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Last Class

• Review of probability
– Basic terminology: random variables, joint distribution
– Conditional probability, sum-out rule, product rule
– A few calculation examples

• All in the context of multiagent interaction
– Inference to model our world
– Estimate values of hidden variables using observations
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Introduced Bayes Rule

• Real world problems typically requires us to 
compute Pr(H|e)
– Recall Asian flu example: given Pr(A), Pr(F), 

Pr(F|A)

• Bayes rule rewrites Pr(H|e) ∝ Pr(e|H)Pr(H)
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Posterior
probability ∝ Likelihood      X Prior probability



Belief Perseverance
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I saw a red 
fire truck!

Actually it 
was blue.

No, really, 
it was red.



Changes in Representation
• Propositional logic
– E.g. P = John sees Mary.
– E.g. If P is true then Q is also true

• Predicate logic
– E.g. sees( John, Mary )
– E.g. ∀" ∃$ %. '. ()*+%( ", $ )

• Bayesian inference: Reasoning under uncertainty
– E.g. Pr( JohnSeesMary ) = p1
– E.g. Pr( JohnSeesMary ∧MarySeesJohn) = p2
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Probabilistic Inference
• Formally:
– Given a prior distribution Pr over some variables 

(represents degrees of belief over variables)
– Given new evidence E = e for some variable E
– Revise your degrees of belief to get the posterior 

distribution, Pre

• Intuition:
– How do your degrees of belief change as a result of 

learning E = e? 
(or more generally, E = e, for set E)
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Conditioning

• We define:
Pre(a) = Pr(a|e)

• That is, we produce Pre by conditioning the 
prior distribution on the observed evidence e
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Semantics of Conditioning
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Computational Bottleneck

• How do we specify the full joint distribution 
over a set of RVs X1, …, Xn?

• Inference in this representation is frightfully 
slow
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Computational Bottleneck

• How do we specify the full joint distribution 
over a set of RVs X1, …, Xn?
– Exponential number of possible worlds
– These numbers are not robust/stable
– These numbers are not natural to assess

• Inference in this representation is frightfully 
slow
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Computational Bottleneck

• How do we specify the full joint distribution 
over a set of RVs X1, …, Xn?

• Inference in this representation is frightfully 
slow
– Must sum over exponential number of worlds to 

answer query Pr(a) or to condition on evidence e
to determine Pre(a)
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Recall Headache Example
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Practical Solution

• How to avoid these two bottlenecks?
– No solution in general
– In practice, we will exploit structure

• Use independence assumptions
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Independence

• Two variables A and B are independent if 
knowledge of A does not the change 
uncertainty of B (and vice versa)
– Pr(A|B) = Pr(A)
– Pr(B|A) = Pr(B)
– Pr(AB) = Pr(A)Pr(B)
– In general:

Pr(X1,…,Xn) = ∏"#$
% Pr()*)
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Only need n numbers to specify the joint!



Independence Example
• Consider: Bennett smiles and squint eyes

• If Pr(Smile|Squint) = Pr(Smile)
– Chance of him smiling when he squints
– Chance of him smiling in anyway

• And Pr(Squint|Smile) = Pr(Squint)
– Chance of him squinting when he smiles 
– Chance of him squinting no matter what else he’s doing

• Then Smile and Squint are independent
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What does Independence Buy Us?

• Product rule changes:
Pr(ab) = Pr(a|b)Pr(b)
Pr(ab) = Pr(a)Pr(b)

• Chain rule changes:
Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
Pr(abcd) = Pr(a)Pr(b)Pr(c)Pr(d)
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Conditional Independence

• To loosen the independence assumption, we 
can use conditional independence

• Two variables A and B are conditionally 
independent given C if:
– Pr(a|b,c) = Pr(a|c)          ∀ a, b, c

• Knowing the value of B does not change the 
prediction of A given the presence of C
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Conditional Independence Example
• Consider: Want tea, pink cup, and rainy

• If Pr(Tea|Pink,Rainy) = Pr(Tea|Rainy)
– Chance of wanting tea on rainy days in pink cup

is the same as chance of wanting tea on rainy days in any cup

• And Pr(Tea|Pink,~Rainy) = Pr(Tea|~Rainy)
And Pr(Tea|~Pink,Rainy) = Pr(Tea|Rainy)
And Pr(Tea|~Pink,~Rainy) = Pr(Tea|~Rainy)
And Pr(~Tea|Pink,Rainy) = Pr(~Tea|Rainy)
And …
– Check equivalence for all other combinations

• Then Tea is independent of Pink given Rainy
21
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Formal Definitions

• x and y are independent iff:
Pr(x) = Pr(x|y) ⟺ Pr(y) = Pr(y|x) ⟺ Pr(xy) = Pr(x)Pr(y)
– Intuitively, learning y doesn’t influence beliefs about x

• x and y are conditionally independent given z iff:
Pr(x|z) = Pr(x|yz) ⟺ Pr(y|z) = Pr(y|xz) ⟺
Pr(xy|z) = Pr(x|z)Pr(y|z) ⟺ …
– Intuitively, learning y doesn’t influence beliefs about x if 

you already know z
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What Good is Independence?

• Given (say, Boolean) variables X1,…,Xn are 
mutually independent

• How to specify the full joint distribution 
Pr(X1,…,Xn)?
– Pr(X1,…,Xn) = ∏"#$

% Pr()*)
– Can specify the full joint using only n parameters 

(linear) instead of 2n – 1 (exponential)
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What Good is Independence?

• Given (say, Boolean) variables X1,…,Xn are 
mutually independent

• How to specify the full joint distribution 
Pr(X1,…,Xn)?
– Joint is simplified as: ∏"#$

% Pr()*)
– Can specify the full joint using only n parameters 

(linear) instead of 2n – 1 (exponential)
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Example
• Given 4 mut. Indep. Boolean RVs: X1, X2, X3, X4

Pr(x1) = 0.4, Pr(x2) = 0.2, Pr(x3) = 0.5, Pr(x4) = 0.8

• Pr(x1,~x2,x3,x4) = ?
= (0.4)(1-0.2)(0.5)(0.8)
= 0.128

• Pr(x1,x2,x3|x4) = ?
= (0.4)(0.2)(0.5)(1)
= 0.04
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The Value of Independence
• Complete independence reduces both representation 

of joint distribution and inference from O(2n) to O(n)

• Unfortunately, complete independence is very rare
– Most realistic domains don’t exhibit this property

• Fortunately, most domains exhibit a fair amount of 
conditional independence
– Can exploit conditional independence for representation 

and inference too
– Bayesian networks do just this
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An Aside on Notation
• Pr(X) for variable X (or set of variables) refers to 

the (marginal) distribution over X
– Distinguish from Pr(x) or Pr(~x) (or Pr(xi) for non-

Boolean vars) which are numbers
– Think of Pr(X) as a function that accepts any !" ∋$%&(() as an argument and returns Pr(xi)

• Pr(X|Y) refers to family of conditional 
distributions over X, one for each * ∋ $%& +
– Think of Pr(X|Y) as a function that accepts any xi and 
yk and returns Pr(xi|yk)
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Think truth tables



Exploiting Conditional Independence

• Consider the following story:
– If Bowen woke up too early (E), she needs caffeine (C)
– If Bowen needs caffeine, she’s likely to be grumpy (G)
– If she is grumpy, then her lecture won’t be as good (L)
– If lecture doesn’t go smoothly, then students will be 

disappointed (S)

– .
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E = Woke up too early G = gets grumpy S = students disappointed
C = need caffeine L = lecture not smooth



Conditional Independence

• If you learned any of E,C,G,L, would your 
assessment of Pr(S) change?
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Conditional Independence

• If you learned any of E,C,G,L, would your 
assessment of Pr(S) change?
– If any of E,C,G,L are true, you would increase Pr(s) 

and decrease Pr(~s)
– Therefore, S is not independent of E,C,G,L
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Conditional Independence

• If you knew the value of L (true or false), would 
learning the value of E,C, or G influence your 
assessment of Pr(S)?
– Influence that E,C,G has on S is mediated by L
– E.g. Students aren’t disappointed because Bowen is 

grumpy, it’s because the lecture wasn’t smooth
– So S is independent of E,C,G, given L

– .
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Conditional Independence
• We have: S is independent of E,C,G, given L
• Similarly:

– L is independent of E,C given G
– G is independent of E given C

• This translates to:
– Pr(S|L,G,C,E) = Pr(S|L)
– Pr(L|G,C,E) = Pr(L|G)
– Pr(G|C,E) = Pr(G|C)
– Pr(C|E) % doesn’t simplify further
– Pr(E) % doesn’t simplify further

– .
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Conditional Independence

• Specifying the full joint distribution Pr(S,L,G,C,E)?

• By the chain rule:
Pr(S,L,G,C,E) = 
Pr(S|L,G,C,E)Pr(L|G,C,E)Pr(G|C,E)Pr(C|E)Pr(E)

• By our independence assumptions:
Pr(S,L,G,C,E) = Pr(S|L)Pr(L|G)Pr(G|C)Pr(C|E)Pr(E)

• The full joint is specified by 5 local conditional distributions!

– .

37

E = Woke up too early G = gets grumpy S = students disappointed

C = need caffeine L = lecture not smooth



Conditional Independence

• Specifying the full joint distribution Pr(S,L,G,C,E)?
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Conditional Independence
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Example Quantification

• Specifying the joint requires only 9 parameters!
– Instead of 31 (= 25 – 1) for explicit representation
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Inference is Easy

• How to compute Pr(g)?
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Inference is Easy

• How to compute Pr(g)? 
– Apply the sum-out rule

• .
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C = need caffeine L = lecture not smooth

Terms available in our local distributions!



Inference is Easy
• Concrete example to compute Pr(g): 

Pr(c) = Pr(c|e)Pr(e) + Pr(c|~e)Pr(~e)
= 0.8 * 0.7 + 0.5 * 0.3 = 0.78

Pr(~c) = 1 – Pr(c)
= 0.22

Pr(g) = Pr(g|c)Pr(c) + Pr(g|~c)Pr(~c)
= 0.3 * 0.78 + 1.0 * 0.22 = 0.454

– .
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Modeling Example

• Suppose you have a simple world with 3 
variables: weather, sprinkler, and grass 
condition
– If it’s rainy, the grass is wet.
– If the sprinkler is on, the grass is wet.
– If it’s cloudy, the sprinkler should be off.

• How to model these interactions?
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Modeling with a Bayes Net
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Weather = {sunny, cloudy, rainy}
Sprinkler = {on, off}
GrassCondition = {wet, dry}



Modeling with a Bayes Net
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Weather

Grass 
Condition

Weather = {sunny, cloudy, rainy}
Sprinkler = {on, off}
GrassCondition = {wet, dry}

If it’s rainy, the grass is wet.



Modeling with a Bayes Net
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Weather

Grass 
Condition

Sprinkler

Weather = {sunny, cloudy, rainy}
Sprinkler = {on, off}
GrassCondition = {wet, dry}

If the sprinkler is on, the grass is wet.



Modeling with a Bayes Net
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Weather

Grass 
Condition

Sprinkler

Weather = {sunny, cloudy, rainy}
Sprinkler = {on, off}
GrassCondition = {wet, dry}

If it’s cloudy, the sprinkler should be off.



Most Popular Bayes Net Example
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Weather

Grass 
Condition

Sprinkler

Weather = {sunny, cloudy, rainy}
Sprinkler = {on, off}
GrassCondition = {wet, dry}



What is a Bayes Net (BN)
• Also called Bayesian network, belief network 

• A graphical representation of the direct dependencies 
over a set of variables

• Directed dependencies express the causality between 
the variables

• Each variable has an associated conditional probability 
tables (CPTs) quantifying the strength of those 
influences
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BN Definition

• A BN over variables {X1, X2, …, Xn} consists of:
– A directed acyclic graph whose nodes are 

variables
– A set of CPTs Pr(Xi|Parents(Xi)) for each Xi
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BN Definition

• A BN over variables {X1, X2, …, Xn} consists of:
– A directed acyclic graph whose nodes are variables
– A set of CPTs Pr(Xi|Parents(Xi)) for each Xi
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W

G
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0.6 0.3 0.1

W=sunny S=on
W=sunny S=off
W=cloudy S=on
W=cloudy S=off
W=rainy S=on
W=rainy S=off

Pr(G=wet|W,S) Pr(G=dry|W,S)
0.9 0.1
0.001 0.999
0.99 0.01
0.2 0.8
1 0
0.9 0.1

W=sunny

W=cloudy

W=rainy

Pr(S=on|W) Pr(S=off|W)

0.1 0.9

0.8 0.2

0.001 0.999



Key Terminology

• Parents of a node: Parents(Xi)
• Children of a node
• Descendants of a node
• Ancestors of a node
• Family: set of nodes consisting of Xi and its parents
– CPTs are defined over families in the BN
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Parents(W) = ?
Children(S) = ?
Descendants(W) = ?
Ancestors(A) = ?
Family(G) = ?

W

G

S

A



An Example Bayes Net
• A few CPTs “shown”

• Explicit joint requires 
211 – 1 = 2047 params

• BN requires only 27 
params (the number 
of entries for each 
CPT is written)
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A B

C

E

D
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H I

G

J K

1 1

122

2
4

4 4

4 2
Pr(K|I)

Pr(G)

Pr(D|A,B)



Semantics of Bayes Nets
• The structure of the BN means: 
– Every Xi is conditionally independent of all its non-

descendants given its parents
– Intuition: your parents is the only ones who has 

influence on you

• Formally:
Pr(Xi|S ∪ Par(Xi)) = Pr(Xi|Par(Xi))

for any subset " ⊆ $%&'()*(&+,&-) ./
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Semantics of Bayes Nets
• If we ask for Pr(x1,…,xn)
– Assuming an ordering consistent with the network

• By the chain rule, we have:
Pr(x1,…,xn)
= Pr(xn|xn-1,…,x1)Pr(xn-1|xn-2,…,x1)…Pr(x1)
= Pr(xn|Par(xn))Pr(xn-1|Par(xn-1))…Pr(x1)

• Thus, the joint is recoverable using the 
parameters (CPTs) specified in an arbitrary BN
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Key Ideas
• Main concept
– Computational bottlenecks in computing joint 

probability distributions appear in representation and 
inference

– Exploit independence and conditional independence
– Computation is linear rather than exponential

• Representation:
– Bayes net is a directed acyclic graph whose nodes are 

random variables with associated CPTs
– Expresses the joint probability distribution using the 

product of local distributions, i.e. Pr(Xi|Par(Xi))


