Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

Today: Eliciting a Utility Function

Previous Lectures

- Probabilistic inference (Bayes nets)
 - Maintain beliefs about the world
 - Probabilities can be estimated
- Utility theory
 - Quantify preferences
 - Where do utilities come from?
- Combination:
 - Take actions with maximum expected utility

Preference Over Lotteries

- Recall: action/choice outcomes can be stochastic
- Each action is a "lottery" over outcomes
- A simple lottery over X has the form:

$$I = [(p_1, x_1), (p_2, x_2), ..., (p_n, x_n)]$$

where $p_i \ge 0$ and $\sum p_i = 1.0$

- Outcomes are just trivial lotteries
 - One outcome has probability 1.0

Preference Over Lotteries

- Recall: action/choice outcomes can be stochastic
- Each action is a "lottery" over outcomes
- A simple lottery over X has the form:

$$I = [(p_1, x_1), (p_2, x_2), ..., (p_n, x_n)]$$

where $p_i \ge 0$ and $\sum p_i = 1.0$

A compound lottery allows outcomes to be lotteries:

$$[(p_1,l_1), (p_2,l_2), ..., (p_n,l_n)]$$
 restrict to finite compounding

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

Which Would You Choose?

• Between:

-[(0.5, \$200,000), (0.5 \$0)]

Gamble

Which Would You Choose?

• Between:

- [(0.5, \$200,000), (0.5 \$0)] Gamble

- \$100,000 Sure Win

Which Would You Choose?

- Between:
 - -[(0.5, \$200,000), (0.5 \$0)]
 - **-** \$100,000

- Utility of money is nonlinear!
 - -U(\$100K) > 0.5*U(\$200K) + 0.5*U(\$0)
 - What if lottery changed to: \$500K, \$1M,... p = 0.6, 0.7, 0.999, ...?

Concave Utility Function

Concave Utility Function

Most people take a sure win of \$40K over a gamble for \$200K

 How valuable is the help you get as a function of ...?

 How valuable is the help you get as a function of ...?

 How valuable is the help you get as a function of ...?

Each function may represent different individual users

 How valuable is the help you get as a function of ...?

Recall from HCI: interface bloat is bad design

 How valuable is the help you get as a function of ...?

How valuable is the help you get as a function of

- Additive decomposition?
 - Roughly: U(help) = c_1 *quality + c_2 *length + c_3 *indep

Elicitation Queries

- Decision problem setup:
 - Best outcome with utility 1.0
 - Worst outcome with utility 0.0
 - Other outcomes have utility values in [0,1]

Elicitation Queries

- Decision problem setup:
 - Best outcome with utility 1.0
 - Worst outcome with utility 0.0
 - Other outcomes have utility values in [0,1]
- Standard gamble
 - $SG(pr) = [pr,o^{best}; 1-pr, o_{worst}]$
 - Expected utility of SG = pr

Which would you choose:

- [(0.5, \$200,000), (0.5 \$0)]
- \$100,000

Elicitation Queries

- Decision problem setup:
 - Best outcome with utility 1.0
 - Worst outcome with utility 0.0
 - Other outcomes have utility values in [0,1]
- Standard gamble
 - $SG(pr) = [pr,o^{best}; 1-pr, o_{worst}]$
 - Expected utility of SG = pr

Which would you choose:

- [(0.5, \$200,000), (0.5 \$0)]
- \$100,000

- Example:
 - Let pr = 0.5, then EU(SG) = 0.5(1) + 0.5(0) = 0.5
 - Let pr = 0.8, then EU(SG) = 0.8(1) + 0.2(0) = 0.8

What This Means

- Given an outcome
 - Call this o_i
- You want to know its utility value in [0,1]
 - Call this pr
- Can't directly ask for pr
- Set it up a standard gamble with two options:
 - $-SG(pr) = [pr,o^{best}; 1-pr, o_{worst}]$
 - Sure win of o_i
- Find the value of pr such that the person is indifferent between the two options
 - Then pr is the expected value of o_i

Standard Gamble Query

Standard gamble

- $-SG(pr) = [pr,o^{best}; 1-pr, o_{worst}]$
- Expected utility of SG = pr

Standard gamble query

- Alternative A: SG(pr)
- Alternative B: o_i
- Question to ask: What is pr s.t. $SG(pr) = o_i$?
- Response to elicit from user: pr

Try It Yourself

- Suppose Quiz 2:
 - Choose between coin flip and a fixed score
- Find a partner and ask:
 - Alternative A: SG(pr) = [pr, 100%; 1-pr, 0%]
 - Alternative B: $o_i = 51\%$
 - Question to ask: What is pr s.t. $SG(pr) = o_i$?
 - Response to elicit from user: pr
- Switch roles and replace:

- Alternative B: $o_i = 88\%$

How well did it go?

Bound Query

- Bound query
 - Alternative A: SG(pr)
 - Alternative B: o_i
 - Question to ask: Given pr, is $SG(pr) > o_i$?
 - Response to elicit from user: Yes/No

Like binary search

- Less information gain
 - Must ask sequence of queries to identify pr of o_i

Try The New Version

- Same context (Quiz 2 score)
 - Construct query (choose reasonable pr)
 - Keep asking queries until you've identified pr
- Find a partner and ask:
 - Alternative A: SG(pr) = [pr, 100%; 1-pr, 0%]
 - Alternative B: $o_i = 75\%$
 - Question to ask: Given pr, is $SG(pr) > o_i$?
 - Response to elicit from user: Yes/No

Comparison

Query Type	Question	Range of Responses
SGQ(pr,o _i)	What is pr s.t. $SG(pr) = o_i$?	<i>pr</i> ∈ [0,1]
Bound(pr,o _i)	Given pr , is $SG(pr) > o_i$?	Yes/No

• Which is better?

Comparison

Query Type	Question	Range of Responses
SGQ(pr,o _i)	What is pr s.t. $SG(pr) = o_i$?	<i>pr</i> ∈ [0,1]
Bound(pr,o;)	Given pr , is $SG(pr) > o_i$?	Yes/No

Which is better?

- SGQ provides pinpoint answer,
 but mixture of outcomes is difficult to interpret
- Bound query offers more meaningful queries,
 but less meaningful as feasible regions get smaller

Case Study in Software Help (Hui & Boutilier 2008)

- Help: Macro suggestion in PowerPoint toolbar
- Variables: Length, Quality, User Independence
 - User independence proxy via task difficulty

Experiment Setup

- Series of controlled highlighting task in PowerPoint
- Goal: To sample U(I,L,Q)
 - Indep, I = 0 (low), 1 (high)
 - Length, L = 1, 5, 10 icons
 - Quality, Q = 0 (wrong), 2 (partial), 4 (perfect)
- $o^{best} = 10,L1,Q4$
- $o_{worst} = I1,L10,Q0$
- Elicited until small "feasible" regions (pr \pm 0.05)

User 11 (midpoints)

User 11 – role of length

High tolerance for length when Qual is also high

User 11 – value of non-perfect help

Utility in Q2, even Q0

Higher utility with easy task 43

User 11 – monotonicity

Non-decreasing in Q and non-increasing in L

User 11 – curvature of partial function

Different structure as Q changes

Rest of the Study

 Imagine carrying out 50 highlighting tasks vs. doing 50 highlighting tasks

- Conceptual vs. experiential preferences
 - What you think you like isn't what you actually like

 Adapting elicitation procedure to elicit experiential preferences

Key Ideas

Main concepts

- Eliciting a utility function via incremental constraints
- Standard gamble query: What is pr s.t. $SG(pr) = o_i$?
- Bound query: Given pr, is $SG(pr) > o_i$?

Representation:

For simplicity, utility function may assume additive decomposition

• Algorithm:

 Bound query for preference elicitation induces constraints for incremental refinement