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No Theoretical Probability Overview




No Theoretical Probability Overview

* Assume you took STAT 230
(and maybe STAT 303, even better: STAT 309)

* Our focus:
— How to model the problem
— How to compute probability estimations

— Apply probabilistic inference algorithms for complex
models

* Bring in Stats as needed



Cheatsheet of Statistics

Probability distribution
— All values must sum up to 1.0

Conditional probability: Pr(b|a) = Pr(b,a)
Pr(a)

Product rule: Pr(a,b) = Pr(a|b)Pr(b)
Sum-out rule (marginalization): Pr(a) = )., Pr(a, b)

= %, Pr(alb) Pr(b)
Chain rule: Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

— Applies to any number of variables

Bayes rule: Pr(b|a) = Pr(a|b)Pr(b)
Pr(a)




Short Exercise

* Given joint distribution of student’s level of
understanding and whether TA knows the answer:

Understanding =
High Low

Know = Yes 0.3 0.4

Know = No 0.2 0.1
 Example: Pr(K=No, U=Low) = 0.1
* Compute:

— Pr(Know = Yes, Understanding = High)
— Pr(Know = Yes)
— Pr(Know = No)



Multiagent Interaction

&

Q

LN

Person A Person B

What should A do?



Multiagent Interaction
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| don’t get it

Key note #1: Appropriate course of action is contingent upon
the current state of affairs



Multiagent Interaction

| don’t get it
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Key note #2: Decisions to act depend on the relative importance
of competing objectives (“preferences”)



Modeling the State in a Chess Game
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State of game: black horse at b7, etc.



Modeling Tic Tac Toe State
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State of game: x at {al, b2, b3}, o at {a3, b1, c3}




Modeling an Apartment
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State of apartment: Stove at C1, coffee table at E2, etc.
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State of the World

* |n games and simple worlds, we can assume
or expect:

— Everything is fully observable
(that means, there are no hidden variables)

— The world has no uncertainty

* |s this always going to be feasible?
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Modeling Person’s Emotional State
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State of user: currently ‘happy’ ... Are you sure?
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Beliefs over State

Uncertainty arises when:
— You can’t observe the value of a state
— When the state changes

When there’s uncertainty:
— We have beliefs of the world
— Need to quantify level of uncertainty

Then we can make decisions properly

Use probability theory to model our beliefs



Want Something Like This

Simple world:
stove is on or off,
time is 9:00am, 9:01am, ...

Variables:
Stove, Time

Sample state:
Stove=on and Time=9:00am

Sample estimations:
Pr(Stove=on)
Pr(Stove=on|Time=noon)



Random Variables

e Assume set V of random variables: X, Y, etc.
— Each RV X has a domain of values Dom(X)
— X can take on any value from Dom(X)
— Assume V and Dom(X) are finite

 Examples:
— Dom(X) = {Xy, X,, X3}
— Dom(Weather) = {sunny, cloudy, rainy}
— Dom(lamHappy) = {true, false}



Modeling Example

Student asks you (TA) a programming question

You consider how to answer the question
— What are RVs of the student?
— What are RVs about you?

Which variables are observable,
which are hidden?
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State

 Aformulais alogical combination of variable
assignments

—Eg. (X=x,VX=x3) AY =y,

* Astateis an assignment of values to each
variable

— One state represents one possible world
— The set of states denote the set of possible worlds
— Note: Think truth tables for discrete RVs



Modeling Example cont.

e Student asks you (TA) a programming question

* You consider how to answer the question
— What are RVs of the student?
— What are RVs about you?

e Draw out the set of states in truth table
format



Probability Distributions

e A probability distribution Pr: L - [0,1] s.t.
-0 <Pr(a) <1
— Pr(a) = Pr(b) if a is logically equivalent to b
— Pr(a) = 1 if a is a tautology

— Pr(a vb) =Pr(a) + Pr(b) — Pr(a AD)
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Probability Distributions

e A probability distribution Pr: L — [0,1] s.t.
-0 <Pr(a)<1
— Pr(a) = Pr(b) if a is logically equivalent to b
— Pr(a) =1 if a is a tautology

— Pr(a vb) =Pr(a) + Pr(b) — Pr(a AD)

Caution: Probability axioms not always followed
in theories that use probability!
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Probability Distributions

* A probability distribution Pr: L — [0,1] s.t.
-0 <Pr(a) <1
— Pr(a) = Pr(b) if a is logically equivalent to b
— Pr(a) =1 if a is a tautology

— Pr(a vb) =Pr(a) + Pr(b) —Pr(a AD)

* Pr(a) denotes our degree of beliefin a
— Pr(a) = 0 if you consider it to be impossible

e The sum of the distribution must be 1.0
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Examples

e Pr(X =x,) =0.9
— Pr(Stove =on) =0.9
— Pr(Stove = off) = 1 — Pr(Stove =on) = 0.1
— Pr(Time = noon) = 0.001



Visualizing Probability Distribution

e X-axis: set of possible outcomes
* Y-axis: probability
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Joint Probability Distribution

* Probability distribution
— Involves one RV to describe state space

— Probabilities must sum up to 1.0

* Joint probability distribution
— When the state is described by two or more RVs
— Specify probabilities for all combinations of events

— Probabilities must sum up to 1.0



Examples

Pr( X =x, ANY =v,)=0.6

Pr(Stove = on ATime = noon) = 0.6
Pr(Stove = on ATime = 12:01pm) = 0.2

Pr(Stove = on ATime = 12:02pm) = 0.1



Modeling Example cont.

Student asks you (TA) a programming question

You consider how to answer the question
— What are RVs of the student?
— What are RVs about you?

Draw out the set of states in truth table
format

Assigh probabilities to each state in the table



The Summing Out Property
* Pr(x)= ) Pr(xny)

yeDom(Y)
e Also called marginalization

 Example:
Pr(Stove=on) = Pr(Stove = on ATime = 9:00am)
+ Pr(Stove = on A Time = 9:01am)
+ Pr(Stove = on A Time = 9:02am)
+ Pr(Stove = on A Time = 9:03am)

for all values in Dom(Y)



Modeling Example cont.

e Student asks you (TA) a programming question

* You consider how to answer the question
— What are RVs of the student?
— What are RVs about you?

* Draw out the set of states in truth table
format

* Assign probabilities to each state in the table

 Pickan RV, sum it out



The Inference Task

* General structure:
— You have general knowledge about the world
— You observe an event (or series of events)

— You want to estimate the probability of an event
(or several events) that you cannot observe



Example

* You're programming and suddenly you get a
headache. You think: Argh! 50% of my
headaches are caused by annoying bugs, so
there’s a 50% chance there’s a bug in the code

®

Is this reasoning correct?



Example

* You're programming and suddenly you get a
headache. You think: Argh! 50% of my

headaches are caused by annoying bugs, so
there’s a 50% chance there’s a bug in the code

®

* H = have headache
* B =have bugs in code



Example

* You're programming and suddenly you get a
headache. You think: Argh! 50% of my
headaches are caused by annoying bugs, so
there’s a 50% chance there’s a bug in the code

®

e Also given: We observe H.
— Pr(H) =1/10 Task is to compute Pr(B|H).
— Pr(B) = 1/40

— Pr(H|B) =1/2
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Conditional Probability, Pr(b/a)

e Recall definition: What is the probability of b
when a has already occurred?

* Conditional probability is critical in inference
— E.g. Pr(Stove = on | Time = noon)?
— E.g. Pr(PhysicsSkills = poor | MathSkills = good)?

— E.g. Pr(MathSkills = good | NumAlgebraErrors = low A
NumCalculusErrors = high)?

* Effectively, compute Pr(b[a) when we observe a



Calculating Conditional Probability

Pr(b A a)
Pr(a)
* If Pr(a) =0, we set Pr(b[/a) = 1 by convention

¢ Pr(b|a)=

 |ntuition:

— Numerator: What is the probability both events occur
together?

— Denominator: What is the probability a occurs at all
(regardless of what other events that are happening)?

— Pr(b[a) gives relative weight of b-worlds among a-
worlds



Related Properties

Pr(b na)
Pr(a)

Product rule: Pr(b A a) = Pr(b|a)Pr(a)
or

Given conditional probability: Pr(b|a)=

Pr(a A\ b) = Pr(a/b)Pr(b)

Sumoutrule:  Pr(a)=),, Prla Ab)

> Pr(a) = )., Pr(a|b)Pr(b)

ChainPrule: _ Note: Pr(ab) is
r(abcd) = Pr(a[bcd)Pr(b[cd)Pr(c/d)Pr(d)

- shorthand
— Holds for any number of variables for Pr(a A b)
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Example

* You're programming and suddenly you get a
headache. You think: Argh! 50% of my
headaches are caused by annoying bugs, so
there’s a 50% chance there’s a bug in the code

@ Pr(H) = 1/10
Pr(B) = 1/40
Pr(H|B) = 1/2

e Want: Pr(B|H) ="



Joint Distribution Example

sunny ~sunny
cold ~cold cold ~cold
headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576

All values sum up to 1.0
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Joint Distribution Example

sunny ~sunny

cold ~cold cold ~cold

headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576

* Pr(headache A cold | sunny) =7?
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Joint Distribution Example

sunny ~sunny

cold ~cold cold ~cold

headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576

* Pr(headache A cold | ~sunny) =7?
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Asian Flu Example

Doctor X knows that Asian flu causes fever 95% of the time.

X knows that a random person has a 107 chance of having
Asian flu.

X knows that 1 in 100 people suffer from a fever.

Joe has a fever: what are the chances that Asian flu is the

cause of the fever?
Evidence is symptom (F)

A = Asian flu Hypothesis is illness causing symptom (A)

F = fever
Pr(A|F)="7

What information is given?
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Asian Flu Example
Pr(F|A)
 Doctor X knows that Asian flu causes fever 95% of the time.

« X knows that a random person has a 107 chance of having
Asian flu. Pr(A)

e X knows that 1 in 100 people suffer from a fever. Pr(F)

e Joe has a fever: what are the chances that Asian flu is the

cause of the fever?
Evidence is symptom (F)

e A= Asian flu Hypothesis is illness causing symptom (A)

e F=fever

 Pr(A|F)="
What information is given?

Recall conditional probability is Pr(A|F) = Pr(A,F) / Pr(F)
Can we use this to solve for Pr(A|F)?
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Gets its
# Bayes Rule

* Note: Pr(ab) = Pr(ba)
 We have: Pr(ab) = Pr(a[b)Pr(b)
* So: Pr(a|/b)Pr(b) = Pr(ab) = Pr(ba) = Pr(b[a)Pr(a)

w
* Bayes rule states:

Pr(b|a) = Pr(a|/b)Pr(b)
Pr(a)

* Why is this so important?



Using Bayes Rule for Inference

 We may want to form a hypothesis (H) about
the world based on the evidence (e) we
observe

* Bayes rule expresses this notion as the belief
of H given e

Pr(H|e) = Pr(e|H)Pr(H)
Pr(e)




Using Bayes Rule for Inference

 We may want to form a hypothesis (H) about
the world based on the evidence (e) we
observe

* Bayes rule expresses this notion as the belief
of Hgivene Likelihood Prior probability

Posterior \
probabilitv\Pr(H |e) = Pr(e|H)Pr(H) /

Pr(e) ~_

Normalizing constant
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Need for Simplifying Assumptions

Previously: compute posterior distribution

More often: compute posterior joint
distribution

Problem: joint distribution is usually too big
— Exponential in # variables

Solution: use independence
— To simplify computational needs
— To simplify model



Independence

 Two variables A and B are independent if
knowledge of A does not the change
uncertainty of B (and vice versa)
— Pr(A|B) = Pr(A)
— Pr(B|A) = Pr(B)
— Pr(AB) = Pr(A)Pr(B)
— In general:
Pr(X,,....X,) = [1i=, Pr(Xi)

Only need n numbers to specify the joint!



Independence Example

Consider: Bennett smiles and squint eyes >

If Pr(Smile|Squint) = Pr(Smile) g
— Chance of him smiling when he squints
— Chance of him smiling in anyway

And Pr(Squint|Smile) = Pr(Squint)
— Chance of him squinting when he smiles
— Chance of him squinting no matter what else he’s doing

Then Smile and Squint are independent



What does Independence Buy Us?

* Product rule changes:
Pr(ab) = Pr(a|b)Pr(b)
@ Pr(ab) = Pr(a)Pr(b)

* Chain rule changes:
Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
gPr(abcd) = Pr(a)Pr(b)Pr(c)Pr(d)



Conditional Independence

* To loosen the independence assumption, we
can use conditional independence

 Two variables A and B are conditionally
independent given C if:

— Pr(a|b,c) = Pr(a]c) Va,b,c

* Knowing the value of B does not change the
prediction of A given the presence of C



Conditional Independence Example

* Consider: Want tea, pink cup, and rainy

* If Pr(Tea|Pink,Rainy) = Pr(Tea|Rainy)

— Chance of wanting tea on rainy days in pink cup
is the same as chance of wanting tea on rainy days in any cup

* And Pr(Tea|Pink,~Rainy) = Pr(Tea|~Rainy)
And Pr(Tea|~Pink,Rainy) = Pr(Tea|Rainy)
And Pr(Tea|~Pink,~Rainy) = Pr(Tea|~Rainy)
And Pr(~Tea|Pink,Rainy) = Pr(~Tea|Rainy)
And ...

— Check equivalence for all other combinations

* Then Tea is independent of Pink given Rainy



Cheatsheet of Statistics

Probability distribution
— All values must sum up to 1.0

Conditional probability: Pr(b|a) = Pr(b,a)
Pr(a)

Product rule: Pr(a,b) = Pr(a|b)Pr(b)
Sum-out rule (marginalization): Pr(a) = )., Pr(a, b)

= %, Pr(alb) Pr(b)
Chain rule: Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

— Applies to any number of variables

Bayes rule: Pr(b|a) = Pr(a|b)Pr(b)
Pr(a)




Key ldeas

* Main concept
— Using probability to model uncertainty

* Representation:
— States as an assignment of values to each RV
— Beliefs over states as probability distributions

 Computational issues:

— Joint distributions are often too large to compute

— Assume independence and conditional
independence



