Learning Analytics

Dr. Bowen Huli
Computer Science
University of British Columbia Okanagan

Recall: Inference Over Time

Mimic:

© @ @ ©
time=0 3
Setup:

(s (s

© @

time =t-1

Recall: Inference Over Time
Mimic:

(=)=)—()— -

time=0 3
Start, time=1:

Observe user behaviour

time= 0 Enter evidence

Recall: Inference Over Time
Mimic:

(=)=)—()— -

time=0 3
Start, time=1:

time= 0

S~— Compute marginal of interest
Get: Pr(S,)

Inference Over Time

Mimic:

© Q @ ©
time=0 3
We have: Pr(S,)

O—~E)

© @

time= 0

Inference Over Time

Mimic:

© @ @ ©
time=0 3
We have: Pr(S,)
O=©) o
© Q ©
time= 0 time=1t-1 t

A Closer Look:
Value of Offering Hints

j * . Hello!

€3 1 . - jtes 4" Mg
B S Hereis a very usefull hint:

| Add Ty to enter more than 5 chars and see. ..

Show First Hint

& meszage without a target control

Hints are helpful when you read them

How to estimate whether user is reading
nints?

Model Intuitions

* If you read hints:

— Time hint box stays opened is about your average reading
time for the sentence displayed

e If you don’t read hints:

— Time hint box stays opened is very short or very long
(relative to average reading time)

* If you read this hint, you’ll probably read the next
hint; and vice versa

Model Intuitions
__ Pr(TimeOpen | Read)

* If you read hints:

— Time hint box stays opened is"about your average reading
time for the sentence dispfayed

e If you don’t read hints:

— Time hint box stays opened is very short or very long
(relative to average reading time)

* If you read this hint, you’ll probably read the next
hint; and vice versa

Pr(Read, | Read,_,)

Defining Model Variables

 Read = false, true

— User is either going to read hints or not

Defining Model Variables

 Read = false, true
— User is either going to read hints or not
* TimeOpen:
— Too short = hint box closed soon after popped up
— Too long = hint box left opened and ignored
— On task = hint box is being read and closed when done

Defining Model Variables

 Read = false, true
— User is either going to read hints or not
* TimeOpen:
— Too short = hint box closed soon after popped up
— Too long = hint box left opened and ignored
— On task = hint box is being read and closed when done

e Model so far:

Defining Observation Function

* Pr(TimeOpen | Read)
— If you read hints: Time hint box stays opened is about your
average reading time for the sentence displayed

— If you don’t read hints: Time hint box stays opened is very
short or very long (relative to average reading time)

e Model so far:

TimeOpen = ...

Read | Too short | On task Too long

false

true

Defining Observation Function

Pr(TimeOpen | Read)

— |f you read hints: Time hint box stays opened is about your

average reading time for the sentence displayed
— If you don’t read hints: Time hint box stays opened is very

short or very long (relative to average reading time)

Model so far:

TimeOpen = ...
Read | Too short | On task Too long
false
true 0.1 0.8 0.1

User is generally reading, with a

small chance of either closing the

box too quickly or ignoring it

14

Defining Observation Function

Pr(TimeOpen | Read)

— If you read hints: Time hint box stays opened is about your

average reading time for the sentence displayed
— If you don’t read hints: Time hint box stays opened is very

short or very long (relative to average reading time)

Model so far:

TimeOpen = ...
Read | Too short | On task Too long
false | 0.7 0.1 0.2
true |0.1 0.8 0.1

User tends to close box, sometimes
ignores box, but is rarely on task

15

Defining Transition Function

* Pr(Read, | Read,_;)

— If you read this hint, you’ll probably read the next hint; and
vice versa

e Model so far:

Read t=..

Read_t-1 | false true

false

true

Defining Transition Function

* Pr(Read, | Read,_;)
— If you this hint, you’ll probably read the next hint, and vice

VEersa

Model so far:

t-1

t

Some noise added

Read t=..
Read_t-1 | false true
false 0.8 0.2
true 0.1 0.9

17

Defining Prior Distribution

* Pr(Read)

— How likely is the average user to read hints?

e Model so far:

Read = ...

false

true

Defining Prior Distribution

* Pr(Read)
— How likely is the average user to read hints?
— No information: assign uniform distribution

e Model so far:

Read = ...
false true
t-1 t

Recap Model

* Inferring whether user reads hints:

Prior distribution —s

t-1

Observation function

Transition function

B

Same observation function

20

Implementation in BNT/Matlab

Use editor to save scripts into .m files
Easier to re-run scripts
Can also define functions

Example, inside mk_hints.m:
function DBN = mk_hints

DBN =... % whatever you intend to return

Later, at the prompt:
>> myDbn = mk_hints;

Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later G e
8s = length(names);

DEN = names; ”i |

22

Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later
88 = length(names);
DEBN = names;

%t intra-stage dependencies

intrac = {...

'Read’, 'TimeOpen'};

[intra, names] = mk adj mat(intrac, names, 1);
DBN = names; %t potentially re-ordered names

23

Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later
8s = length(names);
DEBN = names;

%t intra-stage dependencies

intrac = {...

'Read’, 'TimeOpen'};

[intra, names] = mk adj mat(intrac, names, 1);
DEN = names; %t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat(interc, names, 0);

24

Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later G G
8s = length(names);
DEBN = names;

%t intra-stage dependencies @ @
intrac = {.

'Read’, 'TimeOpen'};
[intra, names] = mk adj mat(intrac, names, 1);
DEN = names; %t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat(interc, names, 0);

%t observations
onodes = [find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0)];

25

Inside mk_hints.m

names = {'Read’', 'TimeOpen'}; % easier to refer to later G G
8s = length(names);
DEBN = names;

% intra-stage dependencies @ @
intrac = {.

'Read’, 'TimeOpen'};
[intra, names] = mk adj mat(intrac, names, 1);
DEN = names; t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat(interc, names, 0);

%t observations
onodes = [find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0)];

% discretize nodes

Q = 2; % two hidden states

0 = 3; % three observable states
ns = [Q O];

dnodes = l:s8;

26

Inside mk_hints.m

names {'Read', 'TimeOpen'}; % easier to refer to later G G
8s = length(names);

DEBN names ;

% intra-stage dependencies @ @
intrac = {.

'Read’, 'TimeOpen'};
[intra, names] = mk adj mat(intrac, names, 1);
DBEN = names; t potentially re-ordered names

tinter-stage dependencies

interc = {...

'Read’, 'Read'};

inter = mk_adj mat(interc, names, 0);

* observations
onodes = [find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0)];

% discretize nodes

Q = 2; % two hidden states

0 = 3; % three observable states
ns = [Q O];

dnodes = l:s8;

% define equivalence classes
ecll = [1 2]; 27
ecl2 = [3 2]; % node 4 is tied to node 2

Inside mk _hints.m (cont.)

%t create the dbn structure based on the components defined above
bnet = mk dbn(intra, inter, ns, ...
'discrete’', dnodes, ...
'eclassl’, ecll,
eclass2’', ecl2,
observed', onodes, ...
names ', names);
DEN = bnet;

Last step to creating the DBN structure

28

Read0

Readl

L;
TimeOpen 2;
3;

Inside mk _hints.m (cont.)

I

@<
@<

Inside mk _hints.m (cont.)

Read0 =]
TimeOpen = 2;
Readl = 3.
% prior, Pr(Read0)

cpt = normalize(ones(Q,1l));
bnet.CPD{Read0} = tabular CPD(bnet, Read0, 'CPT', cpt);

30

Inside mk _hints.m (cont.)

Read0 = 1
TimeOpen = 2;
Readl = 3=

% prior, Pr(Read0)

cpt = normalize(ones(Q,1l));
bnet.CPD{Read0} = tabular CPD(bnet, Readl, 'CPT', cpt);

% transition function, Pr(Read t|Read t-1)

% RO Rl=false, true

t false 0.8 0.2

¥ true 0.1 0.9

cpt = [.B .1 .2 .9];

bnet.CPD{Readl} = tabular CPD(bnet, Readl, 'CPT', cpt);

31

Inside mk _hints.m (cont.)

Read0 =]
TimeOpen = 2;
Readl = 3=

% prior, Pr(Read0)

cpt = normalize(ones(Q,1l));
bnet.CPD{Read0} = tabular CPD(bnet, Readl, 'CPT', cpt);

% transition function, Pr(Read t|Read t-1)

% RO Rl=false, true

¢t false 0.8 0.2

¥ true 0.1 0.9

cpt = [.B .1 .2 .9];

bnet.CPD{Readl} = tabular CPD(bnet, Readl, 'CPT', cpt);

%t observation function, Pr(TimeOpen t|Read t)

t R time=short, onTask, long
t false 0.7 0.1 0.2 % user tends to close box and not ignore it
% true 0.1 0.8 0.1 % user will be reading
cpt = [.7 .1 ...
.1 .8 ...
.2 .11;

bnet.CPD{TimeOpen} = tabular CPD(bnet, TimeOpen, 'CPT', cpt);

32

Inside mk _hints.m (cont.)

Read0 =]
TimeOpen = 2;
Readl = 3=

% prior, Pr(Read0)

cpt = normalize(ones(Q,1l));
bnet.CPD{Read0} = tabular CPD(bnet, Readl, 'CPT', cpt);

% transition function, Pr(Read t|Read t-1)

% RO Rl=false, true

¢t false 0.8 0.2

¥ true 0.1 0.9

cpt = [.B .1 .2 .9];

bnet.CPD{Readl} = tabular CPD(bnet, Readl, 'CPT', cpt);

%t observation function, Pr(TimeOpen t|Read t)

t R time=short, onTask, long
t false 0.7 0.1 0.2 % user tends to close box and not ignore it
% true 0.1 0.8 0.1 % user will be reading
cpt = [.7 .1 ...
.1 .8 ...
.2 .11;

bnet.CPD{TimeOpen} = tabular CPD(bnet, TimeOpen, 'CPT', cpt);

DBN = bnet; 33

Simulation Setup

Clique Inference Algorithm

Observe user behaviour
Enter evidence

34

Simulation Setup

Clique Inference Algorithm Compute marginal of interest
Get: Pr(Read,)

35

Simulation Setup

Clique Inference Algorithm

Get updated belief:
Pr(Read,)

36

Simulation Interaction

Sample evidence
from simulated user

~

Simulated User

\ /

Clique Inference Algorithm

Observe user behaviour
Enter evidence

37

Separate File: sim_hints.m

% setup inference process

%

% sample series of evidence in advance, say 10

%

% t=0: prRead is 0.5 according to our model

%

% t=1:

% enter first piece of evidence

% update belief by computing marginal prRead
%

% for t=2 to t=T:

% enter evidence at t

% update belief by computing marginal prRead

Inside sim_hints.m

% setup inference process

function prRead = sim hints(dbn, ex)
* function prRead = sim hints(dbn, ex)
* ARCS: dbn = dynamic bayes net model specified by BNT syntax

% ex = a specific setting used to generate evidence
*
engine = bk _inf engine(dbn); % set up inference engine

T = 10; % define number of time steps in problem

39

Inside sim_hints.m

% sample series of evidence in advance, say 10

if ex ==
ev =€ple_dbn(dan Case 1:
evidence = ceri({—2; T); .
onodes = dbn.observed; Random eV|dence
evidence(onodes, :) = ev(onodes, :); % all cells besides onodes are empty

Case 2:
Fixed evidence

Case 3:
Controlled randomness

40

Inside sim_hints.m

% sample series of evidence in advance, say 10

if ex ==],
ev = sample dbn(dbn, T); Case 1:
Random evidence

evidence = cell(2, T);
dbn.observed;
% all cells besides onodes are empty

onodes =
evidence(onodes, :) = ev(onodes, :);
elseif ex == 2,
evidence = cell(2, T); Case 2:
Fixed evidence

for ii=1:T,
evidence{2,1ii}

end;
Case 3:
Controlled randomness

41

Recall: TimeOpen has 3 values

Inside sim_hints.m

% sample series of evidence in advance, say 10

if ex ==],

ev = sample dbn({ dbn, T); Case 1:
evidence = cell(2, T); .
onodes = dbn.observed; Random eV|dence
evidence(onodes, :) = ev(onodes, :); % all cells besides onodes are empty
elseif ex == 2,
evidence = cell(2, T); Case 2:
for ii=1:T, . .
evidence{2,ii} = 2 Fixed evidence
end;
else
readval Case 3:

evidence = sampleHint seq(dbn, readval, T);
o Controlled randomness
evidence

Recall: Read has 2 values 42

Inside sim_hints.m

% t=0: prRead is 0.5 according to our model

* setup results to be stored
belief = []; Setup

subplot({(1, 1, 1); % setup plot for graph

t at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself

% Get prRead from model
prRead get field(dbn.CPD{ dbn.names('Read') }, 'cpt');

belief = [belief, prRead(2)];]

plot(belief); Plot it

43

Inside sim_hints.m

% t=1:
% enter first piece of evidence
% update belief by computing marginal prRead

t at t=1: initialize the belief state _
% Update belief
[engine, 11(1)] = dbn update bell(engine, evidence(:,1l));

marg = dbn marginal from bel({engine, 1);
prRead = marg.T; Get prRead from model

belief = [belief, prRead(2)]:; _
plot(belief); Plot it

44

Inside sim_hints.m

% for t=2 to t=T:
% enter evidence at t
% update belief by computing marginal prRead

for t=2:7T,
% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));
Update belief
% extract marginals of the current belief state
i = 1;
marg = dbn_marginal from bel(engine, i); Get eread from model
prRead = marg.T;

% keep track of results and plot it Plot it

belief = [belief, prRead(2)];

plot{ belief);

xlabel('Time Steps');

vlabel('Pr(Read)’'):

axis{ [0T 0 1]);

pause(0.25); 45
end;

Single Plot Results
Case 1: Random Evidence

1 I T 1]] i i 1 I._ L]] s
7 e .\'\ ,-/
09 F / /.—’/ \'~. / -
\ / \ /
." "\ f \
f \ / X5
08 | (g / v !
/ .I. /
07 F ./ ‘l‘, |" .
,” ‘I. l‘
"" .ll l'
06 / f 1
22 ,,. .'| ‘I'
-g / \ ."
Q@ \ f .
gi 05 F 'l' /
-— \ J
o \ ’ul
04 v E
03 F -
o2r 7
01 1
'3 1 1 1 1 1 1 1
Q 1 2 3 4 5 6 7 8
Time Steps

10

46

Single Plot Results
Case 2: Fixed Evidence

Pr(Read)
o

=]
Time Steps

All values = 1 (too short)

Pr(Read)
(=]

All values = 2 (on task)

47

Single Plot Results
Case 2: Fixed Evidence

Pr(Read)
o

=]
Time Steps

All values = 1 (too short)

Pr(Read)
o

=]
Time Steps

All values = 3 (too long)

48

Single Plot Results
Case 3: Controlled Randomness
(Sampled Evidence from DBN)

A2

.
/

v"/"'

:"/‘vv

7\ — \
A\ \ A
X \ \ \
\ S N
\\.‘ / / \\“ g / \

\ %
\ //
\
\/

N\
\
\
\

Given Read =1 (false)

Time Steps

Given Read = 2 (true)

49

Simulation Interaction

Sample evidence
O)
Decision Making from simulated user

Take
Action / \
MEU \ Simulated User
Action
N Y

Updated belief & ‘
N © @© /

Clique Inference Algorithm
02.0)
10

\

Observe user behaviour
Enter evidence

50

U(Action, Read)

function util = util hints{ action, readHints)
function util = util hints(action, readHints)

action = hint
= do nothing
readHints = false, true

util \in [-=5,+5]
function util = utility(action, needHhelp, readHints)

W N N N N N R N

% doing stuff for the user gets a disruption penalty
util = 0;
if stremp(action, 'Hint'), util = util - 1; end;

% help action given will largely depend on whether user reads hints
if readHints == 0,

if stroemp(action, 'Hint'), util
else

if stremp(action, 'Hint'), util
end;

util - 4; end;

util + 5; end;

51

Compute Expected Utility
Inside get._ meu_hints.m

function [action, eu hint] = get meu hints(prRead)
* functicn [action, eu hint] = get meu hints(prRead)
Ed

%t set default
action = 'None';

% compute expected utility of each action
* EU(A) = Pr(Read) x U(A, Read)

+

eu_hint = prRead * util hints('Hint', 1) + ...
(1 - prRead) * util hints({ 'Hint', 0);

eu _none = prRead * util hints('Nene', 1) + ...

(1 - prRead) * util hints('None', 0);

% override default if hinting is a better action
if eu hint > eu none,

action = 'Hint';
end;

52

Modified Simulation:
sim_hints_decision.m

% setup inference process

%

% sample series of evidence in advance, say 10

%

% t=0:

% prReadis 0.5 according to our model

% get best action via expected utility computation
%

% t=1:

% enter first piece of evidence

% update belief by computing marginal prRead

% get best action via expected utility computation
%

% for t=2 to t=T:

% enter evidence att

% update belief by computing marginal prRead

% get best action via expected utility computation

53

Inside sim_hints_decision.m

%t setup results to be stored

belief [1:
exputil [1;
subplot(1, 2, 1); % setup plot for graph

ﬁ[ﬂvﬂ e

Inside sim_hints_decision.m

* setup results to be stored

belief = [];

exputil = [];

subplot(1, 2, 1); % setup plot for graph

%t at t=0, no evidence has been entered, so the probability is same as the

% prior encoded in the DBN itself

+
prRead = get_ field(dbn.CPD{ dbn.names('Read') }, 'cpt');
belief = [belief, prRead(2)]; .
subplot(1, 2, 1); % inference step
hold on;
r 0 .
plot(belief, 'o-'); /) plOt bellef
hold off;

55

Inside sim_hints_decision.m

* setup results to be stored

belief = [];

exputil = [];

subplot(1, 2, 1); % setup plot for graph

%t at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself

+
prRead = get field(dbn.CPD{ dbn.names('Read') }, 'cpt');
belief = [belief, prRead(2)]; .
subplot(1, 2, 1); % inference step
hold on;
r 0 .
plot(belief, 'o-'); A) plOt bellef
hold off;

t log best decision

[bestA, euHint] = get meu hints({ prRead(2));

exputil = [exputil, euHint]; % plOt EU
disp(sprintf('t=%d: best action = %3, euHint = %f£', 0, bestA, euHint));
subplot(1, 2, 2);

hold on;

plot({ exputil, "*-');

hold off;

56

Inside sim_hints_decision.m (cont.)

%t at t=1: initialize the belief state
*
[engine, 11(1)] = dbn update bell({engine, evidence(:,1l));

marg = dbn marginal from bel(engine, 1);
prRead = marg.T;
belief = [belief, prRead(2)];

subplot(1, 2, 1); o/ :
hold on; % inference step

plot(belief, 'o-'); % plot belief
hold off;

57

Inside sim_hints_decision.m (cont.)

%t at t=1: initialize the belief state
*
[engine, 11(1)] = dbn update bell(engine, evidence(:,1l));

marg = dbn marginal from bel({engine, 1);
prRead = marg.T;
belief = [belief, prRead(2)];

subplot(1, 2, 1); % inference step
hold on; .

plot(belief, 'o-'); % plot belief
hold off;

%t log best decision

[bestA, euHint] = get meu hints(prRead(2));

exputil = [exputil, euHint]; % plot EU
disp(sprintf('t=%d: best action = %s, euHint = %f', 0, bestA, euHint));
subplot({ 1, 2, 2);

hold on;

plot(exputil, "*~');

hold off;

58

Inside sim hints decision.m (cont.)

* Repeat inference” steps for each Time step

%
for t=2:T,
% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));

% extract marginals of the current belief state
i=1;

marg = dbn marginal from bel(engine, 1i); % |nference Step

prRead = marg.T;

59

end;

Inside sim hints decision.m (cont.)

* Repeat inference” steps for each Time step
%
for t=2:T,

% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));

% extract marginals of the current belief state
i=1;

marg = dbn marginal from bel(engine, 1i); % |nference Step

prRead = marg.T;

% log best decision

[besthA, euHint] = get meu hints(prRead({2));

exputil = [exputil, eﬁHinE]; % plOt EU
disp(sprintf('t=%d: best action = %s, euHint = %f', 0, besth, euHint));
subplot(1, 2, 2);

hold on;

plot(exputil, '*-=");

xlabel('Time Steps');

yvlabel('EU(Hint)');

axis{ [0 T =5 5]);

hold off;

60

end;

Inside sim hints decision.m (cont.)

% Repeat inference steps for each Time step
%
for t=2:T,

% update belief with evidence at current time step
[engine, 11(t)] = dbn update bel(engine, evidence(:,t-1l:t));

% extract marginals of the current belief state
i=1;

marg = dbn marginal from bel(engine, 1i); % mferenCe Step

prRead = marg.T;

% log best decision

[besthA, euHint] = get meu hints(prRead({2));

exputil = [exputil, eEHinE]; % plOt EU
disp(sprintf('t=%d: best action = %s, euHint = %f', 0, besth, euHint));
subplot(1, 2, 2);

hold on;

plot(exputil, '*-=");

xlabel('Time Steps');

yvlabel('EU(Hint)');

axis([0 T =5 5]);

hold off;

% keep track of results and plot it o) 1
belief = [belief, prRead(2)]; /0 plOt bellef

subplot(1, 2, 1);
hold on;

plot(belief, 'o=');
xlabel('Time Steps'
yvlabel('Pr(Read)');
axis{ [0T 0 1]);
pause(0.25);

hold off; 61

)i

end;

Single Plot Results
Case 1: Random Evidence

09 r f;-:(‘ ‘I f\'

J
f
08} / \

4} 2 4 6 8 10
Time Steps

EU(Hint)

- e e o - -

2 4 6 8 10
Time Steps

62

Single Plot Results
Case 2: Fixed Evidence

09t 4k
08 | 3r
0 2

All values = 3 (too long)

63

Pr{Read)
o

Single Plot Results
Case 3: Controlled Randomness
(Sampled Evidence from DBN)

% __________________
w
\‘.
.\
\I
\
\)"'/ N \)'—/ N\
")9_ \y *
o o e e
/ 6 é 6
Time Steps Time Steps

Given Read =1 (false)

64

Overview of A5

e Step 1: download files to reproduce previous
slides

e Step 2-3: adapt to new problem

— Instead of mk_hints.m, create your own file for
the specified DBN

— Then adapt sim_hints.m (and associated files) to
get it to work on your new DBN

— Then adapt sim_hints_decision.m (and associated
files) to get it to work on your new model

Key ldeas

* Simulation setup

— System:
* Encode inference model
* Algorithm to compute marginal distribution
* Decision making (compute expected utility)

— Simulated user
* Encode model —sample evidence, respond to system action

* Average out results over many trials
— Properly understand general behaviour
— Typically: hundreds or thousands of trials

