Learning Analytics

Dr. Bowen Hui
Computer Science
University of British Columbia Okanagan

Matlab BNT

- Download at: https://github.com/bayesnet/bnt
- Documentation at: https://www.cs.utah.edu/~tch/notes/matlab/bnt/d ocs/bnt pre sf.html
- "How to use the Bayes Net Toolbox"
 - Installation
 - Download, unzip, start Matlab, cd to path containing files, run:
 - addpath(genpathKPM(pwd))
 - test_BNT
 - After exiting Matlab, need to addpath at start of next use
 - Creating your first Bayes net

Recall BN Example #4

- Pr(B=true | C=true, S=true) = ?
- Pr(B=true | C=true) = ?

Pr(~B)	Pr(B)
0.5	0.5

Pr(~S)	Pr(S)
0.5	0.5

		Pr(~C B,S)	Pr(C B,S)
~B	~S	1	0
В	~S	0	1
~B	S	0	1
В	S	0	1

Implementing BN Example #4

```
B = 1; S = 2; C = 3;
dag = zeros(3,3);
                             % directed acyclic graph
dag([B S], C)=1;
ns = 2*ones(1,3);
bnet = mk bnet(dag, ns); % makes the BN structure
% populate CPTs
bnet.CPD\{B\} = tabular CPD(bnet, B, 'CPT', [0.5 0.5]);
bnet.CPD{S} = tabular CPD(bnet, S, 'CPT', [0.5 0.5]);
CPT = zeros(2,2,2);
CPT(1,1,:) = [1 \ 0]; % make sure each row sums up to 1.0
CPT(2,1,:) = [0 1];
CPT(1,2,:) = [0 1];
CPT(2,2,:) = [0 1];
bnet.CPD{C} = tabular CPD(bnet, C, 'CPT', CPT);
```

Inference with BN Example #4

```
% matlab convention: 1=false 2=true
engine = jtree inf engine(bnet);
ev = cell(1,3);
ev{C} = 2; % C is observed to be true
engine = enter evidence(engine, ev);
m = marginal_nodes(engine, B);
fprintf('P(B=true | C=true) = \%5.3f\n', m.T(2))
ev{S} = 2; % C and S are now true
engine = enter evidence(engine, ev);
m = marginal nodes(engine, B);
fprintf('P(B=true|C=true,S=true) = \%5.3f\n', m.T(2))
```

General Guidelines for Building BNs

- We usually do not build the model based on knowledge about the joint probability distribution
- Typically, we have some vague idea of the dependencies in the world, then we define it precisely into a graphical model
- Steps to follow:
 - Formulate the problem
 - Define the RVs involved
 - Choose independence relations
 - Assign probabilities in the CPTs

Guidelines for Choosing RVs

- Variables must be precise
 - What are the values?
 - How to define them?
 - How to measure them?
 - E.g. weather: difference between the values cold vs. bitter-cold?
- Our discussion: discrete variables
- Different kinds of variables:
 - Observable
 - Hidden may or may not be useful to include, depending on other independencies they generate

Guidelines for Building the Graph

 When we have information about causality, use causal connections to simplify graph

 Consider tradeoffs between precision of the model and size/sparsity of the graph

- Where do the probabilities come from?
 - Expert
 - Approximate analysis
 - Guessing
 - Learning from data

- Where do the probabilities come from?
 - Expert
 - Approximate analysis
 - Guessing
 - Learning from data

Bad news:

— In all these cases, the numbers are approximate!

- Where do the probabilities come from?
 - Expert
 - Approximate analysis
 - Guessing
 - Learning from data

Bad news:

- In all these cases, the numbers are approximate!

Good news:

- The numbers usually do not matter all that much
- Sensitivity analysis can help decide if certain numbers are critical or not for the conclusions

Avoid assigning zero probability to any event

- The relative values of conditional probabilities for $Pr(X_i | Par(X_i))$ given different values of $Par(X_i)$ is important
- Having probabilities that are orders of magnitude different can cause problems in the network

Key Ideas

- Main concept
 - Modeling guidelines for choosing RVs and defining causal relationships
 - Sensitivity analysis can help determine meaningful numeric parameters in the BN
- Computation:
 - Matlab BNT