Learning Analytics

Dr. Bowen Hui Computer Science University of British Columbia Okanagan

Recall: Inference Over Time

Mimic:

Setup:

Recall: Inference Over Time

Mimic:

Start, time=1:

Recall: Inference Over Time

Mimic:

Start, time=1:

Inference Over Time

Mimic:

S

 \bigcap

time = 0

S

 \bigcap

1

Inference Over Time

Mimic:

6

S

 \bigcap

t

A Closer Look: Value of Offering Hints

about:blank - Microsoft Internet Explorer			
File G B Add	Edit View Experitor Tools Help ack MCF Hello! Here is a very useful hint: Try to enter more than 5 chars and see 1234 Show First Hint	у Ме	
	A message without a target control		

Image taken from MasterCluster.software

- Hints are helpful when you read them
- How to estimate whether user is reading hints?

Model Intuitions

- If you read hints:
 - Time hint box stays opened is about your average reading time for the sentence displayed
- If you don't read hints:
 - Time hint box stays opened is very short or very long (relative to average reading time)
- If you read this hint, you'll probably read the next hint; and vice versa

Model Intuitions

- If you read hints:
 - Time hint box stays opened is about your average reading time for the sentence displayed
- If you don't read hints:
 - Time hint box stays opened is very short or very long (relative to average reading time)
- If you read this hint, you'll probably read the next hint; and vice versa

Pr(Read_t | Read_{t-1})

Pr(TimeOpen | Read)

Defining Model Variables

• Read = false, true

- User is either going to read hints or not

Defining Model Variables

- Read = false, true
 - User is either going to read hints or not
- TimeOpen:
 - Too short = hint box closed soon after popped up
 - Too long = hint box left opened and ignored
 - On task = hint box is being read and closed when done

Defining Model Variables

- Read = false, true
 - User is either going to read hints or not
- TimeOpen:
 - Too short = hint box closed soon after popped up
 - Too long = hint box left opened and ignored
 - On task = hint box is being read and closed when done
- Model so far:

Defining Observation Function

- Pr(TimeOpen | Read)
 - If you read hints: Time hint box stays opened is about your average reading time for the sentence displayed
 - If you don't read hints: Time hint box stays opened is very short or very long (relative to average reading time)

Defining Observation Function

- Pr(TimeOpen | Read)
 - If you read hints: Time hint box stays opened is about your average reading time for the sentence displayed
 - If you don't read hints: Time hint box stays opened is very short or very long (relative to average reading time)
- Model so far: (Read)

	TimeOpen =		
Read	Too short	On task	Too long
false			
true	0.1	0.8	0.1

User is generally reading, with a small chance of either closing the box too quickly or ignoring it

Defining Observation Function

- Pr(TimeOpen | Read)
 - If you read hints: Time hint box stays opened is about your average reading time for the sentence displayed
 - If you don't read hints: Time hint box stays opened is very short or very long (relative to average reading time)
- Model so far: Rea

	TimeOpen =		
Read	Too short	On task	Too long
false	0.7	0.1	0.2
true	0.1	0.8	0.1

User tends to close box, sometimes ignores box, but is rarely on task

Defining Transition Function

- Pr(Read_t | Read_{t-1})
 - If you read this hint, you'll probably read the next hint; and
 vice versa
- Model so far:

	Read _t =		
Read_t-1	false	true	
false			
true			

Defining Transition Function

- Pr(Read_t | Read_{t-1})
 - If you this hint, you'll probably read the next hint, and vice

versa

• Model so far:

	Read _t =		
Read_t-1	false	true	
false	0.8	0.2	Some noise added
true	0.1	0.9	

Defining Prior Distribution

• Pr(Read)

- How likely is the average user to read hints?

• Model so far:

Read =		
false	true	

Defining Prior Distribution

- Pr(Read)
 - How likely is the average user to read hints?
 - No information: assign uniform distribution
- Model so far:

Read =		
false	true	
0.5	0.5	

Recap Model

• Inferring whether user reads hints:

Implementation in BNT/Matlab

- Use editor to save scripts into .m files
- Easier to re-run scripts
- Can also define functions
- Example, inside mk_hints.m: function DBN = mk_hints

DBN = . . . % whatever you intend to return

Later, at the prompt:
 > myDbn = mk_hints;

names = {'Read', 'TimeOpen'}; % easier to refer to later
ss = length(names);
DBN = names;


```
names = {'Read', 'TimeOpen'}; % easier to refer to later
ss = length( names );
DBN = names;
% intra-stage dependencies
```

```
intrac = {...
'Read', 'TimeOpen'};
[intra, names] = mk_adj_mat( intrac, names, 1 );
DBN = names; % potentially re-ordered names
```



```
names = {'Read', 'TimeOpen'}; % easier to refer to later
ss = length( names );
DBN = names;
```

```
% intra-stage dependencies
intrac = {...
'Read', 'TimeOpen'};
[intra, names] = mk_adj_mat( intrac, names, 1 );
DBN = names; % potentially re-ordered names
```

```
%inter-stage dependencies
interc = {...
'Read', 'Read'};
inter = mk_adj_mat( interc, names, 0 );
```



```
names = {'Read', 'TimeOpen'}; % easier to refer to later
ss = length( names );
DBN = names;
% intra-stage dependencies
intrac = {...
'Read', 'TimeOpen'};
[intra, names] = mk_adj_mat( intrac, names, 1 );
DBN = names; % potentially re-ordered names
%inter-stage dependencies
interc = {...
'Read', 'Read'};
inter = mk_adj_mat( interc, names, 0 );
```

% observations
onodes = [find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0)];

```
names = { 'Read', 'TimeOpen' }; % easier to refer to later
                                                              R
ss = length( names );
DBN = names;
% intra-stage dependencies
intrac = {...
'Read', 'TimeOpen'};
[intra, names] = mk adj mat( intrac, names, 1 );
DBN = names; % potentially re-ordered names
%inter-stage dependencies
interc = \{\dots
'Read', 'Read'};
inter = mk adj mat( interc, names, 0 );
% observations
onodes = [ find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0) ];
% discretize nodes
      = 2: % two hidden states
0
0 = 3; % three observable states
ns = [0, 0];
dnodes = 1:ss;
```

```
names = { 'Read', 'TimeOpen' }; % easier to refer to later
                                                              R
     = length( names );
SS
     = names;
DBN
% intra-stage dependencies
intrac = {...
'Read', 'TimeOpen'};
[intra, names] = mk adj mat( intrac, names, 1 );
DBN = names; % potentially re-ordered names
%inter-stage dependencies
interc = \{\dots
'Read', 'Read'};
inter = mk adj mat( interc, names, 0 );
% observations
onodes = [ find(cellfun(@isempty, strfind(names, 'TimeOpen'))==0) ];
% discretize nodes
Q = 2; % two hidden states
0 = 3; % three observable states
ns = [0, 0];
dnodes = 1:ss;
% define equivalence classes
ecl1 = [1 2];
ecl2 = [3 2]; % node 4 is tied to node 2
```

27

```
% create the dbn structure based on the components defined above
bnet = mk_dbn( intra, inter, ns, ...
'discrete', dnodes, ...
'eclass1', ecl1, ...
'eclass2', ecl2, ...
'observed', onodes, ...
'names', names );
DBN = bnet;
```

Last step to creating the DBN structure

Read0 = 1; TimeOpen = 2; Read1 = 3;


```
Read0 = 1;
TimeOpen = 2;
Read1 = 3;
% prior, Pr(Read0)
cpt = normalize( ones(Q,1) );
bnet.CPD{Read0} = tabular_CPD( bnet, Read0, 'CPT', cpt );
```



```
Read0 = 1;
TimeOpen = 2;
Read1 = 3;
% prior, Pr(Read0)
cpt = normalize( ones(Q,1) );
bnet.CPD{Read0} = tabular_CPD( bnet, Read0, 'CPT', cpt );
% transition function, Pr(Read_t|Read_t-1)
% R0 R1=false, true
% false 0.8 0.2
% true 0.1 0.9
cpt = [.8 .1 .2 .9];
bnet.CPD{Read1} = tabular_CPD( bnet, Read1, 'CPT', cpt );
```


R

R

TC

```
Read0 = 1;
TimeOpen = 2;
Read1 = 3;
% prior, Pr(Read0)
cpt = normalize( ones(Q,1) );
                                                              R
bnet.CPD{Read0} = tabular CPD( bnet, Read0, 'CPT', cpt );
% transition function, Pr(Read t Read t-1)
% R0 R1=false, true
% false 0.8 0.2
% true 0.1 0.9
cpt = [.8 .1 .2 .9];
bnet.CPD{Read1} = tabular CPD( bnet, Read1, 'CPT', cpt );
% observation function, Pr(TimeOpen t Read t)
% R time=short, onTask, long
% false 0.7 0.1 0.2 % user tends to close box and not ignore it
                    0.8 0.1 % user will be reading
% true 0.1
cpt = [.7 .1 ...
      .1 .8 ...
      .2 .11;
bnet.CPD{TimeOpen} = tabular CPD(bnet, TimeOpen, 'CPT', cpt );
```

```
Read0 = 1;
TimeOpen = 2;
Read1 = 3;
% prior, Pr(Read0)
cpt = normalize( ones(Q,1) );
                                                              R
                                                                     R
bnet.CPD{Read0} = tabular CPD( bnet, Read0, 'CPT', cpt );
% transition function, Pr(Read t Read t-1)
% R0 R1=false, true
% false 0.8 0.2
% true 0.1 0.9
cpt = [.8 .1 .2 .9];
bnet.CPD{Read1} = tabular CPD( bnet, Read1, 'CPT', cpt );
% observation function, Pr(TimeOpen t Read t)
% R time=short, onTask, long
% false 0.7 0.1 0.2 % user tends to close box and not ignore it
                   0.8 0.1 % user will be reading
% true 0.1
cpt = [.7 .1 ...
      .1 .8 ...
      .2 .11;
bnet.CPD{TimeOpen} = tabular CPD(bnet, TimeOpen, 'CPT', cpt );
```

Simulation Setup

Simulation Setup

Simulation Setup

Simulation Interaction

Sample evidence from simulated user

Observe user behaviour Enter evidence

Separate File: sim_hints.m

% setup inference process % % sample series of evidence in advance, say 10 % % t=0: prRead is 0.5 according to our model % % t=1: enter first piece of evidence % update belief by computing marginal prRead % % % for t=2 to t=T: % enter evidence at t

% update belief by computing marginal prRead

% setup inference process

```
function prRead = sim_hints( dbn, ex )
% function prRead = sim_hints( dbn, ex )
% ARGS: dbn = dynamic bayes net model specified by BNT syntax
% ex = a specific setting used to generate evidence
%
engine = bk_inf_engine( dbn ); % set up inference engine
T = 10; % define number of time steps in problem
```

% sample series of evidence in advance, say 10

% sample series of evidence in advance, say 10

```
if ex == 1,
  ev = sample_dbn( dbn, T);
  evidence = cell( 2, T);
  onodes = dbn.observed;
  evidence( onodes, : ) = ev( onodes, : ); % all cells besides onodes are empty
elseif ex == 2,
  evidence = cell( 2, T);
  for ii=1:T,
    evidence{2,ii} = 2;
  end;
```

Case 3: Controlled randomness

Recall: TimeOpen has 3 values

% sample series of evidence in advance, say 10

```
if ex == 1.
                                                  Case 1:
  ev = sample dbn( dbn, T);
  evidence = cell(2, T);
                                                  Random evidence
  onodes = dbn.observed;
  evidence( onodes, : ) = ev( onodes, : ); % all cells besides onodes are empty
elseif ex == 2,
                                                  Case 2:
  evidence = cell( 2, T);
  for ii=1:T,
                                                  Fixed evidence
    evidence{2,ii} = 2;
  end;
else
                                                  Case 3:
  readval 🚽
           2:
  evidence = sampleHint seq( dbn, readval, T );
                                                  Controlled randomness
end;
evidence
```

Recall: Read has 2 values

% t=0: prRead is 0.5 according to our model

```
% setup results to be stored
belief = [];
subplot( 1, 1, 1 ); % setup plot for graph
% at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself
% Get prRead from model
prRead = get_field( dbn.CPD{ dbn.names('Read') }, 'cpt' );
belief = [belief, prRead(2)];
plot( belief ); Plot it
```

% t=1:

- % enter first piece of evidence
- % update belief by computing marginal prRead

```
% at t=1: initialize the belief state
% Update belief
[engine, ll(1)] = dbn_update_bell(engine, evidence(:,1));
marg = dbn_marginal_from_bel(engine, 1); Get prRead from model
prRead = marg.T;
belief = [belief, prRead(2)];
plot( belief ); Plot it
```

```
% for t=2 to t=T:
```

```
% enter evidence at t
```

```
update belief by computing marginal prRead
  %
for t=2:T,
  % update belief with evidence at current time step
  [engine, ll(t)] = dbn update bel(engine, evidence(:,t-1:t));
                                                Update belief
 % extract marginals of the current belief state
 i = 1;
 marg = dbn marginal from bel(engine, i);
                                                Get prRead from model
 prRead = marg.T;
  % keep track of results and plot it
                                                Plot it
 belief = [belief, prRead(2)];
 plot( belief );
 xlabel( 'Time Steps' );
 ylabel( 'Pr(Read)' );
 axis( [ 0 T 0 1] );
 pause(0.25);
                                                                    45
end;
```

Single Plot Results Case 1: Random Evidence

Single Plot Results Case 2: Fixed Evidence

All values = 1 (too short)

All values = 2 (on task)

Single Plot Results Case 2: Fixed Evidence

All values = 1 (too short)

All values = 3 (too long)

Single Plot Results Case 3: Controlled Randomness (Sampled Evidence from DBN)

Given Read = 1 (false)

Given Read = 2 (true)

Simulation Interaction

U(Action, Read)

```
function util = util hints( action, readHints )
% function util = util hints( action, readHints )
8
% action = hint
       = do nothing
윢.
% readHints = false, true
8
% util \in [-5,+5]
% function util = utility( action, needHhelp, readHints )
8
% doing stuff for the user gets a disruption penalty
util = 0;
if strcmp( action, 'Hint' ), util = util - 1; end;
% help action given will largely depend on whether user reads hints
if readHints == 0,
  if strcmp( action, 'Hint' ), util = util - 4; end;
else
  if strcmp( action, 'Hint' ), util = util + 5; end;
end:
```

Compute Expected Utility Inside get_meu_hints.m

```
function [action, eu hint] = get meu hints( prRead )
% function [action, eu hint] = get meu hints( prRead )
8
% set default
action = 'None';
% compute expected utility of each action
\& EU(A) = Pr(Read) \times U(A, Read)
8
eu hint = prRead * util hints( 'Hint', 1 ) + ...
          (1 - prRead) * util hints( 'Hint', 0 );
eu none = prRead * util hints( 'None', 1 ) + ...
          (1 - prRead) * util hints( 'None', 0 );
% override default if hinting is a better action
if eu hint > eu none,
  action = 'Hint';
end:
```

Modified Simulation: sim_hints_decision.m

% setup inference process % % sample series of evidence in advance, say 10 % % t=0: prRead is 0.5 according to our model % % get best action via expected utility computation % % t=1: enter first piece of evidence % update belief by computing marginal prRead % % get best action via expected utility computation % % for t=2 to t=T: % enter evidence at t

- % update belief by computing marginal prRead
- % get best action via expected utility computation

Inside sim_hints_decision.m

```
% setup results to be stored
belief = [];
exputil = [];
subplot( 1, 2, 1 ); % setup plot for graph
```


Inside sim_hints_decision.m

```
% setup results to be stored
belief = [];
exputil = [];
subplot( 1, 2, 1 ); % setup plot for graph
% at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself
%
prRead = get_field( dbn.CPD{ dbn.names('Read') }, 'cpt' );
belief = [belief, prRead(2)];
subplot( 1, 2, 1 ); % inference step
hold on;
plot( belief, 'o-' ); % plot belief
```

Inside sim_hints_decision.m

```
% setup results to be stored
belief = [];
exputil = [];
subplot( 1, 2, 1 ); % setup plot for graph
% at t=0, no evidence has been entered, so the probability is same as the
% prior encoded in the DBN itself
9
prRead = get field( dbn.CPD{ dbn.names('Read') }, 'cpt' );
belief = [belief, prRead(2)];
                                                   % inference step
subplot( 1, 2, 1 );
hold on;
                                                   % plot belief
plot( belief, 'o-' );
hold off;
% log best decision
[bestA, euHint] = get meu hints( prRead(2) );
                                                   % plot EU
exputil = [exputil, euHint];
disp(sprintf('t=%d: best action = %s, euHint = %f', 0, bestA, euHint));
subplot( 1, 2, 2 );
hold on;
plot( exputil, '*-' );
hold off;
```

```
% at t=1: initialize the belief state
%
[engine, ll(1)] = dbn_update_bell(engine, evidence(:,1));
marg = dbn_marginal_from_bel(engine, 1);
prRead = marg.T;
belief = [belief, prRead(2)];
subplot( 1, 2, 1 ); % inference step
hold on; % plot belief
hold off;
```

```
% at t=1: initialize the belief state
8
[engine, ll(1)] = dbn update bell(engine, evidence(:,1));
marg = dbn marginal from bel(engine, 1);
prRead = marg.T;
belief = [belief, prRead(2)];
subplot( 1, 2, 1 );
                                                 % inference step
hold on;
                                                 % plot belief
plot( belief, 'o-' );
hold off;
% log best decision
[bestA, euHint] = get meu hints( prRead(2) );
                                                 % plot EU
exputil = [exputil, euHint];
disp(sprintf('t=%d: best action = %s, euHint = %f', 0, bestA, euHint));
subplot( 1, 2, 2 );
hold on;
plot( exputil, '*-' );
hold off;
```

```
% Repeat inference steps for each time step
%
for t=2:T,
  % update belief with evidence at current time step
 [engine, ll(t)] = dbn_update_bel(engine, evidence(:,t-1:t));
  % extract marginals of the current belief state
  i = 1;
  marg = dbn_marginal_from_bel(engine, i); % inference step
  prRead = marg.T;
```

```
% Repeat inference steps for each time step
8
for t=2:T,
 % update belief with evidence at current time step
 [engine, ll(t)] = dbn update bel(engine, evidence(:,t-1:t));
 % extract marginals of the current belief state
 i = 1;
                                                      % inference step
 marg = dbn marginal from bel(engine, i);
 prRead = marg.T;
 % log best decision
  [bestA, euHint] = get meu hints( prRead(2) );
                                                      % plot EU
 exputil = [exputil, euHint];
 disp(sprintf('t=%d: best action = %s, euHint = %f', 0, bestA, euHint));
 subplot( 1, 2, 2 );
 hold on;
 plot( exputil, '*-' );
 xlabel( 'Time Steps' );
 ylabel( 'EU(Hint)' );
 axis( [ 0 T -5 5] );
 hold off;
```

```
8
for t=2:T,
 % update belief with evidence at current time step
 [engine, ll(t)] = dbn update bel(engine, evidence(:,t-1:t));
 % extract marginals of the current belief state
 i = 1;
                                                      % inference step
 marg = dbn marginal from bel(engine, i);
 prRead = marg.T;
 % log best decision
  [bestA, euHint] = get meu hints( prRead(2) );
                                                      % plot EU
 exputil = [exputil, euHint];
 disp(sprintf('t=%d: best action = %s, euHint = %f', 0, bestA, euHint));
 subplot( 1, 2, 2 );
 hold on;
 plot( exputil, '*-' );
 xlabel( 'Time Steps' );
 ylabel( 'EU(Hint)' );
 axis( [ 0 T -5 5] );
 hold off;
 % keep track of results and plot it
                                                      % plot belief
 belief = [belief, prRead(2)];
 subplot( 1, 2, 1 );
 hold on;
 plot( belief, 'o-' );
 xlabel( 'Time Steps' );
 ylabel( 'Pr(Read)' );
 axis( [ 0 T 0 1] );
 pause(0.25);
 hold off;
```

```
end;
```

Single Plot Results Case 1: Random Evidence

Single Plot Results Case 2: Fixed Evidence

All values = 3 (too long)

Single Plot Results Case 3: Controlled Randomness (Sampled Evidence from DBN)

Given Read = 1 (false)

Overview of A5

- Step 1: download files to reproduce previous slides
- Step 2-3: adapt to new problem
 - Instead of mk_hints.m, create your own file for the specified DBN
 - Then adapt sim_hints.m (and associated files) to get it to work on your new DBN
 - Then adapt sim_hints_decision.m (and associated files) to get it to work on your new model

Key Ideas

- Simulation setup
 - System:
 - Encode inference model
 - Algorithm to compute marginal distribution
 - Decision making (compute expected utility)
 - Simulated user
 - Encode model sample evidence, respond to system action
- Average out results over many trials
 - Properly understand general behaviour
 - Typically: hundreds or thousands of trials