
COSC 499: Capstone Software Engineering Project



Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process 
of how a piece of software is developed by a group of 
engineers

2



Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process 
of how a piece of software is developed by a group of 
engineers

- Waterfall model
- Linear model with sequential phases
- Easy to understand and adopt by businesses
- Expensive to fix and maintain
- Cannot accommodate changing requirements

3



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

4



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

5



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

6



Iterative/Incremental SDLC

- Does not attempt to have full
spec of requirements

- Incrementally add small portions
- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback

7

Note: test 
before code



Agile SDLC

- Derived from Iterative/Incremental SDLC 
- General plan rather than full specification
- Agile methodologies: Scrum, 

extreme programming (XP), etc. 
- Agile Manifesto (2001): 

https://agilemanifesto.org/ 
- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a 

lack of documentation

8

https://agilemanifesto.org/


Agile SDLC

- Derived from Iterative/Incremental SDLC 
- General plan rather than full specification
- Agile methodologies: Scrum, 

extreme programming (XP), etc. 
- Agile Manifesto (2001): 

https://agilemanifesto.org/ 
- Characteristics:

- Hard to budget and manage
- Challenging to transfer technology due to a 

lack of documentation

9

https://agilemanifesto.org/


Agile SDLC

- Derived from Iterative/Incremental SDLC 
- General plan rather than full specification
- Agile methodologies: Scrum, 

extreme programming (XP), etc. 
- Agile Manifesto (2001): 

https://agilemanifesto.org/ 
- Challenges:

- Hard to budget and manage
- Challenging to transfer technology 

due to a lack of documentation

10

https://agilemanifesto.org/


11

Code snippet in medium size repo

Context: New employee asked to run an 
algorithm with specific parameters

What do you foresee as potential 
challenges?



Writing Constructive Code Reviews

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same process

12

Remember: You will be tested on *any* 
part of the repo, even if you didn't 
develop it



Writing Constructive Code Reviews

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same process

13



What to Comment On?

- Functionality - behavior as intended?
- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow 

standard patterns?
- Naming - are they descriptive and follow pre-established 

conventions?
- Comments - are they clear and helpful?
- Documentation - are associated docs updated?

14



What to Comment On?

- Functionality - behavior as intended?
- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow 

standard patterns?
- Naming - are they descriptive and follow pre-established 

conventions?
- Comments - are they clear and helpful?
- Documentation - are associated docs updated?

15



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, commit messages, 

chat histories, descriptions for issue tracking
- PR authors have feelings too

16



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, commit messages, 

chat histories, descriptions for issue tracking
- PR authors have feelings too

17



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, good naming 

conventions, commit messages, chat histories, descriptions for issue tracking, 
comment your code as needed

- PR authors have feelings too
18



Things to Keep in Mind

- Keep PRs small
- Earlier feedback

Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter

- Clear mental model of code:
- Write meaningful feature requirements, PR descriptions, good naming 

conventions, commit messages, chat histories, descriptions for issue tracking, 
comment your code as needed

- PR authors have feelings too
19


