
COSC 499: Capstone Software Engineering Project



Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process 
of how a piece of software is developed by a group of 
engineers

2



Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process 
of how a piece of software is developed by a group of 
engineers

- Waterfall model
- Linear model with sequential phases
- Easy to understand and adopt by businesses
- Expensive to fix and maintain
- Cannot accommodate changing requirements

3



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

4



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

5



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

6



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

7

Note: test 
before code



Agile SDLC

- Derived from Iterative/Incremental SDLC 
- General plan rather than full specification
- Agile methodologies: Scrum, 

extreme programming (XP), etc. 
- Agile Manifesto (2001): 

https://agilemanifesto.org/ 
- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a 

lack of documentation

8

https://agilemanifesto.org/


Agile SDLC

- Derived from Iterative/Incremental SDLC 
- General plan rather than full specification
- Agile methodologies: Scrum, 

extreme programming (XP), etc. 
- Agile Manifesto (2001): 

https://agilemanifesto.org/ 
- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a 

lack of documentation

9

https://agilemanifesto.org/


Agile SDLC

- Derived from Iterative/Incremental SDLC 
- General plan rather than full specification
- Agile methodologies: Scrum, 

extreme programming (XP), etc. 
- Agile Manifesto (2001): 

https://agilemanifesto.org/ 
- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a 

lack of documentation

10

https://agilemanifesto.org/


Test Driven Development (TDD)

- Given a feature: 
- What does it need to do to meet the requirement?
- Translate this to: 

Which tests does this feature need to pass?
- Write the tests: 

- Include positive and negative cases
- Include boundary cases

- Let the tests fail
- Write the code to pass each test
- Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

11

test before code



Test Driven Development (TDD)

- Given a feature: 
- What does it need to do to meet the requirement?
- Translate this to: 

Which tests does this feature need to pass?
- Write the tests: 

- Include positive and negative cases
- Include boundary cases

- Let the tests fail
- Write the code to pass each test
- Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

12



Test Driven Development (TDD)

- Given a feature: 
- What does it need to do to meet the requirement?
- Translate this to: 

Which tests does this feature need to pass?
- Write the tests: 

- Include positive and negative cases
- Include boundary cases

- Let the tests fail
- Write the code to pass each test
- Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

13



Test Driven Development (TDD)

- Given a feature: 
- What does it need to do to meet the requirement?
- Translate this to: 

Which tests does this feature need to pass?
- Write the tests: 

- Include positive and negative cases
- Include boundary cases

- Let the tests fail
- Write the code to pass each test
- Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

14



Test Driven Development (TDD)

- Given a feature: 
- What does it need to do to meet the requirement?
- Translate this to: 

Which tests does this feature need to pass?
- Write the tests: 

- Include positive and negative cases
- Include boundary cases

- Let the tests fail
- Write the code to pass each test
- Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

15



Test Driven Development (TDD)

- Given a feature: 
- What does it need to do to meet the requirement?
- Translate this to: 

Which tests does this feature need to pass?
- Write the tests: 

- Include positive and negative cases
- Include boundary cases

- Let the tests fail
- Write the code to pass each test
- Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

16



Types of Testing

- Integration and unit/component testing can be mocked and 
stubbed

- UI testing is often manual
- Alternative is to use behavior-driven development

- Automated testing while
anticipating user behavior

- Check: Selenium

17



Types of Testing

- Integration and unit/component testing can be mocked and 
stubbed

- UI testing is often manual
- Alternative is to use behavior-driven development

- Automated testing while
anticipating user behavior

- Check: Selenium

18



Writing Constructive Code Reviews

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same process

19



Writing Constructive Code Reviews

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same process

20



What to Comment On?

- Functionality - behavior as intended?
- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow 

standard patterns?
- Naming - are they descriptive and follow pre-established 

conventions?
- Comments - are they clear and helpful?
- Documentation - are associated docs updated?

21



What to Comment On?

- Functionality - behavior as intended?
- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow 

standard patterns?
- Naming - are they descriptive and follow pre-established 

conventions?
- Comments - are they clear and helpful?
- Documentation - are associated docs updated?

22



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, commit messages, 

chat histories, descriptions for issue tracking
- PR authors have feelings too

23



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, commit messages, 

chat histories, descriptions for issue tracking
- PR authors have feelings too

24



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, commit messages, 

chat histories, descriptions for issue tracking
- PR authors have feelings too

25



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, commit messages, 

chat histories, descriptions for issue tracking
- PR authors have feelings too

26



Next Steps

- Submit project plan with Google doc link on Canvas 
by Friday 11:59pm
-

- Next week: Open Topic
- Focus on project checkin

27


