
COSC 499: Capstone Software Engineering Project

Image taken from https://devmountain.com/

Git and GitHub

- Git is a modern version control system for software developers
- GitHub is a public platform that supports Git in the cloud

- Do not push files with secrets (use .gitignore) Examples?
- Using GitHub

- GitHub CLI https://cli.github.com/
- GitHub Desktop https://docs.github.com/en/desktop

some IDEs also have Git integration
- This course: GitHub classroom

3

https://cli.github.com/
https://docs.github.com/en/desktop

Development Process in Git Commands

- Common steps:
git clone
git pull origin master
git checkout -b new_branch_name
[create files, write tests, write code]
git add file_name
git status
git commit -m "string message describing change"
git push new_branch_name
[create pull request, wait for review, make fixes as needed, merge to master]

4

re
pe

at

Development Process in Git Commands

- Common steps:
git clone
git pull origin master
git checkout -b new_branch_name
[create files, write tests, write code]
git add file_name
git status
git commit -m "string message describing change"
git push new_branch_name
[create pull request, wait for review, make fixes as needed, merge to master]

5

re
pe

at

So important! Why?

Basic Development Process: Alone

-

6

- Merges branch
to master

- Write new code

- Attempt to synch
new code

Image taken from https://dev.to/

Basic Development Process: In a Team

7

- Create a pull request (PR)
- Assign reviewers (usually 2)
- Fix changes as needed
- Repo policy can auto merge

if both reviewers approve

Image taken from https://dev.to/

Branching and Merging

- Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds

- Why use branches?
- Your edits don't immediately effect the original source code

- Branch when you have a new feature
- Naming convention

- Use a short representative description of the feature
- Do NOT name it after yourself

- Merging your branch
- Process of joining your branch with original source code after fully testing

8

Branching and Merging

- Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds

- Why use branches?
- Your edits don't immediately effect the original source code

- Branch when you have a new feature
- Naming convention

- Use a short representative description of the feature
- Do NOT name it after yourself

- Merging your branch
- Process of joining your branch with original source code after fully testing

9

Branching and Merging

- Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds

- Why use branches?
- Your edits don't immediately effect the original source code

- Branch when you have a new feature
- Naming convention

- Use a short representative description of the feature
- Do NOT name it after yourself

- Merging your branch
- Process of joining your branch with original source code after fully testing

10

Branching and Merging

- Everyone should follow the same branching strategy
- Helps teams move faster
- Teams can work on parallel builds

- Why use branches?
- Your edits don't immediately effect the original source code

- Branch when you have a new feature
- Naming convention

- Use a short representative description of the feature
- Do NOT name it after yourself

- Merging your branch
- Process of joining your branch with original source code after fully testing

11

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

12

In charge of
integration

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

13

Features
branch off of
and merge
into develop

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

14

How many
features
were
merged to
develop?

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

15

After the
merge in 2a,
why was
there
continued
development
that led to 3?

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Visualizing Git Flow

- Master branch - stable code, ready to stage/deploy
- Develop branch - where features merge to

16

Why is there
another pull
from develop
at 4?

Image taken from ICSE'2014 paper by S. Krusche & L. Alperowitz

Branching Conventions for this Course

- Branches for your repo
- master for deployment / deployment-ready
- develop for active development
- doc for repo documentation only
- log for class logs only; irrelevant to client
- one per feature

- In log branch:
- student A indiv logs
- student B indiv logs
- …
- team logs

17

Branching Conventions for this Course

- Do NOT delete your feature branches after they have been merged
- We want to see commit patterns in GitHub insights
-

- The integration lead is the only one who can merge develop to master
- You may want 1-2 people assigned to integration
-

- Required reviewers:
- Features and documentation require 2 reviewers
- Logs require 1 reviewer
- After reviewers approve a PR, the repo can auto-merge the feature to

develop or the last reviewer can do it manually

18

Another Example

- More complex branching strategy

19

Organization
dependent

Image taken from https://lrtitecnologia.wordpress.com/

Another Example

- More complex branching strategy

20

Hotfix
requires a
synch with
both master
and develop

Image taken from https://lrtitecnologia.wordpress.com/

Another Example

- More complex branching strategy

21

What's
happening
with the
bottom
feature?

Image taken from https://lrtitecnologia.wordpress.com/

Developer Maxim: Merge Early and Often

- Merging is analogous to a "synch" action
- What happens if you develop your feature for a long time while

everyone else is developing and merging their work?
- You get stuck handling all the merge conflicts
-

- Therefore: Pull changes and integrate frequently
- Avoid massive merge conflicts

22

Developer Maxim: Merge Early and Often

- Merging is analogous to a "synch" action
- What happens if you develop your feature for a long time while

everyone else is developing and merging their work?
- You get stuck handling all the merge conflicts
-

- Therefore: Pull changes and integrate frequently
- Keep your PRs small
- Avoid massive merge conflicts

23

Other Goodies: GitHub Student Developer Pack

- Available to students and offers a range of free services
https://education.github.com/pack

24

https://education.github.com/pack

Next Steps

25

- Watch the IP guest lecture
- Review sample IP agreement

- Client's ownership over project
- Students and instructor maintain educational rights

- Review project plan template
-

- Next week:
- Finalize project option
- Draft out project requirements, print 6 copies for class
- Meet with teams for each project option ~20 min
- Submit client questions
- Complete Team exercise
- Submit logs at the end of Week 3 (your first "dry-run")

