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Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process
of how a piece of software is developed by a group of
engineers



Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process
of how a piece of software is developed by a group of

engineers Re uirements
-  Waterfall model q W

- Linear model with sequential phases m |

- Easy to understand and adopt by businesses 41
- Expensive to fix and maintain

- Cannot accommodate changing requirements 1

Maintenance
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- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system

- Test, integration, and regression testing
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- Incrementally add small portions

- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system

- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback
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spec of requirements “"""3[ pesign ] [ resivg ] -[....p...,....m]
- Incrementally add small poruons
- At each iteration: \ Note: test
- Modify design as needed before code

- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:

- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback
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- Derived from lterative/Incremental SDLC
- General plan rather than full specification

Working
software over
comprehensive
documentation

Responding to
change over
following a plan

AGILE VALUES

Customer
collaboration
over contract
negotiation
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interactions
over processes
and tools

- Derived from lterative/Incremental SDLC
- General plan rather than full specification
- Agile methodologies: Scrum,
extreme programming (XP), etc.
- Agile Manifesto (2001):
https://agilemanifesto.org/

- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a
lack of documentation

Working
software over
comprehensive
documentation

Responding to
change over
following a plan

AGILE VALUES

Customer
collaboration
over contract
negotiation
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Test Driven Development (TDD)

- Given a feature:

\

> test before code

J

- Easy to do for unit testing or component testing
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Write a
failing test

Test Driven Development (TDD)

- Given a feature: TDD

- What does it need to do to meet the requirement? EEE, tost pass
- Translate this to:
Which tests does this feature need to pass?

- Easy to do for unit testing or component testing
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Test Driven Development (TDD)

- Given a feature: TDD

- What does it need to do to meet the requirement? EEE, il
- Translate this to:
Which tests does this feature need to pass?
- Write the tests:
- Include positive and negative cases
- Include boundary cases
- Let the tests fall

- Easy to do for unit testing or component testing
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Test Driven Development (TDD)

Write a
failing test

- Given a feature: TDD

Make the

What does it need to do to meet the requirement? EE%, il
Translate this to:
Which tests does this feature need to pass?
Write the tests:

- Include positive and negative cases

- Include boundary cases
Let the tests falil
Write the code to pass each test

- Easy to do for unit testing or component testing
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Test Driven Development (TDD)

Write a
failing test

- Given a feature: TDD

Make the

What does it need to do to meet the requirement? @S2 il
Translate this to:
Which tests does this feature need to pass?
Write the tests:
- Include positive and negative cases
- Include boundary cases
Let the tests falil
Write the code to pass each test
Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing
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Types of Testing

- Integration and unit/component testing can be mocked and

stubbed
Slow + ExpensiveA
UI Layer Tests

- Ul testing is often manual
. Integration Tests

e+ vy AVOVAVAVA, ...



Types of Testing

- Integration and unit/component testing can be mocked and

stubbed
- Ul testing is often manual
- Alternative is to use behavior-driven development

- Automated testing while $16% 4 EXPERELVE
anticipating user behavior

-  Check: Selenium

UI Layer Tests
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Writing Constructive Code Reviews @ @

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control



Writing Constructive Code Reviews é) @

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same ProCess e et o cs tuie

Auther Foes.
/\ \
------------------ 5 review
’ Review o
I Mork ready Pwesuﬂ‘ CI checks
D pt PR :— , R ! por Autmt-ca”y PSS
o = —_— A —
! - Code review > merges PR
__________________
- Request Feedback early - Auther has prepared the = Avcther teom member
= Run CI checks without code For review reviews
not‘&fn, others - Tests '—v'w‘teﬂl - Reviewer con approve or

request changes



What to Comment On?

- Functionality - behavior as intended?

- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow

standard patterns?
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What to Comment On?

- Functionality - behavior as intended?

- Tests - are they complete? do they pass?

- Complexity and design - easy for others to understand? follow
standard patterns?

- Naming - are they descriptive and follow pre-established
conventions?

- Comments - are they clear and helpful?

- Documentation - are associated docs updated?
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Things to Keep in Mind

- Keep PRs small
- Earlier feedback
Easier for others to review
- Faster turnaround time
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Things to Keep in Mind

- Keep PRs small

- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter
- Clear mental model of code:

- Write meaningful feature requirements, PR descriptions, commit messages,
chat histories, descriptions for issue tracking
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Things to Keep in Mind

- Keep PRs small

- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter
- Clear mental model of code:

- Write meaningful feature requirements, PR descriptions, commit messages,
chat histories, descriptions for issue tracking

- PR authors have feelings too
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Next Steps 4

- Submit project plan with Google doc link on Canvas
by Friday 11:59pm

- Next week: Open Topic
Focus on project checkin
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