
Learning Analytics

Dr. Bowen Hui
Computer Science

University of British Columbia Okanagan

2

Reference: Faidhi & Robinson (1987). An empirical approach for detecting program similarity

and plagiarism within a university programming environment, Computing in Education, Vol. 11,

pp(11-19).

Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion

3

Plagiarism Disguises

• Format alteration
– Insert/remove blanks
– Insert/remove comments

• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion

4

Ex: Method to Sum Up Array Elements

int sum(int array[], int count)
{

int i, sum;
sum = 0;
for(i=0; i<count; i++)

sum = sum + array[i];
return sum;

}

5

Ex: Method to Sum Up Array Elements

int sum(int array[], int count)
{

// var declarations
int i, sum;

// tally up each array element
sum = 0;
for(i=0; i<count; i++)
{

sum = sum + array[i];
}

// return total
return sum;

}

6

Added comments and {,}

Plagiarism Disguises

• Format alteration
• Identifier Renaming
– Change identifier names without violating

correctness
– How to match identifiers in two programs?
– Potentially change data type, split/merge variables

• Statement Reordering
• Control Replacement
• Code Insertion

7

Ex: Method to Sum Up Array Elements
int sum(int array[])
{

// var declarations
int index, sum;
int len = array.length;

// tally up each array element
sum = 0;
for(index=0; index<len; index++)
{

sum = sum + array[index];
}

// return total
return sum;

}

8

Rename i and count
Refactored len as a local var

Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
– Reordering statements without causing errors
– Common: declaration statements split and moved

all over the code
– Chunks of code can often be reordered

• Control Replacement
• Code Insertion

9

Ex: Method to Sum Up Array Elements
int sum(int array[])
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
for(index=0; index<len; index++)
{

sum = sum + array[index];
}

// return total
return sum;

}

10

Split var declarations

Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
– Exchanging for loop with while loop
– Reversing logical conditions

e.g. if(a) then X else Y ó if(!a) then Y else X
• Code Insertion

11

Ex: Method to Sum Up Array Elements
int sum(int array[])
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while(index<len)
{

sum = add(sum, array[index]);
index++;

}

// return total
return sum;

}

12

Replaced for loop
Created add method

Plagiarism Disguises

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
– Inject inconsequential code

13

Ex: Method to Sum Up Array Elements
int sum(int array[])
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while(index<len)
{

sum = add(sum, array[index]);
index++;
System.out.println(“sum = “ + sum);

}

// return total
return sum;

}

14

Added println statement

Exercise: Insert Disguises

15

• Consider the following code:

• Add each of the following plagiarism disguises:
– Identifier renaming
– Statement reordering

– Control replacement
– Code insertion

How to Detect Disguises?

• Format alteration
– Insert/remove blanks
– Insert/remove comments

• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion

16

How to Detect Disguises?

• Format alteration
– Insert/remove blanks
– Insert/remove comments

• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion

17

• Tokenize code
• Strip comments

How to Detect Disguises?

• Format alteration
• Identifier Renaming
– Change identifier names without violating

correctness
– How to match identifiers in two programs?
– Potentially change data type, split/merge variables

• Statement Reordering
• Control Replacement
• Code Insertion

18

How to Detect Disguises?

• Format alteration
• Identifier Renaming
– Change identifier names without violating

correctness
– How to match identifiers in two programs?
– Potentially change data type, split/merge variables

• Statement Reordering
• Control Replacement
• Code Insertion

19

• Easy if program structure is intact

• Create variable space
• Keep track of variables

and modifications
• Compare “distance”

How to Detect Disguises?
• Format alteration
• Identifier Renaming
• Statement Reordering
– Reordering statements without causing errors
– Common: declaration statements split and moved all

over the code
– Chunks of code can often be reordered

• Control Replacement
• Code Insertion

20

How to Detect Disguises?
• Format alteration
• Identifier Renaming
• Statement Reordering
– Reordering statements without causing errors
– Common: declaration statements split and moved all

over the code
– Chunks of code can often be reordered

• Control Replacement
• Code Insertion

21

• Determine type of statement
• Compare changes in

statement dependencies

How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
– Exchanging for loop with while loop
– Reversing logical conditions

e.g. if(a) then X else Y ó if(!a) then Y else X
• Code Insertion

22

How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
– Exchanging for loop with while loop
– Reversing logical conditions

e.g. if(a) then X else Y ó if(!a) then Y else X
• Code Insertion

23

• Loop label and associated
syntax changes

• Boolean logic evaluation

How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
– Inject inconsequential code

24

How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion
– Inject inconsequential code

25

• Statements with no
dependency on code logic

How to Detect Disguises?

• Format alteration
• Identifier Renaming
• Statement Reordering
• Control Replacement
• Code Insertion

26

Analysis based on
code dependency

Program Dependency Graph (PDG)

• A program dependency graph for a procedure
P is a 4-tuple G=(V,E,!, #) where:
– V is the set of vertices in P
– !: V→ S is a function assigning types to vertices
– E ⊆ V × V is the set of dependency edges
– #: E → T is a function assigning types to edges
– |G| = |V|

27

PDG Vertices

28

• Represent statements
• Each vertex has one and only one type

See GPLAG
paper for
details

PDG Edges

29

• Model dependencies between vertices
• Control dependencies: connects a control vertex

to another vertex whose statement will be
executed if the condition is evaluated to true

• Data dependencies: connects vertices v1 and v2 if
there is some variable var such that:
– v1 may be assigned to var
– v2 may use value in var
– There is an execution path from v1 to v2 in the code

where there is no assignment to var

Example of Control Dependencies

30

03
12

7 6 5 8

10
9

4

Example taken from GPLAG paper

Control dependencies

PDG Edges

31

• Model dependencies between vertices
• Control dependencies: connects a control vertex

to another vertex whose statement will be
executed if the condition is evaluated to true

• Data dependencies: connects vertices v1 and v2 if
there is some variable var such that:
– v1 may be assigned to var
– v2 may use value in var
– There is an execution path from v1 to v2 in the code

where there is no assignment to var

Example of Data Dependencies

32

03
12

7 6 5 8

10
9

4

Example taken from GPLAG paper

Control dependencies
Data dependencies

PDG History

• Original use in code optimization
– Compilers
– Parallel processing
– Software maintenance, optimization, refactoring

• 2006: GPLAG algorithm
– Efficiently find two pieces of code to check
– Create PDG for each piece of code
– Compare “distance” between two PDGs

33

Example

34

Control flow graph
Not a PDG

Example (cont.)

35

Data

Variations:
• No vertices for declaration
• Extra “enter” vertex

Example (cont.)

36

Example (cont.)

37

Data

Exercise
Given the following code, build its PDG (follow table of vertex types)
int sum(int array[])
{

// var declarations
int index = 0;
int len = array.length;

// tally up each array element
int sum = 0;
while(index<len)
{

sum = add(sum, array[index]);
index++;
System.out.println(“sum = “ + sum);

}

// return total
return sum;

} 38

Exercise Solution

39

For comparison,
see next slide

PDG of Original Code

40

03
12

7 6 5 8

10
9

4

Example taken from GPLAG paper

Control dependencies
Data dependencies

Problem Formulation

• Subtasks:
– Given ! ∈ # and !′ ∈ #′, decide if g’ is plagiarized

from g
– How to efficiently locate code pairs without %×'

comparisons?
41

Original Suspect
Program Source P P’
Number of Procedures n m
Converted PDG G G’
Size |G| = n |G|=m

Main Claims
• Restricted to 5 disguises (see above)
1. If g is subgraph isomorphic to g’,

then the corresponding procedure of g’ is
considered as plagiarized from g

2. If g is !-isomorphic to g’,
then the corresponding procedure of g’ is
considered as plagiarized from g
Note: 0 < ! ≤ 1 and ! is the mature rate of the
detection

42

Recall Disguises

• PDGs generally immune to the following:
– Format alteration
– Identifier Renaming
– Statement Reordering
– Control Replacement

• Assuming correctness is preserved, PDG of
plagiarized code is “bigger”
– Code Insertion

43

44

An inserted extra loop (within loop)
that essentially does nothing

loop loop

Example taken from GPLAG paper

Left graph (g) is subgraph isomorphic to right graph (g’)

Beyond 5 Disguises

• Detect cheats resulting in “similar enough” PDGs
– Example of having two variables merged into one:

Simple code change that modifies vertices in PDG

• Set threshold ! which indicates proportion of
overlap
– Suggested use of 0.9
– More than 10% differences in PDGs is like rewriting

code

45

Main Claims
• Restricted to 5 disguises (see above)
1. If g is subgraph isomorphic to g’,

then the corresponding procedure of g’ is
considered as plagiarized from g

• Beyond 5 disguises
2. If g is !-isomorphic to g’,

then the corresponding procedure of g’ is
considered as plagiarized from g
Note: 0 < ! ≤ 1

46

Graph Terminology
• Given two graphs, check isomorphism
• Define graph isomorphism

A bijective function !: # → #% is a graph morphism
from a graph & = (#, *, +, ,)to a graph &′ =
(#′, *′, +′, ,′) if:
– + / = +′ !(/)
– ∀1 = /1, /2 ∈ *,
∃1% = ! /1 , ! /2 ∈ *% such that , 1 = ,(1%)

– ∀1% = /%1, /%2 ∈ *%,
∃1 = !_1 /%1 , !_1 /%2 ∈ * such that , 1% = ,(1)

47

One-to-one correspondence

Graph Terminology

• Given two graphs, check isomorphism
• Define graph isomorphism
• Define subgraph isomorphism

An injective function !: # → #% is a subgraph
& ⊂ (′ such that f is a graph isomorphism
from G to S

48

One-to-one mapping that
preserves distinctness of elements in domain

Graph Terminology

• Given two graphs, check isomorphism
• Define graph isomorphism
• Define subgraph isomorphism
• Define !-Isomorphic

A graph G is !-isomorphic to G’ if there exists
a subgraph " ⊂ $ such that S is subgraph
isomorphic to G’ and " ≥ !|$| where ! ∈
(0,1]

50

Similar to computing “distance” between two graphs

Overall GPLAG Algorithm
• Inputs:
P, P’ (and some parameters)

• Output:
F, the set of PDG pairs considered to be involved
in plagiarism (for human consideration)

• Steps:
– Construct G and G’
– Efficiently identify g and g’ pairs to compare
– If g’ is !-isomorphic to g

• Add to suspect set for output: " = " ∪ %, %'
– Return F

51

Overall GPLAG Algorithm
• Inputs:
P, P’ (and some parameters)

• Output:
F, the set of PDG pairs considered to be involved
in plagiarism (for human consideration)

• Steps:
– Construct G and G’
– Efficiently identify g and g’ pairs to compare
– If g’ is !-isomorphic to g

• Add to suspect set for output: " = " ∪ %, %'
– Return F

52

We skipped this

Key Ideas

• Detecting source code plagiarism is much harder
than detecting plagiarism in natural language
– Lack idiosyncrasies
– Trivial changes can modify code logic and flow

• Representation:
– Models source code as program dependency graph

(ignores superficial code variants)
• Algorithm:
– GPLAG: Uses graph isomorphism to detect plagiarism

53

