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No Theoretical Probability Overview
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No Theoretical Probability Overview
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• Assume you took STAT 230
(and maybe STAT 303, even better: STAT 309)

• Our focus:
– How to model the problem
– How to compute probability estimations
– Apply probabilistic inference algorithms for complex 

models

• Bring in Stats as needed



Cheatsheet of Statistics
• Probability distribution

– All values must sum up to 1.0

• Conditional probability: Pr(b|a) = Pr(b,a)
Pr(a)

• Product rule: Pr(a,b) = Pr(a|b)Pr(b)
• Sum-out rule (marginalization):    Pr(a) = ∑" Pr(&, ()

= ∑" Pr & ( Pr(()
• Chain rule: Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

– Applies to any number of variables

• Bayes rule: Pr(b|a) = Pr(a|b)Pr(b)
Pr(a)
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Short Exercise
• Given joint distribution of student’s level of 

understanding and whether TA knows the answer:

• Example: Pr(K=No, U=Low) = 0.1
• Compute:
– Pr(Know = Yes, Understanding = High)
– Pr(Know = Yes) 
– Pr(Know = No)
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Understanding =
High Low

Know = Yes 0.3 0.4
Know = No 0.2 0.1



Multiagent Interaction

6

What should A do?

Person A Person B



Multiagent Interaction
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Key note #1: Appropriate course of action is contingent upon
the current state of affairs

Person A Person B



Multiagent Interaction
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Key note #2: Decisions to act depend on the relative importance
of competing objectives (“preferences”)

Person A Person B

B

A

C

D

E

+7

-3

+5



Modeling the State in a Chess Game
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Image taken from computerchessonline.net

State of game: black horse at b7, etc.



Modeling Tic Tac Toe State
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State of game: x at {a1, b2, b3}, o at {a3, b1, c3}



Modeling an Apartment
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State of apartment: Stove at C1, coffee table at E2, etc.

Will furniture 
move?



State of the World

• In games and simple worlds, we can assume 
or expect:
– Everything is fully observable

(that means, there are no hidden variables)
– The world has no uncertainty

• Is this always going to be feasible?
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Modeling Person’s Emotional State
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Image taken from www.pinterest.com

State of user: currently ‘happy’ … Are you sure?



Beliefs over State
• Uncertainty arises when:
– You can’t observe the value of a state
– When the state changes

• When there’s uncertainty:
– We have beliefs of the world
– Need to quantify level of uncertainty

• Then we can make decisions properly

• Use probability theory to model our beliefs
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Want Something Like This
• Simple world:

stove is on or off, 
time is 9:00am, 9:01am, … 

• Variables: 
Stove, Time

• Sample state: 
Stove=on and Time=9:00am

• Sample estimations:
Pr(Stove=on)
Pr(Stove=on|Time=noon)
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Random Variables

• Assume set V of random variables: X, Y, etc.
– Each RV X has a domain of values Dom(X)
– X can take on any value from Dom(X)
– Assume V and Dom(X) are finite

• Examples:
– Dom(X) = {x1, x2, x3}
– Dom(Weather) = {sunny, cloudy, rainy}
– Dom(IamHappy) = {true, false}
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Modeling Example

• Student asks you (TA) a programming question

• You consider how to answer the question
– What are RVs of the student?

– What are RVs about you?
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Which variables are observable, 
which are hidden?



State

• A formula is a logical combination of variable 
assignments
– E.g. (X = x2 ∨ X = x3) ∧ Y = y2

• A state is an assignment of values to each 
variable
– One state represents one possible world
– The set of states denote the set of possible worlds
– Note: Think truth tables for discrete RVs
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Modeling Example cont.

• Student asks you (TA) a programming question
• You consider how to answer the question
– What are RVs of the student?
– What are RVs about you?

• Draw out the set of states in truth table 
format

19



Probability Distributions
• A probability distribution Pr: ℒ → 0,1 s.t.
– 0 ≤ Pr ) ≤ 1
– Pr(a) = Pr(b) if a is logically equivalent to b
– Pr(a) = 1 if a is a tautology
– Pr ) ∨ + = Pr ) + Pr + − Pr ) ∧ +

• Pr(a) denotes our degree of belief in a
– Pr(a) = 0 if you consider it to be impossible

• The sum of the distribution must be 1.0
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a ba ∧ b



Probability Distributions
• A probability distribution Pr: ℒ → 0,1 s.t.
– 0 ≤ Pr ) ≤ 1
– Pr(a) = Pr(b) if a is logically equivalent to b
– Pr(a) = 1 if a is a tautology
– Pr ) ∨ + = Pr ) + Pr + − Pr ) ∧ +

• Pr(a) denotes our degree of belief in a
– Pr(a) = 0 if you consider it to be impossible

• The sum of the distribution must be 1.0
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Caution: Probability axioms not always followed 
in theories that use probability!



Probability Distributions
• A probability distribution Pr: ℒ → 0,1 s.t.
– 0 ≤ Pr ) ≤ 1
– Pr(a) = Pr(b) if a is logically equivalent to b
– Pr(a) = 1 if a is a tautology
– Pr ) ∨ + = Pr ) + Pr + − Pr ) ∧ +

• Pr(a) denotes our degree of belief in a
– Pr(a) = 0 if you consider it to be impossible

• The sum of the distribution must be 1.0
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Examples

• Pr # = %1 = 0.9
– Pr(Stove = on) = 0.9
– Pr(Stove = off) = 1 – Pr(Stove = on) = 0.1
– Pr(Time = noon) = 0.001
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Visualizing Probability Distribution

• X-axis: set of possible outcomes
• Y-axis: probability

24Image taken from wikipedia.org

Commonly used 
distributions:
• Normal (Gaussian)
• Uniform



Joint Probability Distribution

• Probability distribution
– Involves one RV to describe state space
– Probabilities must sum up to 1.0

• Joint probability distribution
– When the state is described by two or more RVs
– Specify probabilities for all combinations of events
– Probabilities must sum up to 1.0
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Examples

• Pr(! = #1 ∧ & = '2) = 0.6
– Pr +,-./ = -0 ∧ 123/ = 0--0 = 0.6
– Pr +,-./ = -0 ∧ 123/ = 12: 0183 = 0.2
– Pr +,-./ = -0 ∧ 123/ = 12: 0283 = 0.1
– …
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Modeling Example cont.

• Student asks you (TA) a programming question
• You consider how to answer the question
– What are RVs of the student?
– What are RVs about you?

• Draw out the set of states in truth table 
format

• Assign probabilities to each state in the table
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The Summing Out Property
•

• Also called marginalization

• Example:
Pr(Stove=on) = Pr(Stove = on ∧Time = 9:00am)
+ Pr(Stove = on ∧ Time = 9:01am)
+ Pr(Stove = on ∧ Time = 9:02am)
+ Pr(Stove = on ∧ Time = 9:03am)
…
for all values in Dom(Y)
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Modeling Example cont.

• Student asks you (TA) a programming question

• You consider how to answer the question
– What are RVs of the student?

– What are RVs about you?

• Draw out the set of states in truth table 
format

• Assign probabilities to each state in the table

• Pick an RV, sum it out

29



The Inference Task

• General structure:
– You have general knowledge about the world
– You observe an event (or series of events)
– You want to estimate the probability of an event 

(or several events) that you cannot observe
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Example

• You’re programming and suddenly you get a 
headache. You think: Argh! 50% of my 
headaches are caused by annoying bugs, so 
there’s a 50% chance there’s a bug in the code 
L
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Is this reasoning correct?



Example

• You’re programming and suddenly you get a 
headache. You think: Argh! 50% of my 
headaches are caused by annoying bugs, so 
there’s a 50% chance there’s a bug in the code 
L

• H = have headache
• B = have bugs in code
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Example

• You’re programming and suddenly you get a 
headache. You think: Argh! 50% of my 
headaches are caused by annoying bugs, so 
there’s a 50% chance there’s a bug in the code 
L

• Also given:
– Pr(H) = 1/10
– Pr(B) = 1/40
– Pr(H|B) = 1/2
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We observe H.
Task is to compute Pr(B|H).



Conditional Probability, Pr(b|a)
• Recall definition: What is the probability of b

when a has already occurred?

• Conditional probability is critical in inference
– E.g. Pr(Stove = on | Time = noon)?
– E.g. Pr(PhysicsSkills = poor | MathSkills = good)?
– E.g. Pr(MathSkills = good | NumAlgebraErrors = low ∧

NumCalculusErrors = high)?

• Effectively, compute Pr(b|a) when we observe a
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• Pr

• If Pr(a) = 0, we set Pr(b|a) = 1 by convention

• Intuition:
– Numerator: What is the probability both events occur 

together?
– Denominator: What is the probability a occurs at all 

(regardless of what other events that are happening)?
– Pr(b|a) gives relative weight of b-worlds among a-

worlds

Calculating Conditional Probability
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Related Properties
• Given conditional probability:

• Product rule: Pr(b ∧ a) = Pr(b|a)Pr(a)
or

Pr(a ∧ b) = Pr(a|b)Pr(b)

• Sum out rule: Pr(a) = ∑# Pr(a ∧ b)
or

Pr(a) = ∑# Pr(a|b)Pr(b)

• Chain rule:
Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

– Holds for any number of variables

36

Note: Pr(ab) is 
shorthand
for Pr(a ∧ b)



Example

• You’re programming and suddenly you get a 

headache. You think: Argh! 50% of my 

headaches are caused by annoying bugs, so 

there’s a 50% chance there’s a bug in the code 

L

• Want: Pr(B|H) = ?
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Pr(H) = 1/10

Pr(B) = 1/40

Pr(H|B) = 1/2



Joint Distribution Example
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All values sum up to 1.0



Joint Distribution Example
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• Pr(headache ∧ cold | sunny) = ? 
= Pr(headache ∧ cold ∧ sunny) / Pr(sunny)
= 0.108 / (0.108 + 0.012 + 0.016 + 0.064)
= 0.54



Joint Distribution Example
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• Pr(headache ∧ cold | ~sunny) = ?
= Pr(headache ∧ cold ∧ ~sunny) / Pr(~sunny) 
= 0.072 / (0.072 + 0.008 + 0.144 + 0.576)
= 0.09



Asian Flu Example
• Doctor X knows that Asian flu causes fever 95% of the time.
• X knows that a random person has a 10-7 chance of having 

Asian flu.
• X knows that 1 in 100 people suffer from a fever.
• Joe has a fever: what are the chances that Asian flu is the 

cause of the fever?

• A = Asian flu
• F = fever
• Pr(A|F) = ?

Pr(F)               0.01

46

Evidence is symptom (F)
Hypothesis is illness causing symptom (A)

What information is given?



Asian Flu Example
• Doctor X knows that Asian flu causes fever 95% of the time.
• X knows that a random person has a 10-7 chance of having 

Asian flu.
• X knows that 1 in 100 people suffer from a fever.
• Joe has a fever: what are the chances that Asian flu is the 

cause of the fever?

• A = Asian flu
• F = fever
• Pr(A|F) = ?

Pr(F)               0.01
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Evidence is symptom (F)
Hypothesis is illness causing symptom (A)

What information is given?

Pr(F|A)

Pr(A)
Pr(F)

Recall conditional probability is Pr(A|F) = Pr(A,F) / Pr(F) 
Can we use this to solve for Pr(A|F)?



Bayes Rule
• Note: Pr(ab) = Pr(ba)
• We have: Pr(ab) = Pr(a|b)Pr(b)
• So: Pr(a|b)Pr(b) = Pr(ab) = Pr(ba) = Pr(b|a)Pr(a)

• Bayes rule states:
Pr(b|a) = Pr(a|b)Pr(b)

Pr(a)

• Why is this so important?
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Image taken 
from giphy.com

Gets its 
own 

slide!!!



Using Bayes Rule for Inference

• We may want to form a hypothesis (H) about 
the world based on the evidence (e) we 
observe

• Bayes rule expresses this notion as the belief 
of H given e

Pr(H|e) = Pr(e|H)Pr(H)
Pr(e)
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Using Bayes Rule for Inference

• We may want to form a hypothesis (H) about 
the world based on the evidence (e) we 
observe

• Bayes rule expresses this notion as the belief 
of H given e

Pr(H|e) = Pr(e|H)Pr(H)
Pr(e)
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Posterior
probability

Likelihood Prior probability

Normalizing constant



Need for Simplifying Assumptions

• Previously: compute posterior distribution
• More often: compute posterior joint

distribution

• Problem: joint distribution is usually too big
– Exponential in # variables

• Solution: use independence
– To simplify computational needs
– To simplify model
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Independence

• Two variables A and B are independent if 
knowledge of A does not the change 
uncertainty of B (and vice versa)
– Pr(A|B) = Pr(A)
– Pr(B|A) = Pr(B)
– Pr(AB) = Pr(A)Pr(B)
– In general:

Pr(X1,…,Xn) = ∏"#$
% Pr()*)
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Only need n numbers to specify the joint!



Independence Example

• Consider: Bennett smiles and squint eyes

• If Pr(Smile|Squint) = Pr(Smile)
– Chance of him smiling when he squints

– Chance of him smiling in anyway

• And Pr(Squint|Smile) = Pr(Squint)
– Chance of him squinting when he smiles 

– Chance of him squinting no matter what else he’s doing

• Then Smile and Squint are independent
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What does Independence Buy Us?

• Product rule changes:
Pr(ab) = Pr(a|b)Pr(b)
Pr(ab) = Pr(a)Pr(b)

• Chain rule changes:
Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
Pr(abcd) = Pr(a)Pr(b)Pr(c)Pr(d)
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Conditional Independence

• To loosen the independence assumption, we 
can use conditional independence

• Two variables A and B are conditionally 
independent given C if:
– Pr(a|b,c) = Pr(a|c)          ∀ a, b, c

• Knowing the value of B does not change the 
prediction of A given the presence of C
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Conditional Independence Example
• Consider: Want tea, pink cup, and rainy

• If Pr(Tea|Pink,Rainy) = Pr(Tea|Rainy)
– Chance of wanting tea on rainy days in pink cup

is the same as chance of wanting tea on rainy days in any cup

• And Pr(Tea|Pink,~Rainy) = Pr(Tea|~Rainy)
And Pr(Tea|~Pink,Rainy) = Pr(Tea|Rainy)
And Pr(Tea|~Pink,~Rainy) = Pr(Tea|~Rainy)
And Pr(~Tea|Pink,Rainy) = Pr(~Tea|Rainy)
And …
– Check equivalence for all other combinations

• Then Tea is independent of Pink given Rainy
58
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Cheatsheet of Statistics
• Probability distribution

– All values must sum up to 1.0

• Conditional probability: Pr(b|a) = Pr(b,a)
Pr(a)

• Product rule: Pr(a,b) = Pr(a|b)Pr(b)
• Sum-out rule (marginalization):    Pr(a) = ∑" Pr(&, ()

= ∑" Pr & ( Pr(()
• Chain rule: Pr(abcd) = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

– Applies to any number of variables

• Bayes rule: Pr(b|a) = Pr(a|b)Pr(b)
Pr(a)
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Key Ideas

• Main concept
– Using probability to model uncertainty

• Representation:
– States as an assignment of values to each RV 
– Beliefs over states as probability distributions

• Computational issues:
– Joint distributions are often too large to compute
– Assume independence and conditional 

independence


