COSC 499: CaEpstone Software Engineering Project
F HTURE COMPLETE MONKEYUSER.COM

AAAAND...
&

DONE!




Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process
of how a piece of software is developed by a group of
engineers



Traditional Waterfall Model

- Software development lifecycle (SDLC) describes the process
of how a piece of software is developed by a group of

engineers Re uirements
-  Waterfall model q W

- Linear model with sequential phases m |

- Easy to understand and adopt by businesses 41
- Expensive to fix and maintain

- Cannot accommodate changing requirements 1

Maintenance
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- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system

- Test, integration, and regression testing
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- Incrementally add small portions

- At each iteration:

- Modify design as needed
- Add new features (implement small parts) to the system

- Test, integration, and regression testing

- Characteristics:
- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback
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spec of requirements “"""3[ pesign ] [ resivg ] -[....p...,....m]
- Incrementally add small portions
- At each iteration: \ Note: test
- Modify design as needed before code

- Add new features (implement small parts) to the system
- Test, integration, and regression testing

- Characteristics:

- Allows for cycles
- Observe working system (prototypes) early in the development process
- Less costly for debugging, testing, and incorporating feedback
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Agile SDLC Individuals and

interactions
over processes
and tools

- Derived from lterative/Incremental SDLC
- General plan rather than full specification
- Agile methodologies: Scrum,
extreme programming (XP), etc.
- Agile Manifesto (2001):
https://agilemanifesto.org/
- Challenges:
- Hard to budget and manage
- Challenging to transfer technology
due to a lack of documentation
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class WeightRun(Run):
def start(self, num_trials: int = 1, : bool = True):
scenario = BowenScenario2()

metrics = [

AverageCosineDifference(
name="Score Cosine Difference",
attribute_filter=[Attributes.SCORE.value],

)y

AverageCosineDifference(
name="Timeslot Cosine Difference",
attribute_filter=[ScenarioAttribute.TIMESLOT_AVAILABILITY.value],

)y

student_provider = BowensDataProvider2()

artifact: SimulationSetArtifact = SimulationSet(
settings=SimulationSettings(
num_teams=ceil(student_provider.num_students / 4),
scenario=scenario,
student_provider=student_provider,
cache_key=f"weight_run_for_bowen/weight_run_2/",
)y
algorithm_set={
AlgorithmType.PRIORITY: [
PriorityAlgorithmConfig(
MAX_KEEP=15,
MAX_SPREAD=30,
MAX_ITERATE=30,
MAX_TIME=100000,
),

b
). run(num_runs=num_trials)

team_set = list(artifact.values())[0][0][0]

insight_output_set = Insight.get_output_set(artifact, metrics)
print(insight_output_set)

data = [["ResponseId", "Q8", "Q4", "Q5", "zPos", "Teamld", "TeamSizeViolation"]]
for team in team_set.teams:
for student in team.students:

attributes = student.attributes

responseld = student_provider.get_student(student.id)

timeslot = attributes[ScenarioAttribute.TIMESLOT_AVAILABILITY.value] [0]

Code snippet in medium size repo

Context: New employee asked to run an
algorithm with specific parameters

What do you foresee as potential
challenges?
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Writing Constructive Code Reviews é) @

- Purpose:

Share knowledge Remember: You will be tested on *any*

Spread ownership . part of the repo, even if you didn't
Unify development practices develop it

Quiality control
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Writing Constructive Code Reviews é) @

- Purpose:
- Share knowledge
- Spread ownership
- Unify development practices
- Quality control

- Follow the same ProCess e et o cs tuie
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! - Code review > merges PR
__________________
- Request Feedback early - Auther has prepared the = Avcther teom member
= Run CI checks without code For review reviews
not‘&fn, others - Tests '—v'w‘teﬂl - Reviewer con approve or

request changes



What to Comment On?

- Functionality - behavior as intended?

- Tests - are they complete? do they pass?
- Complexity and design - easy for others to understand? follow

standard patterns?
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What to Comment On?

- Functionality - behavior as intended?

- Tests - are they complete? do they pass?

- Complexity and design - easy for others to understand? follow
standard patterns?

- Naming - are they descriptive and follow pre-established
conventions?

- Comments - are they clear and helpful?

- Documentation - are associated docs updated?
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Things to Keep in Mind

- Keep PRs small
- Earlier feedback
Easier for others to review
- Faster turnaround time
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- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter
- Clear mental model of code:

- Write meaningful feature requirements, PR descriptions, good naming
conventions, commit messages, chat histories, descriptions for issue tracking,
comment your code as needed
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Things to Keep in Mind

- Keep PRs small

- Earlier feedback
Easier for others to review
- Faster turnaround time

- Delegate nit-picking to a computer
- e.g. linter
- Clear mental model of code:

- Write meaningful feature requirements, PR descriptions, good naming
conventions, commit messages, chat histories, descriptions for issue tracking,
comment your code as needed

- PR authors have feelings too
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