Learning Analytics

Dr. Bowen Hui Computer Science University of British Columbia Okanagan

Last Class

- Review of probability
 - Basic terminology: random variables, joint distribution
 - Conditional probability, sum-out rule, product rule
 - A few calculation examples
- All in the context of multiagent interaction
 - Inference to model our world
 - Estimate values of hidden variables using observations

Introduced Bayes Rule

- Real world problems typically requires us to compute Pr(H|e)
 - Recall Asian flu example: given Pr(A), Pr(F),
 Pr(F|A)

• Bayes rule rewrites Pr(H|e) ∝ Pr(e|H)Pr(H)

Posterior probability
∝ Likelihood X Prior probability

Belief Perseverance

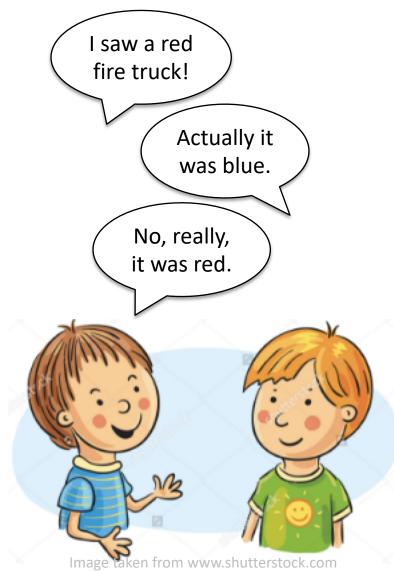


Image taken from www.fotosearch.com

Changes in Representation

- Propositional logic
 - E.g. P = John sees Mary.
 - E.g. If P is true then Q is also true

Changes in Representation

• Propositional logic

- E.g. P = John sees Mary.
- E.g. If P is true then Q is also true
- Predicate logic
 - E.g. sees(John, Mary)
 - E.g. $\forall x \exists y s. t. loves(x, y)$

Changes in Representation

• Propositional logic

- E.g. P = John sees Mary.
- E.g. If P is true then Q is also true
- Predicate logic
 - E.g. sees(John, Mary)
 - E.g. $\forall x \exists y \ s. t. \ loves(x, y)$
- Bayesian inference: Reasoning under uncertainty
 - E.g. Pr(JohnSeesMary) = p_1
 - E.g. Pr(JohnSeesMary \land MarySeesJohn) = p_2

Probabilistic Inference

- Formally:
 - Given a prior distribution *Pr* over some variables (represents degrees of belief over variables)
 - Given new evidence E = e for some variable E
 - Revise your degrees of belief to get the posterior distribution, Pr_e

Probabilistic Inference

- Formally:
 - Given a prior distribution *Pr* over some variables (represents degrees of belief over variables)
 - Given new evidence E = e for some variable E
 - Revise your degrees of belief to get the posterior distribution, Pr_e
- Intuition:
 - How do your degrees of belief change as a result of learning E = e?

(or more generally, *E* = *e*, for set *E*)

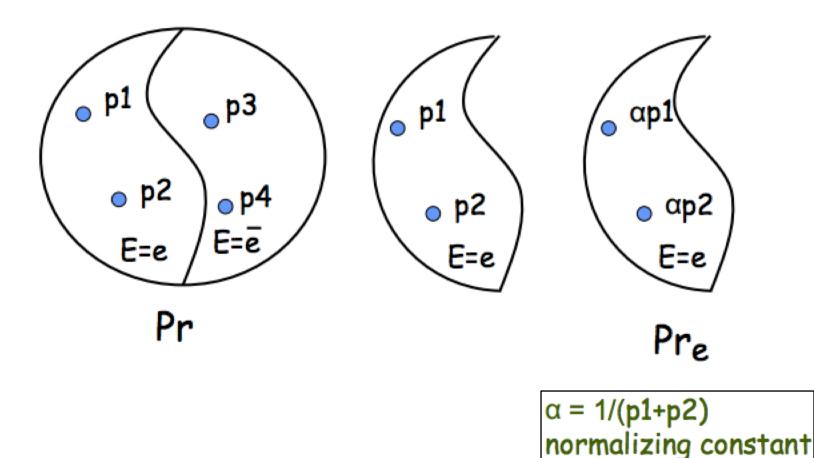
Conditioning

• We define:

$$Pr_e(a) = Pr(a|e)$$

• That is, we produce Pr_e by conditioning the prior distribution on the observed evidence e

Semantics of Conditioning



Computational Bottleneck

 How do we specify the full joint distribution over a set of RVs X₁, ..., X_n?

 Inference in this representation is frightfully slow

Computational Bottleneck

- How do we specify the full joint distribution over a set of RVs X₁, ..., X_n?
 - Exponential number of possible worlds
 - These numbers are not robust/stable
 - These numbers are not natural to assess

 Inference in this representation is frightfully slow

Computational Bottleneck

 How do we specify the full joint distribution over a set of RVs X₁, ..., X_n?

- Inference in this representation is frightfully slow
 - Must sum over exponential number of worlds to answer query Pr(a) or to condition on evidence eto determine $Pr_e(a)$

Recall Headache Example

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

Pr(headache) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

 $Pr(headache \land cold | sunny) = Pr(headache \land cold \land sunny) / Pr(sunny)$

= 0.108/(0.108 + 0.012 + 0.016 + 0.064) = 0.54

 $Pr(headache \land cold | \sim sunny) = Pr(headache \land cold \land \sim sunny) / Pr(\sim sunny)$ = 0.072/(0.072 + 0.008 + 0.144 + 0.576) = 0.09

Practical Solution

- How to avoid these two bottlenecks?
 - No solution in general
 - In practice, we will exploit structure

• Use independence assumptions

Independence

- Two variables A and B are independent if knowledge of A does not the change uncertainty of B (and vice versa)
 - Pr(A|B) = Pr(A)
 - Pr(B|A) = Pr(B)
 - Pr(AB) = Pr(A)Pr(B)

Independence Example

- Consider: Bennett smiles and squint eyes
- If Pr(Smile|Squint) = Pr(Smile)
 - Chance of him smiling when he squints
 - Chance of him smiling in anyway
- And Pr(Squint|Smile) = Pr(Squint)
 - Chance of him squinting when he smiles
 - Chance of him squinting no matter what else he's doing
- Then Smile and Squint are independent

Image taken from iemoji.com

What does Independence Buy Us?

Product rule changes:
 Pr(ab) = Pr(a|b)Pr(b)
 Pr(ab) = Pr(a)Pr(b)

Chain rule changes:
 Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
 Pr(abcd) = Pr(a)Pr(b)Pr(c)Pr(d)

- To loosen the independence assumption, we can use conditional independence
- Two variables A and B are conditionally independent given C if:
 Pr(a|b,c) = Pr(a|c) ∀ a, b, c
- Knowing the value of B does not change the prediction of A given the presence of C

Conditional Independence Example

- Consider: Want tea, pink cup, and rainy
- If Pr(Tea | Pink, Rainy) = Pr(Tea | Rainy)
 - Chance of wanting tea on rainy days in pink cup is the same as chance of wanting tea on rainy days in any cup
- And Pr(Tea | Pink, ~Rainy) = Pr(Tea | ~Rainy) And Pr(Tea |~Pink,Rainy) = Pr(Tea | Rainy) And Pr(Tea |~Pink,~Rainy) = Pr(Tea |~Rainy) And Pr(~Tea | Pink, Rainy) = Pr(~Tea | Rainy) And ...
 - Check equivalence for all other combinations
- Then Tea is independent of Pink given Rainy

Formal Definitions

- x and y are independent iff: $Pr(x) = Pr(x|y) \iff Pr(y) = Pr(y|x) \iff Pr(xy) = Pr(x)Pr(y)$
 - Intuitively, learning y doesn't influence beliefs about x
- x and y are conditionally independent given z iff: $Pr(x|z) = Pr(x|yz) \Leftrightarrow Pr(y|z) = Pr(y|xz) \Leftrightarrow$ $Pr(xy|z) = Pr(x|z)Pr(y|z) \Leftrightarrow ...$
 - Intuitively, learning y doesn't influence beliefs about x if you already know z

What Good is Independence?

 Given (say, Boolean) variables X₁,...,X_n are mutually independent

How to specify the full joint distribution
 Pr(X₁,...,X_n)?

What Good is Independence?

 Given (say, Boolean) variables X₁,...,X_n are mutually independent

- How to specify the full joint distribution
 Pr(X₁,...,X_n)?
 - Joint is simplified as: $\prod_{i=1}^{n} \Pr(X_i)$
 - Can specify the full joint using only n parameters (linear) instead of 2ⁿ – 1 (exponential)

Example

• Given 4 mut. Indep. Boolean RVs: X₁, X₂, X₃, X₄

$$Pr(x_1) = 0.4, Pr(x_2) = 0.2, Pr(x_3) = 0.5, Pr(x_4) = 0.8$$

•
$$Pr(x_1, x_2, x_3, x_4) = ?$$

• $Pr(x_1, x_2, x_3 | x_4) = ?$

The Value of Independence

- Complete independence reduces both representation of joint distribution and inference from O(2ⁿ) to O(n)
- Unfortunately, complete independence is very rare
 Most realistic domains don't exhibit this property
- Fortunately, most domains exhibit a fair amount of conditional independence
 - Can exploit conditional independence for representation and inference too
 - Bayesian networks do just this

An Aside on Notation

- *Pr(X)* for variable *X* (or set of variables) refers to the (marginal) distribution over *X*
 - Distinguish from Pr(x) or Pr(~x) (or Pr(x_i) for non-Boolean vars) which are numbers
 - Think of Pr(X) as a function that accepts any $x_i \ni Dom(X)$ as an argument and returns $Pr(x_i)$

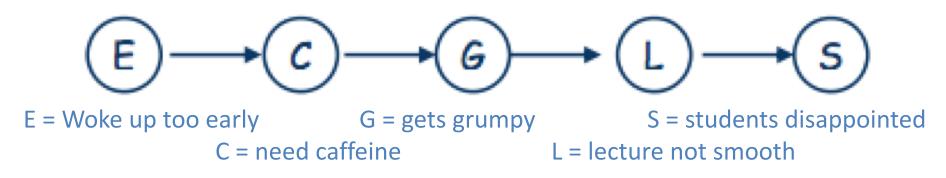
An Aside on Notation

- *Pr(X)* for variable *X* (or set of variables) refers to the (marginal) distribution over *X*
 - Distinguish from Pr(x) or Pr(~x) (or Pr(x_i) for non-Boolean vars) which are numbers
 - Think of Pr(X) as a function that accepts any $x_i \ni Dom(X)$ as an argument and returns $Pr(x_i)$
- Pr(X|Y) refers to family of conditional distributions over X, one for each $y \ni Dom(Y)$
 - Think of Pr(X | Y) as a function that accepts any x_i and y_k and returns Pr(x_i | y_k)

Exploiting Conditional Independence

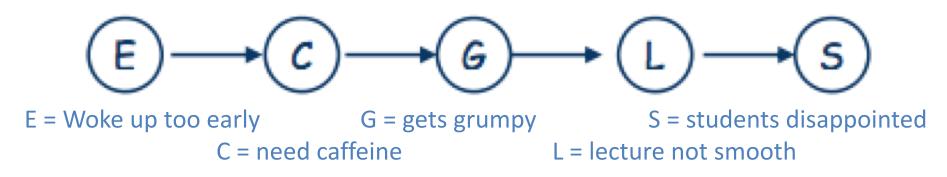
- Consider the following story:
 - If Bowen woke up too early (E), she needs caffeine (C)
 - If Bowen needs caffeine, she's likely to be grumpy (G)
 - If she is grumpy, then her lecture won't be as good (L)
 - If lecture doesn't go smoothly, then students will be disappointed (S)

• If you learned any of E,C,G,L, would your assessment of Pr(S) change?



- If you learned any of E,C,G,L, would your assessment of Pr(S) change?
 - If any of E,C,G,L are true, you would increase Pr(s) and decrease Pr(~s)
 - Therefore, S is <u>not</u> independent of E,C,G,L

• If you knew the value of L (true or false), would learning the value of E,C, or G influence your assessment of Pr(S)?



- If you knew the value of L (true or false), would learning the value of E,C, or G influence your assessment of Pr(S)?
 - Influence that E,C,G has on S is mediated by L
 - E.g. Students aren't disappointed because Bowen is grumpy, it's because the lecture wasn't smooth
 - So S is independent of E,C,G, given L

- We have: S is independent of E,C,G, given L
- Similarly:
 - L is independent of E,C given G
 - G is independent of E given C
- This translates to:
 - Pr(S|L,G,C,E) = Pr(S|L)
 - Pr(L|G,C,E) = Pr(L|G)
 - Pr(G|C,E) = Pr(G|C)
 - Pr(C|E)
 - Pr(E)

% doesn't simplify further % doesn't simplify further

E = Woke up too earlyG = gets grumpyS = students disappointedC = need caffeineL = lecture not smooth 36

G

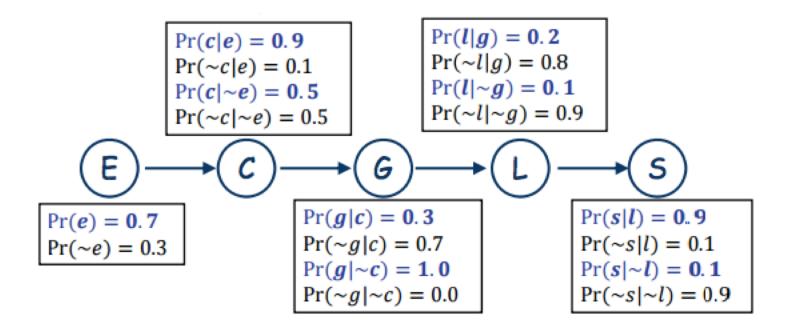
• Specifying the full joint distribution Pr(S,L,G,C,E)?

- Specifying the full joint distribution Pr(S,L,G,C,E)?
- By the chain rule: Pr(S,L,G,C,E) = Pr(S|L,G,C,E)Pr(L|G,C,E)Pr(G|C,E)Pr(C|E)Pr(E)

Conditional Independence

- Specifying the full joint distribution Pr(S,L,G,C,E)?
- By the chain rule: Pr(S,L,G,C,E) = Pr(S|L,G,C,E)Pr(L|G,C,E)Pr(G|C,E)Pr(C|E)Pr(E)
- By our independence assumptions: Pr(S,L,G,C,E) = Pr(S|L)Pr(L|G)Pr(G|C)Pr(C|E)Pr(E)
- The full joint is specified by 5 local conditional distributions!

Example Quantification



- Specifying the joint requires only 9 parameters!
 - Instead of 31 (= $2^5 1$) for explicit representation

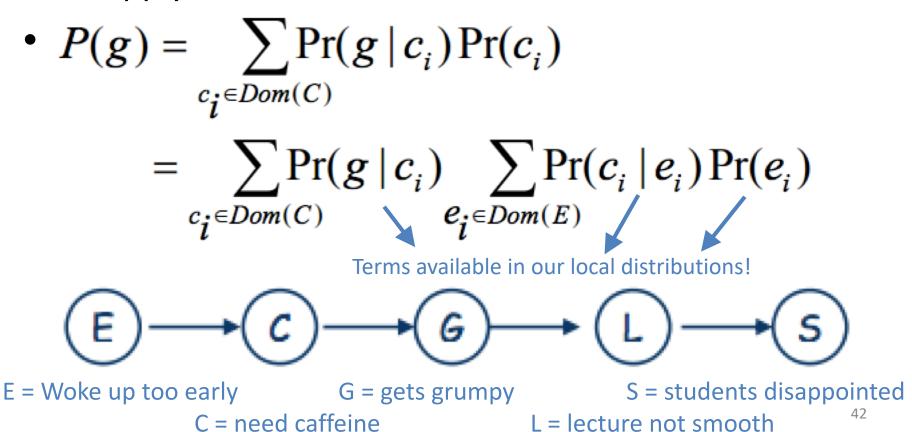
Inference is Easy

• How to compute Pr(g)?

Inference is Easy

• How to compute Pr(g)?

- Apply the sum-out rule



Inference is Easy

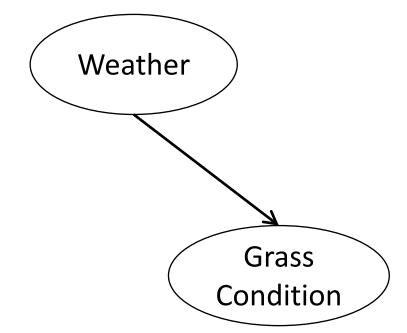
• Concrete example to compute Pr(g):

Modeling Example

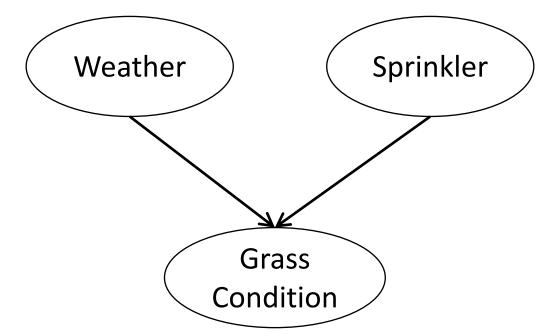
- Suppose you have a simple world with 3 variables: weather, sprinkler, and grass condition
 - If it's rainy, the grass is wet.
 - If the sprinkler is on, the grass is wet.
 - If it's cloudy, the sprinkler should be off.

• How to model these interactions?

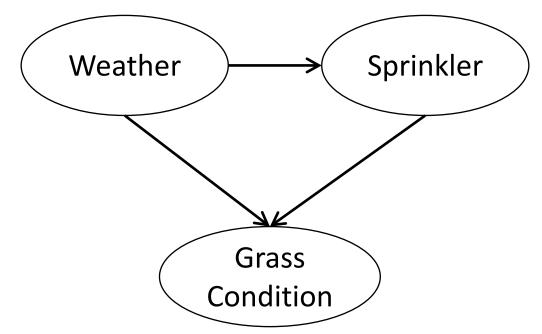
If it's rainy, the grass is wet.



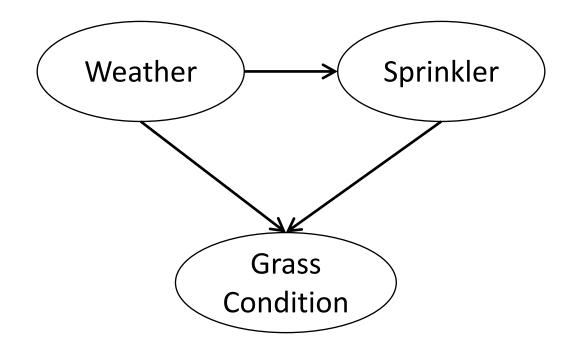
If the sprinkler is on, the grass is wet.



If it's cloudy, the sprinkler should be off.



Most Popular Bayes Net Example



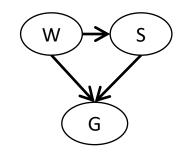
What is a Bayes Net (BN)

- Also called Bayesian network, belief network
- A graphical representation of the direct dependencies over a set of variables
- Directed dependencies express the causality between the variables
- Each variable has an associated conditional probability tables (CPTs) quantifying the strength of those influences

BN Definition

- A BN over variables {X₁, X₂, ..., X_n} consists of:
 - A directed acyclic graph whose nodes are variables
 - A set of CPTs *Pr(X_i*/*Parents(X_i*)) for each *X_i*

Pr(W=sunny)	Pr(W=cloudy)	Pr(W=rainy)		
0.6	0.3	0.1		



BN Definition

- A BN over variables {X₁, X₂, ..., X_n} consists of:
 - A directed acyclic graph whose nodes are variables
 - A set of CPTs *Pr(X_i*/*Parents(X_i*)) for each *X_i*

Pr(W=sunny)	Pr(W=cloudy)	Pr(W=rainy)				1
0.6	0.3	0.1			Pr(S=on W)	Pr(S=off W)
				W=sunny	0.1	0.9
		(w) → (s)		W=cloudy	0.8	0.2
		\checkmark		W=rainy	0.001	0.999

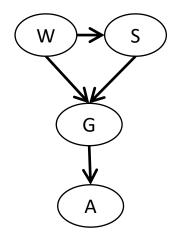
BN Definition

- A BN over variables $\{X_1, X_2, ..., X_n\}$ consists of:
 - A directed acyclic graph whose nodes are variables
 - A set of CPTs $Pr(X_i | Parents(X_i))$ for each X_i

Pr(W=sunny)	Pr(W=cloudy)	Pr(W=rainy)			Pr(S=on \	N) Pr(S=off W)		
0.6	0.3	0.1		W=sunny	0.1	0.9		
			W=cloudy		0.8	0.2		
		(V	v) → (s	W=rainy	0.001	0.999		
						Pr(G=wet W	/,S)	Pr(G=dry W,S)
			G	W=sunny	S=on	0.9		0.1
				W=sunny	S=off	0.001		0.999
				W=cloudy	S=on	0.99		0.01
				W=cloudy	S=off	0.2		0.8
				W=rainy	S=on 1			0
				W=rainy	S=off	0.9		0.1

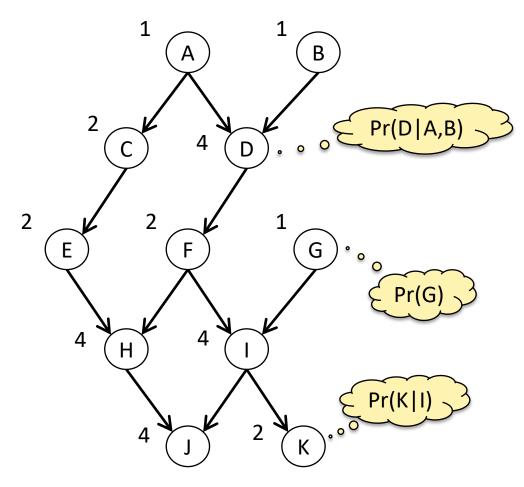
Key Terminology

- Parents of a node: Parents(X_i)
- Children of a node
- Descendants of a node
- Ancestors of a node
- Family: set of nodes consisting of Xi and its parents
 - CPTs are defined over families in the BN



Parents(W) = ? Children(S) = ? Descendants(W) = ? Ancestors(A) = ? Family(G) = ?

An Example Bayes Net



- A few CPTs "shown"
- Explicit joint requires
 2¹¹ 1 = 2047 params
- BN requires only 27 params (the number of entries for each CPT is written)

Semantics of Bayes Nets

- The structure of the BN means:
 - Every X_i is conditionally independent of all its nondescendants given its parents
 - Intuition: your parents is the only ones who has influence on you
- Formally:

 $Pr(X_i | S \cup Par(X_i)) = Pr(X_i | Par(X_i))$ for any subset $S \subseteq NonDescendants(X_i)$

Semantics of Bayes Nets

• If we ask for *Pr*(*x*₁,...,*x*_n)

Assuming an ordering consistent with the network

- By the chain rule, we have: $Pr(x_1,...,x_n)$ $= Pr(x_n | x_{n-1},...,x_1)Pr(x_{n-1} | x_{n-2},...,x_1)...Pr(x_1)$ $= Pr(x_n | Par(x_n))Pr(x_{n-1} | Par(x_{n-1}))...Pr(x_1)$
- Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

Key Ideas

- Main concept
 - Computational bottlenecks in computing joint probability distributions appear in representation and inference
 - Exploit independence and conditional independence
 - Computation is linear rather than exponential
- Representation:
 - Bayes net is a directed acyclic graph whose nodes are random variables with associated CPTs
 - Expresses the joint probability distribution using the product of local distributions, i.e. $Pr(X_i | Par(X_i))$