Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

General Decision Making Problem

- Consider an intelligent tutoring system designed to assist the user in programming
- Possible actions (intended to be helpful)?

General Decision Making Problem

- Consider an intelligent tutoring system designed to assist the user in programming
- Possible actions (intended to be helpful):
 - A1: Auto-complete the current programming statement
 - A2: Suggest several options for completing the current statement
 - A3: Provide hints for completing the statement
 - A4: Ask if user needs help in a pop-up dialogue

...

A5: Keep observing the user (do nothing)

General Decision Making Problem

- Consider an intelligent tutoring system designed to assist the user in programming
- Possible actions (intended to be helpful):
 - A1: Auto-complete the current programming statement
 - A2: Suggest several options for completing the current statement
 - A3: Provide hints for completing the statement
 - A4: Ask if user needs help in a pop-up dialogue

• • •

- A5: Keep observing the user (do nothing)
- What system does should depend on helpful it can be for the user

"Your Happiness is My Happiness"

- System acts to help user
- If user is happy, system is doing the right thing

"Your Happiness is My Happiness"

- System acts to help user
- If user is happy, system is doing the right thing
- Therefore:
 - System makes actions to keep user happy
 - Utility function should reflect user's preferences

Utility Function with User Variables

- System's decision problem:
 - Which is the best action to make user most happy?
 - With consideration to how much help the user needs right now

Utility Function with User Variables

- System's decision problem:
 - Which is the best action to make user most happy?
 - With consideration to how much help the user needs right now
- EU(Action) = Pr(Help) × U(Help,Action)

Comes from marginal distribution computed from Bayes net

Possible Way to Compute Pr(Help)

We will come back to this...

Defining U(Help, Action)

- For each scenario, assign real number to each action: auto-complete, suggest options, hint, ask, do nothing
- If Help is high,
 - Auto-complete, Suggest options, Hint are more appropriate
 - Note: Should also model quality of suggestion
- If Help is medium,
 - Ask and Hint is more appropriate
- If Help is low,
 - Do nothing is more appropriate

Example: U(Help, Action)

- Define U in [-10, +10]
 - Best outcome gets +10
 - Worst outcome gets -10
- Case: When Help is low, Do nothing is best
 - U(1, 5) = 10
 - U(1, 4) = -10 % pop-up dialogue, super annoying
 - U(1, 3) = -5 % hint, somewhat disruptive
 - U(1, 2) = -7 % suggest, somewhat disruptive
 - U(1, 1) = -2 % auto-complete, not too intrusive if easy to ignore
- Case: When Help is high, Auto-complete, Suggest options, Hint are best
 - U(3, 1) = 10 % auto-complete
 - U(3, 2) = 8 % suggest, still helpful when stuck
 - etc.
- Case: When Help is medium, Ask and Hint are most appropriate
 - U(2, 1) = -5 % auto-complete, not as great

Finally, we can do something

- Computing Pr(...) is like doing only categorization
- Now we can start making decisions

What to do with our Beliefs?

- Given our belief of the world, Pr(X|E), we want to see what action is best
 - Uses probability theory

- Need to quantify how good an action is with respect to each possible state defined by X
 - Uses utility theory

Decision Making Example

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

Should victim go to court?

Decision Making Example

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

Should victim go to court?

Decision Making Example

DECISION TREE POSSIBLE OUTCOMES OF DECISION TO SETTLE OR GO TO COURT

Example

- You want to take a morning walk but not sure if you should bring an umbrella
- You don't really want to carry an umbrella
- But it looks like it may rain and you don't want to get wet

- Possible actions: bring umbrella, leave it at home
- How do you decide what to do?

Decision Making

- How much do you like being wet vs. dry?
- How much do you like having to carry an umbrella around?

- You have a set of preferences over the alternatives
 - E.g.: not having to carry umbrella and staying dry, is better than carrying umbrella and staying dry, is better than ...

		States		
		It rains	It doesn't rain	
Actions	Take umbrella	Encumbered, Dry	Encumbered, Dry	
	Leave umbrella	Wet	Free, Dry	

• 2 states x 2 actions = 4 possible outcomes

	States		
		It rains	It doesn't rain
Actions	Take umbrella	Encumbered, Dry +7	Encumbered, Dry +5
	Leave umbrella	Wet -8	Free, Dry +10

- 2 states x 2 actions = 4 possible outcomes
- Utility = a real number value of each outcome

		States			
		It rains	0.4	It doesn't rain	0.6
Actions	Take umbrella	Encumbered, Dry	+7	Encumbered, Dry	+5
	Leave umbrella	Wet	-8	Free, Dry	+10

- 2 states x 2 actions = 4 possible outcomes
- Utility = a real number value of each outcome
- Each state has a probability

		States			
		It rains	0.4	It doesn't rain	0.6
Actions	Take umbrella	Encumbered, Dry	+7	Encumbered, Dry	+5
	Leave umbrella	Wet	-8	Free, Dry	+10

- 2 states x 2 actions = 4 possible outcomes
- Utility = a real number value of each outcome
- Each state has a probability

		States			
		It rains	0.4	It doesn't rain	0.6
Actions	Take umbrella	Encumbered, Dry	+7	Encumbered, Dry	+5
	Leave umbrella	Wet	-8	Free, Dry	+10

- 2 states x 2 actions = 4 possible outcomes
- Utility = a real number value of each outcome
- Each state has a probability

		States			
		It rains	0.4	It doesn't rain	0.6
Actions	Take umbrella	Encumbered, Dry	+7	Encumbered, Dry	+5
	Leave umbrella	Wet	-8	Free, Dry	+10

- 2 states x 2 actions = 4 possible outcomes
- Utility = a real number value of each outcome
- Each state has a probability
- EU(takeUmb) = 5.8
- EU(leaveUmb) = 2.8
- Which action will you choose?

Key Ideas

- Main concepts
 - Probability theory enables us to estimate beliefs of the world
 - Utility theory enables us to express the strength of our preferences over outcomes
 - Decision making problems require both
- Representation:
 - Decision making under uncertainty:
 - Probability distribution of outcomes
 - Utility function to express preference of outcomes