COSC 499: CaEpstone Software Engineering Project
F HTURE COMPLETE MONKEYUSER.COM

AAAAND...
&

DONE!

Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process
of how a piece of software is developed by a group of
engineers

Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process
of how a piece of software is developed by a group of

engineers Re uirements
- Waterfall model q W

- Linear model with sequential phases m |

- Easy to understand and adopt by businesses 41
- Expensive to fix and maintain

- Cannot accommodate changing requirements 1

Maintenance

Build1 [3) [b
Design Testing Implementation
lterative/Incremental SDLC o G — :
Requirements L Design Testing Implementation

- Does not attempt to have full
spec of requirements ""“"3[pesign] [restig] [.....,..m.m.o..]
- Incrementally add small portions

2 () 3
Design Testing Implementation

. J " - \

lterative/Incremental SDLC o , P :
o Design : Testing Implementation

J . J \

Build1 [

~
J

- Does not attempt to have full
spec of requirements "““"3[pesign] [resiy] [....p..m..,m]
- Incrementally add small portions

- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system

- Test, integration, and regression testing

(= R s N §
Design - Testing Implementation

\ 7 . J \

{ N f N
Build <
uild2 Design s Testing Implementation
. J - J \ J

- Does not attempt to have full
spec of requirements °"""3[pesign] [resiy] [....p..m...m]
- Incrementally add small portions

- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system

- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

Build 1

lterative/Incremental SDLC

~
J

r D g 2 ¥ D
Design > Testing Implementation

\ J . J \

™ s "\ - N
Build <
COTe (R (S (e ——
. J . J \ J

- Does not attempt to have fL

Build 1

lterative/Incremental SDLC

o

spec of requirements “"""3[pesign] [resivg] -[....p...,....m]
- Incrementally add small poruons
- At each iteration: \ Note: test
- Modify design as needed before code

- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:

- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

Ag | Ie S D LC Individuals and

interactions
over processes
and tools

- Derived from lterative/Incremental SDLC
- General plan rather than full specification

Working
software over
comprehensive
documentation

Responding to
change over
following a plan

AGILE VALUES

Customer
collaboration
over contract
negotiation

https://agilemanifesto.org/

Ag ile SDLC " ndiihrmlasan

interactions
over processes
and tools

- Derived from lterative/Incremental SDLC
- General plan rather than full specification
- Agile methodologies: Scrum,
extreme programming (XP), etc.
- Agile Manifesto (2001):
https://agilemanifesto.org/

Working
software over
comprehensive
documentation

Responding to
change over
following a plan

AGILE VALUES

Customer
collaboration
over contract
negotiation

https://agilemanifesto.org/

Ag ile SDLC " ndiihrmlasan

interactions
over processes
and tools

- Derived from lterative/Incremental SDLC
- General plan rather than full specification
- Agile methodologies: Scrum,
extreme programming (XP), etc.
- Agile Manifesto (2001):
https://agilemanifesto.org/

- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a
lack of documentation

Working
software over
comprehensive
documentation

Responding to
change over
following a plan

AGILE VALUES

Customer
collaboration
over contract
negotiation

10

https://agilemanifesto.org/

Test Driven Development (TDD)

- Given a feature:

\

> test before code

J

- Easy to do for unit testing or component testing

1

Write a
failing test

Test Driven Development (TDD)

- Given a feature: TDD

- What does it need to do to meet the requirement? EEE, tost pass
- Translate this to:
Which tests does this feature need to pass?

- Easy to do for unit testing or component testing

12

Write a
failing test

Test Driven Development (TDD)

- Given a feature: TDD

- What does it need to do to meet the requirement? EEE, il
- Translate this to:
Which tests does this feature need to pass?
- Write the tests:
- Include positive and negative cases
- Include boundary cases

- Easy to do for unit testing or component testing

13

Write a
failing test

Test Driven Development (TDD)

- Given a feature: TDD

- What does it need to do to meet the requirement? EEE, il
- Translate this to:
Which tests does this feature need to pass?
- Write the tests:
- Include positive and negative cases
- Include boundary cases
- Let the tests fall

- Easy to do for unit testing or component testing

14

Test Driven Development (TDD)

Write a
failing test

- Given a feature: TDD

Make the

What does it need to do to meet the requirement? EE%, il
Translate this to:
Which tests does this feature need to pass?
Write the tests:

- Include positive and negative cases

- Include boundary cases
Let the tests falil
Write the code to pass each test

- Easy to do for unit testing or component testing

15

Test Driven Development (TDD)

Write a
failing test

- Given a feature: TDD

Make the

What does it need to do to meet the requirement? @S2 il
Translate this to:
Which tests does this feature need to pass?
Write the tests:
- Include positive and negative cases
- Include boundary cases
Let the tests falil
Write the code to pass each test
Refactor the code (clean up potential redundancies)

- Easy to do for unit testing or component testing

16

Types of Testing

- Integration and unit/component testing can be mocked and

stubbed
Slow + ExpensiveA
UI Layer Tests

- Ul testing is often manual
. Integration Tests

e+ vy AVOVAVAVA, ...

Types of Testing

- Integration and unit/component testing can be mocked and

stubbed
- Ul testing is often manual
- Alternative is to use behavior-driven development

- Automated testing while $16% 4 EXPERELVE
anticipating user behavior

- Check: Selenium

UI Layer Tests

o o (O I’.",.' .
Sl _ Integration Tests

e+ ey AVAVAVAVA, ...
AVAVAVAVAVA "~

Writing Constructive Code Reviews @ @

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

Writing Constructive Code Reviews é) @

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same ProCess e et o cs tuie

Auther Foes.
/\ \
------------------ 5 review
’ Review o
I Mork ready Pwesuﬂ‘ CI checks
D pt PR :— , R ! por Autmt-ca”y PSS
o = —_— A —
! - Code review > merges PR

- Request Feedback early - Auther has prepared the = Avcther teom member
= Run CI checks without code For review reviews
not‘&fn, others - Tests '—v'w‘teﬂl - Reviewer con approve or

request changes

What to Comment On?

- Functionality - behavior as intended?

- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow

standard patterns?

21

What to Comment On?

- Functionality - behavior as intended?

- Tests - are they complete? do they pass?

- Complexity and design - easy for others to understand? follow
standard patterns?

- Naming - are they descriptive and follow pre-established
conventions?

- Comments - are they clear and helpful?

- Documentation - are associated docs updated?

22

Things to Keep in Mind

- Keep PRs small
- Earlier feedback
Easier for others to review
- Faster turnaround time

23

Things to Keep in Mind

- Keep PRs small

- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

24

Things to Keep in Mind

- Keep PRs small

- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter
- Clear mental model of code:

- Write meaningful feature requirements, PR descriptions, commit messages,
chat histories, descriptions for issue tracking

25

Things to Keep in Mind

- Keep PRs small

- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter
- Clear mental model of code:

- Write meaningful feature requirements, PR descriptions, commit messages,
chat histories, descriptions for issue tracking

- PR authors have feelings too

26

Next Steps 4

- Submit project plan with Google doc link on Canvas
by Friday 11:59pm

- Next week: Open Topic
Focus on project checkin

27

