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A Closer Look:
Value of Offering Hints

j * . Hello!

€3 1 . - jtes 4" Mg
B S Hereis a very usefull hint:

| Add Ty to enter more than 5 chars and see. ..

Show First Hint

& meszage without a target control

Hints are helpful when you read them

How to estimate whether user is reading
nints?




Model Intuitions

* If you read hints:

— Time hint box stays opened is about your average reading
time for the sentence displayed

e If you don’t read hints:

— Time hint box stays opened is very short or very long
(relative to average reading time)

* If you read this hint, you’ll probably read the next
hint; and vice versa



Model Intuitions
__ Pr(TimeOpen | Read)

* If you read hints:

— Time hint box stays opened is"about your average reading
time for the sentence dispfayed

e If you don’t read hints:

— Time hint box stays opened is very short or very long
(relative to average reading time)

* If you read this hint, you’ll probably read the next
hint; and vice versa

Pr(Read, | Read,_,)



Defining Model Variables

 Read = false, true

— User is either going to read hints or not



Defining Model Variables

 Read = false, true
— User is either going to read hints or not
* TimeOpen:
— Too short = hint box closed soon after popped up
— Too long = hint box left opened and ignored
— On task = hint box is being read and closed when done



Defining Model Variables

 Read = false, true
— User is either going to read hints or not
* TimeOpen:
— Too short = hint box closed soon after popped up
— Too long = hint box left opened and ignored
— On task = hint box is being read and closed when done

e Model so far:




Defining Observation Function

* Pr(TimeOpen | Read)
— If you read hints: Time hint box stays opened is about your
average reading time for the sentence displayed

— If you don’t read hints: Time hint box stays opened is very
short or very long (relative to average reading time)

e Model so far:

TimeOpen = ...

Read | Too short | On task Too long

false

true




Defining Observation Function

Pr(TimeOpen | Read )

— |f you read hints: Time hint box stays opened is about your

average reading time for the sentence displayed
— If you don’t read hints: Time hint box stays opened is very

short or very long (relative to average reading time)

Model so far:

TimeOpen = ...
Read | Too short | On task Too long
false
true 0.1 0.8 0.1

User is generally reading, with a

small chance of either closing the

box too quickly or ignoring it
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Defining Observation Function

Pr(TimeOpen | Read )

— If you read hints: Time hint box stays opened is about your

average reading time for the sentence displayed
— If you don’t read hints: Time hint box stays opened is very

short or very long (relative to average reading time)

Model so far:

TimeOpen = ...
Read | Too short | On task Too long
false | 0.7 0.1 0.2
true |0.1 0.8 0.1

User tends to close box, sometimes
ignores box, but is rarely on task
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Defining Transition Function

* Pr(Read, | Read,_; )

— If you read this hint, you’ll probably read the next hint; and
vice versa

e Model so far:

Read t=..

Read_t-1 | false true

false

true




Defining Transition Function

* Pr(Read, | Read,_; )
— If you this hint, you’ll probably read the next hint, and vice

VEersa

Model so far:

t-1

t

Some noise added

Read t=..
Read_t-1 | false true
false 0.8 0.2
true 0.1 0.9
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Defining Prior Distribution

* Pr( Read)

— How likely is the average user to read hints?

e Model so far:

Read = ...

false

true




Defining Prior Distribution

* Pr( Read)
— How likely is the average user to read hints?
— No information: assign uniform distribution

e Model so far:

Read = ...
false true
t-1 t



Recap Model

* Inferring whether user reads hints:

Prior distribution —s

t-1

Observation function

Transition function

B

Same observation function
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Implementation in BNT/Matlab

Use editor to save scripts into .m files
Easier to re-run scripts
Can also define functions

Example, inside mk_hints.m:
function DBN = mk_hints

DBN =... % whatever you intend to return

Later, at the prompt:
>> myDbn = mk_hints;



Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later G e
8s = length( names );

DEN = names; ”i |
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Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later
88 = length( names );
DEBN = names;

%t intra-stage dependencies

intrac = {...

'Read’, 'TimeOpen'};

[intra, names] = mk adj mat( intrac, names, 1 );
DBN = names; %t potentially re-ordered names
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Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later
8s = length( names );
DEBN = names;

%t intra-stage dependencies

intrac = {...

'Read’, 'TimeOpen'};

[intra, names] = mk adj mat( intrac, names, 1 );
DEN = names; %t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat( interc, names, 0 );
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Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later G G
8s = length( names );
DEBN = names;

%t intra-stage dependencies @ @
intrac = {.

'Read’, 'TimeOpen'};
[intra, names] = mk adj mat( intrac, names, 1 );
DEN = names; %t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat( interc, names, 0 );

%t observations
onodes = [ find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0) ];
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Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later G G
8s = length( names );
DEBN = names;

% intra-stage dependencies @ @
intrac = {.

'Read’, 'TimeOpen'};
[intra, names] = mk adj mat( intrac, names, 1 );
DEN = names; t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat( interc, names, 0 );

%t observations
onodes = [ find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0) ];

% discretize nodes

Q = 2; % two hidden states

0 = 3; % three observable states
ns = [Q O];

dnodes = l:s8;
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Inside mk_hints.m

names {'Read', 'TimeOpen'}; % easier to refer to later G G
8s = length( names );

DEBN names ;

% intra-stage dependencies @ @
intrac = {.

'Read’, 'TimeOpen'};
[intra, names] = mk adj mat( intrac, names, 1 );
DBEN = names; t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat( interc, names, 0 );

* observations
onodes = [ find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0) ];

% discretize nodes

Q = 2; % two hidden states

0 = 3; % three observable states
ns = [Q O];

dnodes = l:s8;

% define equivalence classes
ecll = [1 2]; 27
ecl2 = [3 2]; % node 4 is tied to node 2



Inside mk _hints.m (cont.)

%t create the dbn structure based on the components defined above
bnet = mk dbn( intra, inter, ns, ...
'discrete’', dnodes, ...
'eclassl’, ecll,
eclass2’', ecl2,
observed', onodes, ...
names ', names );
DEN = bnet;

Last step to creating the DBN structure

28



Read0

Readl

L;
TimeOpen 2;
3;

Inside mk _hints.m (cont.)

I

@<
@<



Inside mk _hints.m (cont.)

Read0 = ]
TimeOpen = 2;
Readl = 3.
% prior, Pr(Read0)

cpt = normalize( ones(Q,1l) );
bnet.CPD{Read0} = tabular CPD( bnet, Read0, 'CPT', cpt );
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Inside mk _hints.m (cont.)

Read0 = 1
TimeOpen = 2;
Readl = 3=

% prior, Pr(Read0)

cpt = normalize( ones(Q,1l) );
bnet.CPD{Read0} = tabular CPD( bnet, Readl, 'CPT', cpt );

% transition function, Pr(Read t|Read t-1)

% RO Rl=false, true

t false 0.8 0.2

¥ true 0.1 0.9

cpt = [.B .1 .2 .9];

bnet.CPD{Readl} = tabular CPD( bnet, Readl, 'CPT', cpt );
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Inside mk _hints.m (cont.)

Read0 = ]
TimeOpen = 2;
Readl = 3=

% prior, Pr(Read0)

cpt = normalize( ones(Q,1l) );
bnet.CPD{Read0} = tabular CPD( bnet, Readl, 'CPT', cpt );

% transition function, Pr(Read t|Read t-1)

% RO Rl=false, true

¢t false 0.8 0.2

¥ true 0.1 0.9

cpt = [.B .1 .2 .9];

bnet.CPD{Readl} = tabular CPD( bnet, Readl, 'CPT', cpt );

%t observation function, Pr(TimeOpen t|Read t)

t R time=short, onTask, long
t false 0.7 0.1 0.2 % user tends to close box and not ignore it
% true 0.1 0.8 0.1 % user will be reading
cpt = [.7 .1 ...
.1 .8 ...
.2 .11;

bnet.CPD{TimeOpen} = tabular CPD(bnet, TimeOpen, 'CPT', cpt );
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Inside mk _hints.m (cont.)

Read0 = ]
TimeOpen = 2;
Readl = 3=

% prior, Pr(Read0)

cpt = normalize( ones(Q,1l) );
bnet.CPD{Read0} = tabular CPD( bnet, Readl, 'CPT', cpt );

% transition function, Pr(Read t|Read t-1)

% RO Rl=false, true

¢t false 0.8 0.2

¥ true 0.1 0.9

cpt = [.B .1 .2 .9];

bnet.CPD{Readl} = tabular CPD( bnet, Readl, 'CPT', cpt );

%t observation function, Pr(TimeOpen t|Read t)

t R time=short, onTask, long
t false 0.7 0.1 0.2 % user tends to close box and not ignore it
% true 0.1 0.8 0.1 % user will be reading
cpt = [.7 .1 ...
.1 .8 ...
.2 .11;

bnet.CPD{TimeOpen} = tabular CPD(bnet, TimeOpen, 'CPT', cpt );

DBN = bnet; 33



Simulation Setup

Clique Inference Algorithm

Observe user behaviour
Enter evidence

34



Simulation Setup

Clique Inference Algorithm Compute marginal of interest
Get: Pr(Read,)
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Simulation Setup

Clique Inference Algorithm

Get updated belief:
Pr(Read,)

36



Simulation Interaction

Sample evidence
from simulated user

~

Simulated User

\ /

Clique Inference Algorithm

Observe user behaviour
Enter evidence
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Separate File: sim_hints.m

% setup inference process

%

% sample series of evidence in advance, say 10

%

% t=0: prRead is 0.5 according to our model

%

% t=1:

% enter first piece of evidence

% update belief by computing marginal prRead
%

% for t=2 to t=T:

% enter evidence at t

% update belief by computing marginal prRead



Inside sim_hints.m

% setup inference process

function prRead = sim hints( dbn, ex )
* function prRead = sim hints( dbn, ex )
* ARCS: dbn = dynamic bayes net model specified by BNT syntax

% ex = a specific setting used to generate evidence
*
engine = bk _inf engine( dbn ); % set up inference engine

T = 10; % define number of time steps in problem

39



Inside sim_hints.m

% sample series of evidence in advance, say 10

if ex ==
ev =€ple_dbn( dan Case 1:
evidence = ceri({—2; T); .
onodes = dbn.observed; Random eV|dence
evidence( onodes, : ) = ev( onodes, : ); % all cells besides onodes are empty

Case 2:
Fixed evidence

Case 3:
Controlled randomness

40



Inside sim_hints.m

% sample series of evidence in advance, say 10

if ex == ],
ev = sample dbn( dbn, T); Case 1:
Random evidence

evidence = cell( 2, T);
dbn.observed;
% all cells besides onodes are empty

onodes =
evidence( onodes, : ) = ev( onodes, : );
elseif ex == 2,
evidence = cell( 2, T); Case 2:
Fixed evidence

for ii=1:T,
evidence{2,1ii}

end;
Case 3:
Controlled randomness

41

Recall: TimeOpen has 3 values



Inside sim_hints.m

% sample series of evidence in advance, say 10

if ex == ],

ev = sample dbn({ dbn, T); Case 1:
evidence = cell( 2, T); .
onodes = dbn.observed; Random eV|dence
evidence( onodes, : ) = ev( onodes, : ); % all cells besides onodes are empty
elseif ex == 2,
evidence = cell( 2, T); Case 2:
for ii=1:T, . .
evidence{2,ii} = 2 Fixed evidence
end;
else
readval Case 3:

evidence = sampleHint seq( dbn, readval, T );
o Controlled randomness
evidence

Recall: Read has 2 values 42



Inside sim_hints.m

% t=0: prRead is 0.5 according to our model

* setup results to be stored
belief = []; Setup

subplot({( 1, 1, 1 ); % setup plot for graph

t at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself

% Get prRead from model
prRead get field( dbn.CPD{ dbn.names('Read') }, 'cpt' );

belief = [belief, prRead(2)]; ]

plot( belief ); Plot it
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Inside sim_hints.m

% t=1:
%  enter first piece of evidence
% update belief by computing marginal prRead

t at t=1: initialize the belief state _
% Update belief
[engine, 11(1)] = dbn update bell(engine, evidence(:,1l));

marg = dbn marginal from bel({engine, 1);
prRead = marg.T; Get prRead from model

belief = [belief, prRead(2)]:; _
plot( belief ); Plot it

44



Inside sim_hints.m

% for t=2 to t=T:
% enter evidence at t
% update belief by computing marginal prRead

for t=2:7T,
% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));
Update belief
% extract marginals of the current belief state
i = 1;
marg = dbn_marginal from bel(engine, i); Get eread from model
prRead = marg.T;

% keep track of results and plot it Plot it

belief = [belief, prRead(2)];

plot{ belief );

xlabel( 'Time Steps' );

vlabel( 'Pr(Read)’' ):

axis{ [ 0T 0 1] );

pause(0.25); 45
end;



Single Plot Results
Case 1: Random Evidence
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Single Plot Results
Case 2: Fixed Evidence

Pr(Read)
o

=]
Time Steps

All values = 1 (too short)

Pr(Read)
(=]

All values = 2 (on task)
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Single Plot Results
Case 2: Fixed Evidence

Pr(Read)
o

=]
Time Steps

All values = 1 (too short)

Pr(Read)
o

=]
Time Steps

All values = 3 (too long)
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Single Plot Results
Case 3: Controlled Randomness
(Sampled Evidence from DBN)
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Simulation Interaction

Sample evidence
O )
Decision Making from simulated user

Take
Action / \
MEU \ Simulated User
Action
N Y

Updated belief & ‘
N © @© /

Clique Inference Algorithm
02.0)
10

\

Observe user behaviour
Enter evidence
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U(Action, Read)

function util = util hints{ action, readHints )
function util = util hints( action, readHints )

action = hint
= do nothing
readHints = false, true

util \in [-=5,+5]
function util = utility( action, needHhelp, readHints )

W N N N N N R N

% doing stuff for the user gets a disruption penalty
util = 0;
if stremp( action, 'Hint' ), util = util - 1; end;

% help action given will largely depend on whether user reads hints
if readHints == 0,

if stroemp( action, 'Hint' ), util
else

if stremp( action, 'Hint' ), util
end;

util - 4; end;

util + 5; end;

51



Compute Expected Utility
Inside get._ meu_hints.m

function [action, eu hint] = get meu hints( prRead )
* functicn [action, eu hint] = get meu hints( prRead )
Ed

%t set default
action = 'None';

% compute expected utility of each action
* EU(A) = Pr(Read) x U(A, Read)

+

eu_hint = prRead * util hints( 'Hint', 1 ) + ...
(1 - prRead) * util hints({ 'Hint', 0 );

eu _none = prRead * util hints( 'Nene', 1 ) + ...

(1 - prRead) * util hints( 'None', 0 );

% override default if hinting is a better action
if eu hint > eu none,

action = 'Hint';
end;

52



Modified Simulation:
sim_hints_decision.m

% setup inference process

%

% sample series of evidence in advance, say 10

%

% t=0:

%  prReadis 0.5 according to our model

%  get best action via expected utility computation
%

% t=1:

%  enter first piece of evidence

%  update belief by computing marginal prRead

% get best action via expected utility computation
%

% for t=2 to t=T:

% enter evidence att

%  update belief by computing marginal prRead

% get best action via expected utility computation

53



Inside sim_hints_decision.m

%t setup results to be stored

belief [1:
exputil [1;
subplot( 1, 2, 1 ); % setup plot for graph

ﬁ[ﬂvﬂ e



Inside sim_hints_decision.m

* setup results to be stored

belief = [];

exputil = [];

subplot( 1, 2, 1 ); % setup plot for graph

%t at t=0, no evidence has been entered, so the probability is same as the

% prior encoded in the DBN itself

+
prRead = get_ field( dbn.CPD{ dbn.names('Read') }, 'cpt' );
belief = [belief, prRead(2)]; .
subplot( 1, 2, 1 ); % inference step
hold on;
r 0 .
plot( belief, 'o-' ); /) plOt bellef
hold off;
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Inside sim_hints_decision.m

* setup results to be stored

belief = [];

exputil = [];

subplot( 1, 2, 1 ); % setup plot for graph

%t at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself

+
prRead = get field( dbn.CPD{ dbn.names('Read') }, 'cpt' );
belief = [belief, prRead(2)]; .
subplot( 1, 2, 1 ); % inference step
hold on;
r 0 .
plot( belief, 'o-' ); A) plOt bellef
hold off;

t log best decision

[bestA, euHint] = get meu hints({ prRead(2) );

exputil = [exputil, euHint]; % plOt EU
disp(sprintf('t=%d: best action = %3, euHint = %f£', 0, bestA, euHint));
subplot( 1, 2, 2 );

hold on;

plot({ exputil, "*-' );

hold off;
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Inside sim_hints_decision.m (cont.)

%t at t=1: initialize the belief state
*
[engine, 11(1)] = dbn update bell({engine, evidence(:,1l));

marg = dbn marginal from bel(engine, 1);
prRead = marg.T;
belief = [belief, prRead(2)];

subplot( 1, 2, 1 ); o/ :
hold on; % inference step

plot( belief, 'o-' ); % plot belief
hold off;
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Inside sim_hints_decision.m (cont.)

%t at t=1: initialize the belief state
*
[engine, 11(1)] = dbn update bell(engine, evidence(:,1l));

marg = dbn marginal from bel({engine, 1);
prRead = marg.T;
belief = [belief, prRead(2)];

subplot( 1, 2, 1 ); % inference step
hold on; .

plot( belief, 'o-' ); % plot belief
hold off;

%t log best decision

[bestA, euHint] = get meu hints( prRead(2) );

exputil = [exputil, euHint]; % plot EU
disp(sprintf('t=%d: best action = %s, euHint = %f', 0, bestA, euHint));
subplot({ 1, 2, 2 );

hold on;

plot( exputil, "*~' );

hold off;

58



Inside sim hints decision.m (cont.)

* Repeat inference” steps for each Time step

%
for t=2:T,
% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));

% extract marginals of the current belief state
i=1;

marg = dbn marginal from bel(engine, 1i); % |nference Step

prRead = marg.T;

59

end;



Inside sim hints decision.m (cont.)

* Repeat inference” steps for each Time step
%
for t=2:T,

% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));

% extract marginals of the current belief state
i=1;

marg = dbn marginal from bel(engine, 1i); % |nference Step

prRead = marg.T;

% log best decision

[besthA, euHint] = get meu hints( prRead({2) );

exputil = [exputil, eﬁHinE]; % plOt EU
disp(sprintf( 't=%d: best action = %s, euHint = %f', 0, besth, euHint));
subplot( 1, 2, 2 );

hold on;

plot( exputil, '*-=" );

xlabel( 'Time Steps' );

yvlabel( 'EU(Hint)' );

axis{ [ 0 T =5 5] );

hold off;
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Inside sim hints decision.m (cont.)

% Repeat inference  steps for each Time step
%
for t=2:T,

% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));

% extract marginals of the current belief state
i=1;

marg = dbn marginal from bel(engine, 1i); % mferenCe Step

prRead = marg.T;

% log best decision

[besthA, euHint] = get meu hints( prRead({2) );

exputil = [exputil, eEHinE]; % plOt EU
disp(sprintf( 't=%d: best action = %s, euHint = %f', 0, besth, euHint));
subplot( 1, 2, 2 );

hold on;

plot( exputil, '*-=" );

xlabel( 'Time Steps' );

yvlabel( 'EU(Hint)' );

axis( [ 0 T =5 5] );

hold off;

% keep track of results and plot it o) 1
belief = [belief, prRead(2)]; /0 plOt bellef

subplot( 1, 2, 1 );
hold on;

plot( belief, 'o=' );
xlabel( 'Time Steps'
yvlabel( 'Pr(Read)' );
axis{ [ 0T 0 1] );
pause(0.25);

hold off; 61
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end;



Single Plot Results
Case 1: Random Evidence
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Single Plot Results
Case 2: Fixed Evidence

09t 4k
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All values = 3 (too long)
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Pr{Read)
o

Single Plot Results
Case 3: Controlled Randomness
(Sampled Evidence from DBN)
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Given Read =1 (false)
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Overview of A5

e Step 1: download files to reproduce previous
slides

e Step 2-3: adapt to new problem

— Instead of mk_hints.m, create your own file for
the specified DBN

— Then adapt sim_hints.m (and associated files) to
get it to work on your new DBN

— Then adapt sim_hints_decision.m (and associated
files) to get it to work on your new model



Key ldeas

* Simulation setup

— System:
* Encode inference model
* Algorithm to compute marginal distribution
* Decision making (compute expected utility)

— Simulated user
* Encode model —sample evidence, respond to system action

* Average out results over many trials
— Properly understand general behaviour
— Typically: hundreds or thousands of trials



