Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

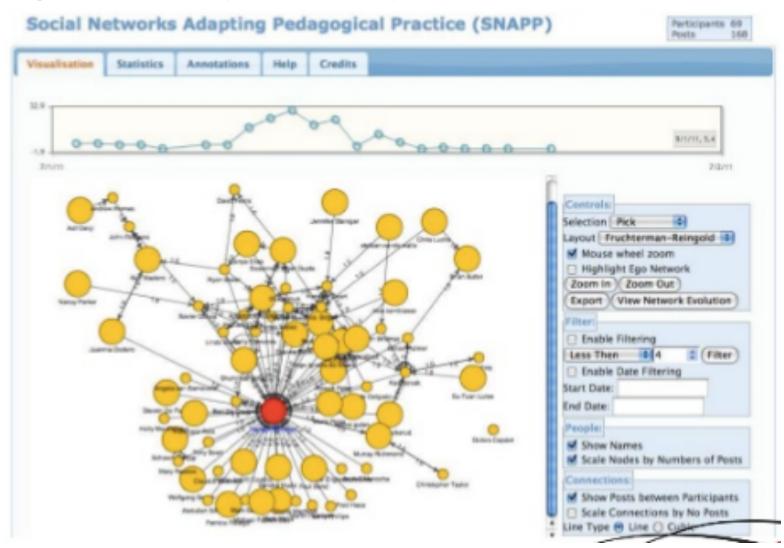
General Approaches

- Domain-driven:
 - Stakeholder: I have a problem
 - Analyst:
 - This is the data we'll need to understand the problem
 - [Gather data...]
 - This is what the data says what needs to be done

 Analyst/someone else comes up with the solution that meets those needs

General Approaches

- Data-driven:
 - Stakeholder: I have a bunch of data
 - Analyst:
 - This is what the domain specialists indicate as important information to study
 - These are the techniques I have to explore the data
 - These are the patterns/relationships/models I've discovered
 - Analyst/someone else comes up rationale to explain the discoveries

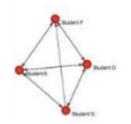

Scenario: Modeling Student Interaction

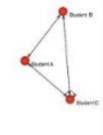
- Assist educators in identifying:
 - Learner isolation
 - Community formation
 - Creativity

Why are these important in learning?

Case Study 1: SNAPP

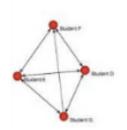
Image taken from slideshare.net (Bakharia & Dawson 2011)

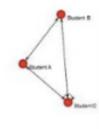

- Graph used to view interaction via connectivity
 - Intervention to include isolated learners


- Graph used to view interaction via connectivity
 - Intervention to include isolated learners
- Identification of facilitator centric pattern
 - Indication there's not much knowledge sharing or collaboration

- Graph used to view interaction via connectivity
 - Intervention to include isolated learners
- Identification of facilitator centric pattern
 - Indication there's not much knowledge sharing or collaboration

Suggests lack of diversity

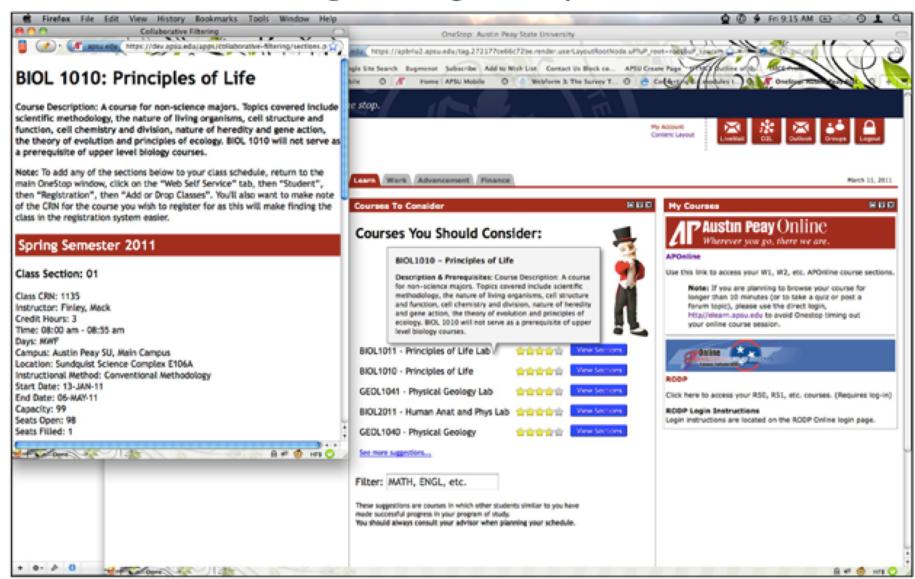




- Graph used to view interaction via connectivity
 - Intervention to include isolated learners
- Identification of facilitator centric pattern
 - Indication there's not much knowledge sharing or collaboration

- Suggests lack of diversity
- Lots of nodes with a low degree
 - Lack of engagement or understanding

Scenario: Recommending Electives


- Assist students in finding:
 - Interesting non-degree electives
 - Relevant electives
 - Highly recommended electives

How do you decide which electives to take?

Case Study 2: Degree Compass

- Piloted in Austin Peay State University
- Recommends courses that best fit student talents and program of study
- Generates ranked list of courses that help student progress through the program
- Ranking of courses is overlaid with estimation of best student performance
- Recommends:
 - Courses required for graduation
 - Courses central to curriculum and major
 - Courses students are expected to succeed in (How?)

Figure 1. Degree Compass

Potential Impact on Student Success

- U.S. Higher education statistics:
 - 77% advances to second year
 - 55% students graduate at post-secondary
 - 60% full-time undergrads take 8 years to get a 4year degree
- Uses predictive analytics to determine ideal curriculum and quickest path to degree completion
- Acquired by Desire2Learn Inc. in 2013

Scenario: First-Year Retention

- Assist students in:
 - Integrating into new campus life
 - Identifying events or clubs of interest
 - Staying on track academically

 What was your transition to first year university like?

Case Study 3: FYRe

- Build a "purpose network" to:
 - Improve student and parent engagement
 - Increase student retention rates
 - Track and collect success metrics
- Piloted at Fort Hays State University, which has ¾ student population studying online
- First-Year Retention Experience (FYRe) is an online (closed) network to engage students in campus life

Retention Rates in FYRe

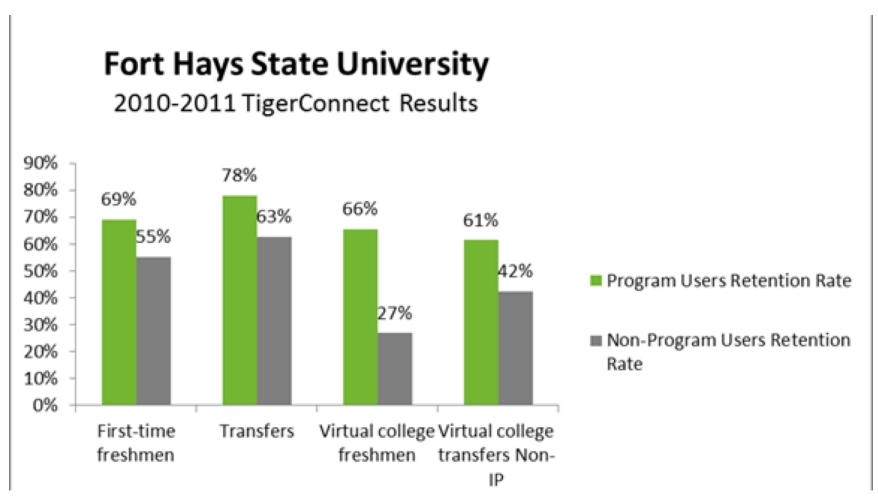


Image taken from http://er.educause.edu/articles/2012/8/building-a-purpose-network-to-increase-student-engagement-and-retention

Parent FYRe and EarlyIQ

Parent FYRe

- Parent network for students in program
- Communicate student support efforts and interests for students and families

EarlyIQ

- Administrative interface to identify at-risk students
- Implement intervention plans, track progress, communicate with other faculty

Home

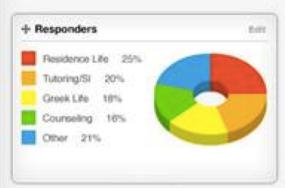
Data

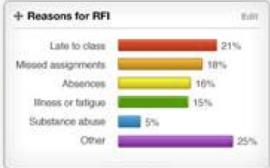
Action Plans

Legged in an John Orover: Silv Navigator

Students

Staff

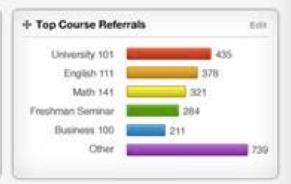

Account Settings

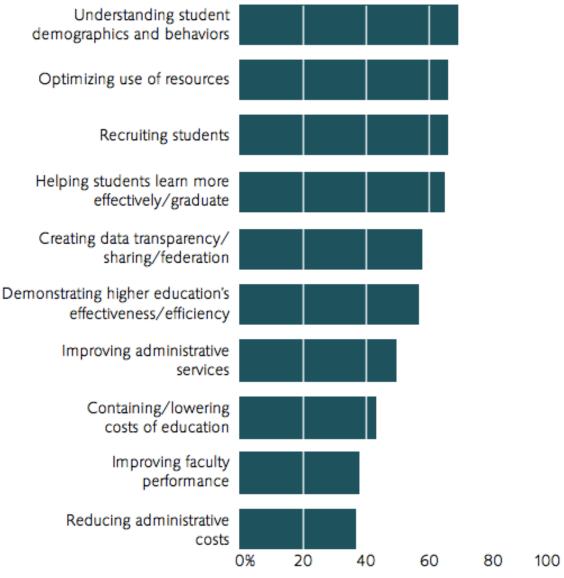

Assessment

INSIGHT FOR INFORMED DECISIONS

Assessment

215 action plans in the system 92 action plans in progress 37 action plans overdue 86 action plans completed





Summary

- LA can involves many aspects:
 - Incorporate data from multiple sources
 - Profile individual learners
 - Identify at-risk learners
 - Model progress and activity in (near) real-time
 - Automate interventions
 - Adapt personalized learning content, activities, and assessments
 - Facilitate interventions or decision making
 - Compare learner profiles to domain models for assessment

Figure 4. Perceived Benefits of Analytics for Higher Education

Percentage of respondents reporting a large or major benefit of analytics

Inventory of LA Tools

- From Ferguson et al. 2016, Appendix 1:
 - Inventory of tools/systems for various purposes

- In-class exercise:
 - For each tool, take turns presenting the following:
 - Basic description of the tool
 - What is good, cool, novel, etc.?
 - What is bad, weird, needed but not done, etc.?

Overview of A1

- A very short assignment to get you into the course
 - Exercise 1:
 - Pick a tool from Ferguson et al. 2016
 - List 3 features to improve it
 - Exercise 2:
 - Data collection for later modeling exercise
- Future assignment expectations
 - Programming in (new) languages