
COSC 499: Capstone Software Engineering Project



System Architecture

- A conceptual model the structure and behavior of a system
- Identifies the major components and subcomponents
- Identifies how these components interact with each other
- Can involve hardware and software components

- Software engineers use formal languages to describe and document 
system architectures

- E.g., data flow diagrams (DFDs) describe how data moves from one process to 
another

- Purpose
- Tool for communication among different stakeholders
- Ensures business goals and stakeholder requirements are met
- Documents changes to the system

2



Traditional Examples of System Architectures

- Controller-responder architecture
- Initially called Master-Slave
- Controller distributes work to identical

responders
- Results are then compiled by controller

- Client-server architecture
- Control rests with clients
- Server handles central computing and 

data storage
- Decentralized variation of this is 

peer-to-peer architecture

3



Layered Architecture

- Popular in E-Commerce apps
- Components are defined in layers

- Apps may have different layers
- Calls and data propagation flow downwards
- Hide details within layers
- Most common layer separation: Presentation, Business/Domain, Data

- Characteristics:
- Easy to test components within layers
- Easy to implement and conceptualize
- Changes can be messy due to coupling of neighbouring layers
- Changes in a given layer can impact the entire system

4



Model-View-Controller (MVC) Architecture

- Very popular layered architecture
- Used in web apps to divide responsibilities 

between the client and server
- Most of the work is done on server side
- Client sends requests through form submissions to system
- Controller handles app logic and manipulates Model as needed
- View retrieves data from the Model as needed
- View sends a new page to the client

- Variations: MVP (presenter), MVA (adapter), MVVM, etc.

5



Microservices Architecture

- Involves creating multiple services
that work together but can be
deployed independently

- Characteristics:
- Creates streamlined delivery pipeline
- Its distributed nature allows component decoupling
- Increases scalability and maintainability
- Designing decoupled services can be tricky (for experienced architects)

6



Relation to Technology Stack

- Use proven frameworks to get started 
- A framework is a set of programming tools to help 

build a well-structured app
- Comes with auto-generated code for basic structure
- Supports libraries for common functionality
- Provides code standards and development structure 

for rest of app
- Look for an active community that supports the chosen framework

- Many frameworks use a prescribed system architecture
- E.g. Ruby on Rails is MVC
- E.g. Flutter uses layered architecture
- E.g. Django uses model-view-template (MVT)
- E.g. React JS uses higher-order-component (HOC)

7


