {
sum + 1i;

- Control flow graph
; Not a PDG

printf (“%d\n”, sum) ;
printf (“%d\n”,1i);

Enter

while(i < 11) printf (sum) printf (i)

Example (cont.)

int main() {
int sum =
int i = 1;

while (1 < 11)
su
+

sSu

=

}

0;

i=1

-

p

q

{

m + 1i;
1

[Data dependence

Value of variable
assigned at p may be
used at q.

printf (“%d\n”, sum) ;

printf (“%d\n”,1i);

sum = 0 i =

1

Enter

- while(i < 11)

N /e

printf (sum)

printf (1)

sum =

sum + 1 =

i+ 1

Variations:

AW,

e No vertices for declaration

e Extra “enter” vertex

f
|
/

Example (cont.)

int main () {

int sum = 0;

int i = 1;

while (i < 11) {
sum = sum + 1;
i =1+ 1;

}

printf (“%d\n”, sum) ;

printf (“%d\n”,1i);

T

Control dependence
pl-ql| 4 is reached from p
1 if condition p is
true (T), not otherwise.
piyla Similar for false (F).
Enter
J T
T T T

sum = 0 1=

while(i < 11

printf (sum) printf (i)

36

Example (cont.)

int main() {

int sum = 0; Control dependence

int i = 1;

while (i < 11) { Data dependence
sum sum + 1i;

i=1+1;
}
printf (“%d\n”, sum) ;

printf (“%d\n”,1i);
} Enter
T
T T Tlr T
sum = 0 i=1 while (i < 11€:> printf (sum) printf (i)

N\ o

sum = sum + 1 =1 4+ 1/

U\\J

37

Exercise

Given the following code, build its PDG (follow table of vertex types)
int sum(int array[])

{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while(index<len)

{
sum = add(sum, array[index]);
index++;
System.out.println(“sum = “ + sum);
}

// return total
return sum;

Exercise Solution

For comparison,
see next slide

PDG of Original Code

int sum(int array[], intomml:)

{ 2 1
int i, sum;
/ sam = 0;g 5 8

for(i = 0; i < caut; i++) {
0 sum = add(sum, array[i]);
} 10
return sun;

} 4

2: declaration, int 1
6: assignment, i=0

(: declaration, int count

(_ 9:assignment, sum =add() > - (

10: call-site, add(sum, array[i])

u/

Example taken from GPLAG paper

Control dependencies ------
Data dependencies

40

3: declaration, int array[]

Problem Formulation

Original Suspect
Program Source P P’
Number of Procedures |n m
Converted PDG G G’
Size [G] =n [G[=m
* Subtasks:

— Given g € G and g' € G/, decide if g’ is plagiarized

from g

— How to efficiently locate code pairs without nXm

comparisons?

Main Claims

* Restricted to 5 disguises (see above)

1. If gis subgraph isomorphicto g’,
then the corresponding procedure of g’ is
considered as plagiarized from g

42

Recall Disguises

 PDGs generally immune to the following:
— Format alteration
— |Identifier Renaming
— Statement Reordering
— Control Replacement

* Assuming correctness is preserved, PDG of
plagiarized code is “bigger”
— Code Insertion

An inserted extra loop (within loop)
that essentially does nothing

(a) PDG of the Original Code (b) PDG of the Plagiarized Code
Example taken from GPLAG paper T T
loo
P loop

44

Left graph (g) is subgraph isomorphic to right graph (g’)

Beyond 5 Disguises

* Detect cheats resulting in “similar enough” PDGs

— Example of having two variables merged into one:
Simple code change that modifies vertices in PDG

* Set threshold y which indicates proportion of
overlap
— Suggested use of 0.9

— More than 10% differences in PDGs is like rewriting
code

Main Claims

* Restricted to 5 disguises (see above)

1. If gis subgraph isomorphicto g’,
then the corresponding procedure of g’ is
considered as plagiarized from g

* Beyond 5 disguises
2. Ifgisy-isomorphicto g/,
then the corresponding procedure of g’ is

considered as plagiarized from g
Note: 0 <y <1

Graph Terminology

* Given two graphs, check isomorphism
e Define graph isomorphism
A bijective function f:V — V' is a graph morphism
fromagraph G = (V,E, u,6)to agraph G' =
(VL E', u', 8 if:
—u@) = (f(v))
— Ve = (v, v,) EE,
3¢’ = (f(vy), f(v,)) € E' such that §(e) = 8(e")
— Ve’ — (vll,vlz) S E’,
Je = (f1(v'y), f1(v',) € Esuchthat§(e’) = 8(e)

One-to-one correspondence

47

Graph Terminology

* Given two graphs, check isomorphism
* Define graph isomorphism

* Define subgraph isomorphism
An injective function f:V — V' is a subgraph
S < G’ such that fis a graph isomorphism
fromGtoS

One-to-one mapping that
preserves distinctness of elements in domain

48

Graph Terminology

Given two graphs, check isomorphism
Define graph isomorphism
Define subgraph isomorphism

Define y-Isomorphic

A graph G is y-isomorphic to G’ if there exists
a subgraph S < G such that Sis subgraph
isomorphicto G’and |S| = y|G| wherey €
(0,1}

Similar to computing “distance” between two graphs

50

Overall GPLAG Algorithm

* |nputs:
P, P’ (and some parameters)

* Qutput:
F, the set of PDG pairs considered to be involved

in plagiarism (for human consideration)

Overall GPLAG Algorithm

* |nputs:
P, P’ (and some parameters)

* Qutput:
F, the set of PDG pairs considered to be involved
in plagiarism (for human consideration)

* Steps:
— Construct G and G’
— Efficiently identify g and g’ pairs to compare
— If g’ is y-isomorphic to g
 Add to suspect set for output: F = FU (g,9")
— Return F

We skipped this

Key ldeas

* Detecting source code plagiarism is much harder
than detecting plagiarism in natural language

— Lack idiosyncrasies
— Trivial changes can modify code logic and flow
* Representation:

— Models source code as program dependency graph
(ignores superficial code variants)

* Algorithm:
— GPLAG: Uses graph isomorphism to detect plagiarism

