Learning Analytics

Dr. Bowen Hui Computer Science University of British Columbia Okanagan

No Theoretical Probability Overview

Image taken from http://www.junkjungle.com/

No Theoretical Probability Overview

- Assume you took STAT 230 (and maybe STAT 303, even better: STAT 309)
- Our focus:
 - How to model the problem
 - How to compute probability estimations
 - Apply probabilistic inference algorithms for complex models
- Bring in Stats as needed

Cheatsheet of Statistics

- Probability distribution
 - All values must sum up to 1.0
- Conditional probability: Pr(b|a) = Pr(b,a) Pr(a)
- Product rule: Pr(a,b) = Pr(a|b)Pr(b)
- Sum-out rule (marginalization): $Pr(a) = \sum_{b} Pr(a, b)$ = $\sum_{b} Pr(a|b) Pr(b)$
- Chain rule: Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
 - Applies to any number of variables
- Bayes rule: $Pr(b|a) = \frac{Pr(a|b)Pr(b)}{Pr(a)}$

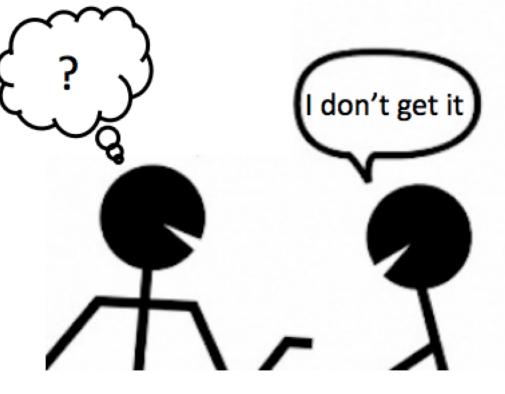
Short Exercise

• Given joint distribution of student's level of understanding and whether TA knows the answer:

	Understanding High	= Low
Know = Yes	0.3	0.4
Know = No	0.2	0.1

- Example: Pr(K=No, U=Low) = 0.1
- Compute:
 - Pr(Know = Yes, Understanding = High)
 - Pr(Know = Yes)
 - Pr(Know = No)

Multiagent Interaction

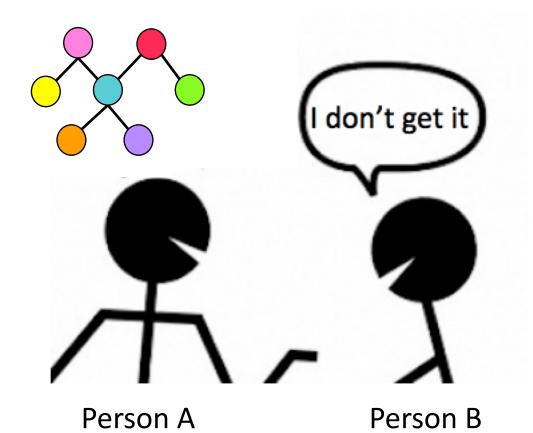


Person A

Person B

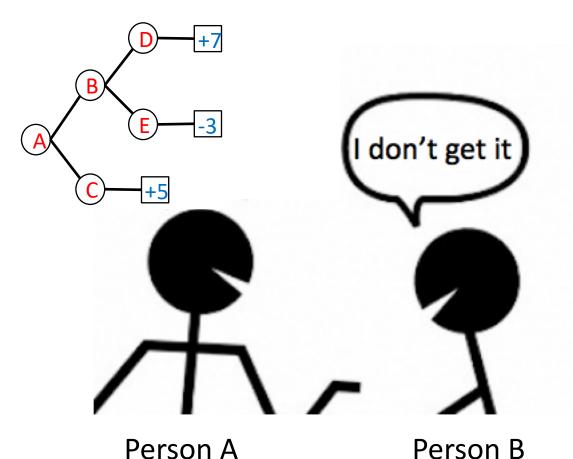
What should A do?

Multiagent Interaction



Key note #1: Appropriate course of action is contingent upon the current state of affairs

Multiagent Interaction



Key note #2: Decisions to act depend on the relative importance of competing objectives ("preferences")

Modeling the State in a Chess Game

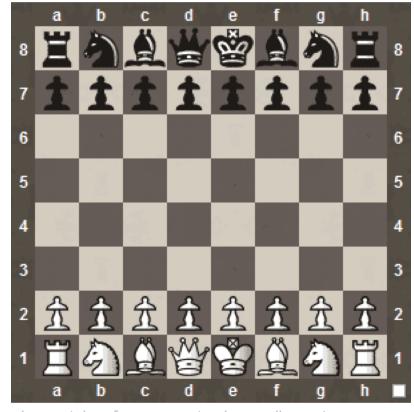


Image taken from computerchessonline.net State of game: black horse at b7, etc.

Modeling Tic Tac Toe State

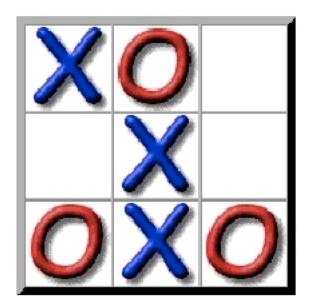
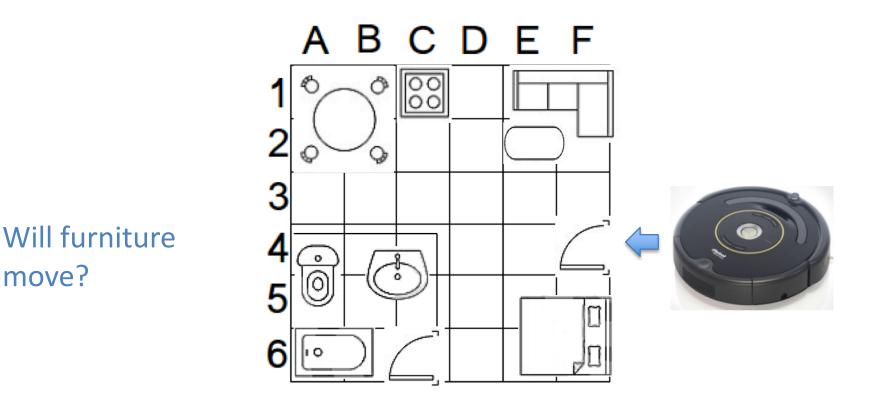


Image taken from www.mathematik.uni-ulm.de

State of game: x at {a1, b2, b3}, o at {a3, b1, c3}

Modeling an Apartment



State of apartment: Stove at C1, coffee table at E2, etc.

move?

State of the World

- In games and simple worlds, we can assume or expect:
 - Everything is fully observable (that means, there are no hidden variables)
 - The world has no uncertainty

• Is this always going to be feasible?

Modeling Person's Emotional State



State of user: currently 'happy'

... Are you sure?

Beliefs over State

- Uncertainty arises when:
 - You can't observe the value of a state
 - When the state changes
- When there's uncertainty:
 - We have beliefs of the world
 - Need to quantify level of uncertainty
- Then we can make decisions properly
- Use probability theory to model our beliefs

Want Something Like This

- Simple world: stove is on or off, time is 9:00am, 9:01am, ...
- Variables: Stove, Time
- Sample state: Stove=on and Time=9:00am
- Sample estimations: Pr(Stove=on) Pr(Stove=on|Time=noon)

Random Variables

- Assume set V of random variables: X, Y, etc.
 - Each RV X has a domain of values Dom(X)
 - X can take on any value from Dom(X)
 - Assume V and Dom(X) are finite
- Examples:
 - Dom(X) = {x₁, x₂, x₃}
 - Dom(Weather) = {sunny, cloudy, rainy}
 - Dom(lamHappy) = {true, false}

Modeling Example

- Student asks you (TA) a programming question
- You consider how to answer the question
 - What are RVs of the student?
 - What are RVs about you?

Which variables are observable, which are hidden?

State

• A formula is a logical combination of variable assignments

- E.g.
$$(X = x_2 \lor X = x_3) \land Y = y_2$$

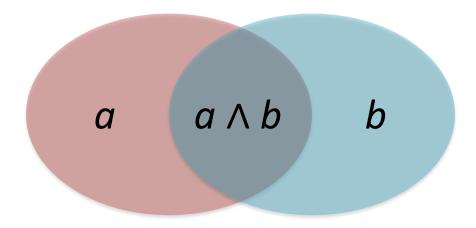
- A state is an assignment of values to each variable
 - One state represents one possible world
 - The set of states denote the set of possible worlds
 - Note: Think truth tables for discrete RVs

Modeling Example cont.

- Student asks you (TA) a programming question
- You consider how to answer the question
 - What are RVs of the student?
 - What are RVs about you?
- Draw out the set of states in truth table format

Probability Distributions

- A probability distribution $Pr: \mathcal{L} \rightarrow [0,1]$ s.t.
 - $-0 \leq \Pr(a) \leq 1$
 - Pr(a) = Pr(b) if a is logically equivalent to b
 - Pr(a) = 1 if a is a tautology
 - $-\Pr(a \lor b) = \Pr(a) + \Pr(b) \Pr(a \land b)$



Probability Distributions

- A probability distribution $Pr: \mathcal{L} \rightarrow [0,1]$ s.t.
 - $-0 \leq \Pr(a) \leq 1$
 - Pr(a) = Pr(b) if a is logically equivalent to b
 - Pr(a) = 1 if a is a tautology
 - $-\Pr(a \lor b) = \Pr(a) + \Pr(b) \Pr(a \land b)$

Caution: Probability axioms not always followed in theories that use probability!

Probability Distributions

- A probability distribution $Pr: \mathcal{L} \rightarrow [0,1]$ s.t.
 - $-0 \leq \Pr(a) \leq 1$
 - Pr(a) = Pr(b) if a is logically equivalent to b
 - Pr(a) = 1 if a is a tautology
 - $-\Pr(a \lor b) = \Pr(a) + \Pr(b) \Pr(a \land b)$
- *Pr(a)* denotes our degree of belief in a
 Pr(a) = 0 if you consider it to be impossible
- The sum of the distribution must be 1.0

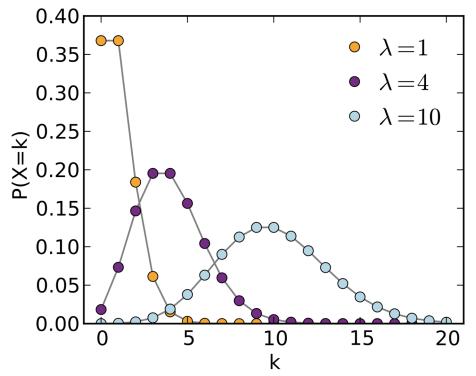
Examples

Pr(X = x₁) = 0.9

 - Pr(Stove = on) = 0.9
 - Pr(Stove = off) = 1 - Pr(Stove = on) = 0.1
 - Pr(Time = noon) = 0.001

Visualizing Probability Distribution

- X-axis: set of possible outcomes
- Y-axis: probability



Commonly used distributions:

- Normal (Gaussian)
- Uniform

Joint Probability Distribution

- Probability distribution
 - Involves one RV to describe state space
 - Probabilities must sum up to 1.0

- Joint probability distribution
 - When the state is described by two or more RVs
 - Specify probabilities for all combinations of events
 - Probabilities must sum up to 1.0

Examples

• $Pr(X = x_1 \land Y = y_2) = 0.6$

...

- $-\Pr(Stove = on \land Time = noon) = 0.6$
- $-\Pr(Stove = on \land Time = 12:01pm) = 0.2$
- $-\Pr(Stove = on \land Time = 12:02pm) = 0.1$

Modeling Example cont.

- Student asks you (TA) a programming question
- You consider how to answer the question
 - What are RVs of the student?
 - What are RVs about you?
- Draw out the set of states in truth table format
- Assign probabilities to each state in the table

The Summing Out Property

•
$$\Pr(x) = \sum_{y \in Dom(Y)} \Pr(x \land y)$$

- Also called marginalization
- Example: Pr(Stove=on) = Pr(Stove = on ATime = 9:00am) + Pr(Stove = on A Time = 9:01am) + Pr(Stove = on A Time = 9:02am) + Pr(Stove = on A Time = 9:03am) ... for all values in Dom(Y)

Modeling Example cont.

- Student asks you (TA) a programming question
- You consider how to answer the question
 - What are RVs of the student?
 - What are RVs about you?
- Draw out the set of states in truth table format
- Assign probabilities to each state in the table
- Pick an RV, sum it out

The Inference Task

- General structure:
 - You have general knowledge about the world
 - You observe an event (or series of events)
 - You want to estimate the probability of an event (or several events) that you cannot observe

Example

You're programming and suddenly you get a headache. You think: Argh! 50% of my headaches are caused by annoying bugs, so there's a 50% chance there's a bug in the code

Is this reasoning correct?

Example

You're programming and suddenly you get a headache. You think: Argh! 50% of my headaches are caused by annoying bugs, so there's a 50% chance there's a bug in the code

- H = have headache
- B = have bugs in code

Example

- You're programming and suddenly you get a headache. You think: Argh! 50% of my headaches are caused by annoying bugs, so there's a 50% chance there's a bug in the code
- Also given:

We observe H.

- Pr(H) = 1/10
- Pr(B) = 1/40
- -Pr(H|B) = 1/2

Task is to compute Pr(B|H).

Conditional Probability, Pr(b/a)

- Recall definition: What is the probability of b when a has already occurred?
- Conditional probability is critical in inference
 - E.g. Pr(Stove = on | Time = noon)?
 - E.g. Pr(PhysicsSkills = poor | MathSkills = good)?
 - E.g. Pr(MathSkills = good | NumAlgebraErrors = low ∧ NumCalculusErrors = high)?
- Effectively, compute *Pr(b|a)* when we observe *a*

Calculating Conditional Probability

- $\Pr(b \mid a) = \frac{\Pr(b \land a)}{\Pr(a)}$
- If Pr(a) = 0, we set Pr(b|a) = 1 by convention
- Intuition:
 - Numerator: What is the probability both events occur together?
 - Denominator: What is the probability a occurs at all (regardless of what other events that are happening)?
 - Pr(b|a) gives relative weight of b-worlds among aworlds

Related Properties

- Given conditional probability: $Pr(b | a) = \frac{Pr(b \land a)}{Pr(a)}$
- **Product rule:** $Pr(b \land a) = Pr(b|a)Pr(a)$ or

 $Pr(a \land b) = Pr(a \mid b)Pr(b)$

Sum out rule: $Pr(a) = \sum_{h} Pr(a \wedge b)$ or

 $Pr(a) = \sum_{b} Pr(a|b)Pr(b)$

Chain rule: •

Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

Holds for any number of variables

Note: Pr(ab) is shorthand for $Pr(a \land b)$

Example

- You're programming and suddenly you get a headache. You think: Argh! 50% of my headaches are caused by annoying bugs, so there's a 50% chance there's a bug in the code
 Pr(H) = 1/10
 - Pr(B) = 1/40Pr(H|B) = 1/2

• Want: Pr(B|H) = ?

Joint Distribution Example

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

All values sum up to 1.0

Joint Distribution Example

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

• Pr(headache ∧ cold | sunny) = ?

Joint Distribution Example

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

Pr(headache ∧ cold | ~sunny) = ?

Asian Flu Example

- Doctor X knows that Asian flu causes fever 95% of the time.
- X knows that a random person has a 10⁻⁷ chance of having Asian flu.
- X knows that 1 in 100 people suffer from a fever.
- Joe has a fever: what are the chances that Asian flu is the cause of the fever?

Evidence is symptom (F)

Hypothesis is illness causing symptom (A)

• A = Asian flu

• F = fever

• Pr(A|F) = ?

What information is given?

Asian Flu Example Pr(F|A)

- Doctor X knows that Asian flu causes fever 95% of the time.
- X knows that a random person has a 10⁻⁷ chance of having Asian flu.
 Pr(A)
- X knows that 1 in 100 people suffer from a fever. Pr(F)
- Joe has a fever: what are the chances that Asian flu is the cause of the fever?

Evidence is symptom (F)

Hypothesis is illness causing symptom (A)

• F = fever

• A = Asian flu

• Pr(A | F) = ?

What information is given?

Recall conditional probability is Pr(A|F) = Pr(A,F) / Pr(F) Can we use this to solve for Pr(A|F)?

- Note: *Pr(ab) = Pr(ba)*
- We have: Pr(ab) = Pr(a|b)Pr(b)
- So: Pr(a|b)Pr(b) = Pr(ab) = Pr(ba) = Pr(b|a)Pr(a)
- Bayes rule states: Pr(b|a) = Pr(a|b)Pr(b) Pr(a) Pr(a)
- Why is this so important?

Using Bayes Rule for Inference

- We may want to form a hypothesis (H) about the world based on the evidence (e) we observe
- Bayes rule expresses this notion as the belief of H given e

Using Bayes Rule for Inference

 We may want to form a hypothesis (H) about the world based on the evidence (e) we observe

 Bayes rule expresses this notion as the belief of H given e Posterior probability Pr(H|e) = <u>Pr(e|H)Pr(H)</u> Pr(e) Normalizing constant

Need for Simplifying Assumptions

- Previously: compute posterior distribution
- More often: compute posterior joint distribution
- Problem: joint distribution is usually too big
 - Exponential in # variables
- Solution: use independence
 - To simplify computational needs
 - To simplify model

Independence

- Two variables A and B are independent if knowledge of A does not the change uncertainty of B (and vice versa)
 - Pr(A|B) = Pr(A)
 - Pr(B|A) = Pr(B)
 - Pr(AB) = Pr(A)Pr(B)
 - In general:

 $Pr(X_1, \dots, X_n) = \prod_{i=1}^n \Pr(X_i)$

Only need n numbers to specify the joint!

Independence Example

- Consider: Bennett smiles and squint eyes
- If Pr(Smile|Squint) = Pr(Smile)
 - Chance of him smiling when he squints
 - Chance of him smiling in anyway
- And Pr(Squint|Smile) = Pr(Squint)
 - Chance of him squinting when he smiles
 - Chance of him squinting no matter what else he's doing
- Then Smile and Squint are independent

Image taken from iemoji.com

What does Independence Buy Us?

Product rule changes:
 Pr(ab) = Pr(a|b)Pr(b)
 Pr(ab) = Pr(a)Pr(b)

Chain rule changes:
 Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
 Pr(abcd) = Pr(a)Pr(b)Pr(c)Pr(d)

Conditional Independence

- To loosen the independence assumption, we can use conditional independence
- Two variables A and B are conditionally independent given C if:
 Pr(a|b,c) = Pr(a|c) ∀ a, b, c
- Knowing the value of B does not change the prediction of A given the presence of C

Conditional Independence Example

- Consider: Want tea, pink cup, and rainy
- If Pr(Tea | Pink, Rainy) = Pr(Tea | Rainy)
 - Chance of wanting tea on rainy days in pink cup is the same as chance of wanting tea on rainy days in any cup
- And Pr(Tea | Pink, ~Rainy) = Pr(Tea | ~Rainy) And Pr(Tea | ~Pink, Rainy) = Pr(Tea | Rainy) And Pr(Tea | ~Pink, ~Rainy) = Pr(Tea | ~Rainy) And Pr(~Tea | Pink, Rainy) = Pr(~Tea | Rainy) And ...
 - Check equivalence for all other combinations
- Then Tea is independent of Pink given Rainy

Cheatsheet of Statistics

- Probability distribution
 - All values must sum up to 1.0
- Conditional probability: Pr(b|a) = Pr(b,a) Pr(a)
- Product rule: Pr(a,b) = Pr(a|b)Pr(b)
- Sum-out rule (marginalization): $Pr(a) = \sum_{b} Pr(a, b)$ = $\sum_{b} Pr(a|b) Pr(b)$
- Chain rule: Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
 - Applies to any number of variables
- Bayes rule: $Pr(b|a) = \frac{Pr(a|b)Pr(b)}{Pr(a)}$

Key Ideas

- Main concept
 - Using probability to model uncertainty
- Representation:
 - States as an assignment of values to each RV
 - Beliefs over states as probability distributions
- Computational issues:
 - Joint distributions are often too large to compute
 - Assume independence and conditional independence