COSC 499: Capstone Software Engineering Project

¢ git commit -m "bug fix"
Please, you can do better than this.

f? S git commit -m "validation bug fix"
| can play this game all day long...

$ git commit -m "including timestamp validation \
> in the customer backend service"

Do you really believe your validation
is working??? Run the tests before commiting, dude!

¢ yum remove git && yum install svn
No, no, no! fix that validatijon bug first.

Daniel Stori {turnoff.us}

Git GitHub —

First developed GitHub is C—J
in 2005 deSignEd as d E

Git repository
hosting service

Git is installed
and maintained GitHub is

on your local exclusively
system (rather — cloud-based

than in the You can share
cloud) One thing that your code with
really sets Git others, giving
apart is its them the power /
branching to make
model revisions or edits

Git is a high quality version control system

Image taken from https://devmountain.com/

Git and GitHub

- Git is a modern version control system for software developers
- GitHub is a public platform that supports Git in the cloud

- Do not push files with secrets (use .gitignore) Examples?

- Using GitHub
- GitHub CLI https://cli.github.com/

- GitHub Desktop https://docs.github.com/en/desktop
some IDEs also have Git integration
- This course: GitHub classroom

https://cli.github.com/
https://docs.github.com/en/desktop

Development Process in Git Commands

repeat

Common steps:

glit clone

git pull origin master

git checkout -b new branch name

[create files, write tests, write code]

git add file name

glt status

git commit -m "string message describing change"

git push new branch name

[create pull request, wait for review, make fixes as needed, merge to master]

Development Process in Git Commands

repeat

- Common steps:
glit clone

r(QEE:pull origin mas€§z:>
git checkout -b new branch name
[create files, write tests, write code]
git add file name

So important! Why?

glt status
git commit -m "string message describing change"

git push new branch name

[create pull request, wait for review, make fixes as needed, merge to master]

Basic Development Process: Alone

) Local Remote

working staging localraso remote
directory area P repo
- Write new code <
- Attempt to synch m
new code)
- Merges branch m
o
git checkout
Image taken from https://dev.to/

Basic Development Process: In a Team

Local Remote

working staging localrepo remote
directory area repo

m Create a pull request (PR)
Assign reviewers (usually 2)
v - Fix changes as needed
m - Repo policy can auto merge
l if both reviewers approve
git checkout

Branching and Merging

- Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds

Branching and Merging

- Everyone should follow the same branching strategy

- Helps teams move faster

- Teams can work on parallel builds
- Why use branches?

- Your edits don't immediately effect the original source code
- Branch when you have a new feature

Branching and Merging

Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds
Why use branches?
- Your edits don't immediately effect the original source code
Branch when you have a new feature
Naming convention
- Use a short representative description of the feature
- Do NOT name it after yourself

10

Branching and Merging

Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds
- Why use branches?
- Your edits don't immediately effect the original source code
- Branch when you have a new feature
- Naming convention

- Use a short representative description of the feature
- Do NOT name it after yourself

- Merging your branch
- Process of joining your branch with original source code after fully testing y

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

» Time
In charge of AA
; ; Release Mmaster
Integration Marager ;ﬁ >
develop /

X >C§ > >O
\0‘ (22, /‘ ©/N\O s

Q feature \ . l . . . ’.

'\“ﬂ) branches

Developer

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

8 - 4 i » Time
- N\
.

!
Release Mmaster
‘ O: /9
4 develop “'

Manager
Features o @76 9> @ 730

.,_@
O

branch off of
and merge < g T— \‘0—>0—>0—>o
into develop @ branches

Developer

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

How many
features
were
merged to
develop?

/l .'-\\/ J \|

Release Mmaster
Manager

develop "

l

3 feature
\A\ branches

Developer

g

Y

o @}9 1o

N

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

» Time

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

After the
merge in 2a,
why was
there
continued
development
that led to 3?

2

:
Release Mmaster

Manager

develop “'

feature
branches

8@

Developer

\@ of of\o

“x

Y

N

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

» Time

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

b 4 i » Time
e

Release Mmaster

. Manager X @)®
Why is there s
another pull ’ @ 6
from develop develop - @O—> O
\ﬁ\ branches >‘
Developer

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Branching Conventions for this Course

- Branches for your repo

- master for deployment / deployment-ready
- develop for active development
- doc for repo documentation only
- log for class logs only; irrelevant to client
- one per feature
- Inlog branch:

- student Aindiv logs
- student B indiv logs

- team logs

17

Branching Conventions for this Course

- Do NOT delete your feature branches after they have been merged
- We want to see commit patterns in GitHub insights

- The integration lead is the only one who can merge develop to master
- You may want 1-2 people assigned to integration

- Required reviewers:
- Features and documentation require 2 reviewers
- Logs require 1 reviewer
- After reviewers approve a PR, the repo can auto-merge the feature to
develop or the last reviewer can do it manually

18

Another Example

- More complex branching strategy

Organization
dependent <

Image taken from https://Irtitecnologia.wordpre

19

Another Example

- More complex branching strategy

Hotfix —> gEEm

requires a
synch with
both master

and develop

Image taken from https://Irtitecnologia.wordpre

20

Another Example

- More complex branching strategy

What's

happening
with the
bottom
feature?

Image taken from https://Irtitecnologia.wordpre

21

Developer Maxim: Merge Early and Often

- Merging is analogous to a "synch" action
- What happens if you develop your feature for a long time while
everyone else is developing and merging their work?

22

Developer Maxim: Merge Early and Often

- Merging is analogous to a "synch" action
- What happens if you develop your feature for a long time while

everyone else is developing and merging their work?
- You get stuck handling all the merge conflicts

- Therefore: Pull changes and integrate frequently
- Keep your PRs small N
- Avoid massive merge conflicts A ,

23

Other Goodies: GitHub Student Developer Pack

- Available to students and offers a range of free services
https://education.github.com/pack

Intro to Web Dev offers (Total 8)

n Bootstrap Studio

DigitalOcean

JetBrains

Microsoft Azure

Educative

Polypane

Microsoft Visual Studio Dev
Essentials

Q8 @ o

GitHub Pages

Explore the experience

Design Developer tools

Cloud

Developer tools

Cloud Virtual Events

Learn

Design Developer tools

Cloud Developer tools

Learn

Developer tools

Mobile App Development offers (Total 8)

=. Microsoft Azure

FrontendMasters

@ LambdaTest

l!J Lingohub

v Kodika
‘mmpﬁh Bump.sh

. Replit
GitHub Codespaces
0

Explore the experience

Cloud Virtual Events

Learn

Developer tools

Developer tools Infrastructure & APIs

Productivity

Design Developer tools Mobile
Infrastructure & APIs

Developer tools

Developer tools Learn

Developer Operations offers (Total 7)

Travis CI

GitHub

Sentry

BrowserStack

©0 D &

Uhlyh peveycle
C CodeScene

@ New Relic
Explore the experience

Developer tools

Infrastructure & APIs

Infrastructure & APIs

Developer tools

Developer tools

Developer tools

Developer tools

Security & analytics

Security & analytics

Developer tools

Developer tools Cloud

24

https://education.github.com/pack

¥

Next Steps

Watch the IP guest lecture

Review sample IP agreement
- Client's ownership over project
- Students and instructor maintain educational rights

Review project plan template

Next week:
- Finalize project option
- Draft out project requirements, print 6 copies for class
- Meet with teams for each project option ~20 min
- Submit client questions
- Complete Team exercise
- Submit logs at the end of Week 3 (your first "dry-run")

25

