
COSC 499: Capstone Software Engineering Project

System Architecture

- A conceptual model the structure and behavior of a system
- Identifies the major components and subcomponents
- Identifies how these components interact with each other
- Can involve hardware and software components

- Software engineers use formal languages to describe and document
system architectures

- E.g., data flow diagrams (DFDs) describe how data moves from one process to
another

- Purpose
- Tool for communication among different stakeholders
- Ensures business goals and stakeholder requirements are met
- Documents changes to the system

2

Examples of Machine Translation (MT) Approaches

3

Examples of Machine Translation (MT) Approaches cont.

4

Overcomes language-specific idioms

Examples of Machine Translation (MT) Approaches cont.

5

Adopts the idea of universal grammar

Examples of Specific Systems

6

- labeled data flow
- major components
- component relationships
- interactions with other

components

Traditional Examples of System Architectures

- Controller-responder architecture
- Initially called Master-Slave
- Controller distributes work to identical

responders
- Results are then compiled by controller

- Client-server architecture
- Control rests with clients
- Server handles central computing and

data storage
- Decentralized variation of this is

peer-to-peer architecture (e.g. napster)

7

Client-Server Architecture in Web Apps

8
Front-end Back-end Database

1-Tier Client-Server Architecture in Web Apps

9
Front-end Back-end Database

2-Tier Client-Server Architecture in Web Apps

10

All the code lives on one machine,
the database lives on a separate
machine

The client side lives on one machine,
the server and database live on a
separate machine

3-Tier Client-Server Architecture in Web Apps

11Can we have more tiers? Why?

N-Tier Client-Server Architecture in Web Apps

12Each business logic component could live on its own machine

Layered Architecture

- Popular in E-Commerce apps
- Components are defined in layers

- Apps may have different layers
- Calls and data propagation flow downwards
- Hide details within layers
- Most common layer separation: Presentation, Business/Domain, Data

-

- Characteristics:
- Easy to test components within layers
- Easy to implement and conceptualize
- Changes can be messy due to coupling of neighbouring layers
- Changes in a given layer can impact the entire system

13

Layered Architecture

- Popular in E-Commerce apps
- Components are defined in layers

- Apps may have different layers
- Calls and data propagation flow downwards
- Hide details within layers
- Most common layer separation: Presentation, Business/Domain, Data

-

- Characteristics:
- Easy to test components within layers
- Easy to implement and conceptualize
- Changes can be messy due to coupling of neighbouring layers
- Changes in a given layer can impact the entire system

14
Important terms: separation, de-coupling, modularity

Model-View-Controller (MVC) Architecture

- Very popular layered architecture
-

- Used in web apps to divide responsibilities
between the client and server

- Most of the work is done on server side
- Client sends requests through form submissions to system
- Controller handles app logic and manipulates Model as needed
- View retrieves data from the Model as needed
- View sends a new page to the client
-

- Variations: MVP (presenter), MVA (adapter), MVVM, etc.

15

Microservices Architecture

- Involves creating multiple services
that work together but can be
deployed independently

-

- Characteristics:
- Creates streamlined delivery pipeline
- Its distributed nature allows component decoupling
- Increases scalability and maintainability
- Designing decoupled services can be tricky (for experienced architects)

16

An Amazon Example

17

Tyson Olychuck
UBCO

Class of 2013
ex. Amazon

I work on
search

An Amazon Example

18

Tyson Olychuck
UBCO

Class of 2013
ex. Amazon

I work on
search

Relation to Technology Stack

- Use proven frameworks to get started
- A framework is a set of programming tools to help

build a well-structured app
- Comes with auto-generated code for basic structure
- Supports libraries for common functionality
- Provides code standards and development structure

for rest of app
- Look for an active community that supports the chosen framework
-

- Many frameworks use a prescribed system architecture
- E.g. Ruby on Rails is MVC
- E.g. Flutter uses layered architecture
- E.g. Django uses model-view-template (MVT)
- E.g. React JS uses higher-order-component (HOC) 19

Data Flow Diagrams (DFD)

20

- Formal notation to represent data flow in a system
- Useful for communication between technical and

non-technical members
- Identifies system scope and boundary
- Assists in top-down system decomposition
- Level 0: Context diagram
- Level 1: Highest-level system processes
-

- Further details and examples:
- https://online.visual-paradigm.com/knowledge/

software-design/dfd-using-yourdon-and-demarco
- https://blog.hubspot.com/marketing/data-flow-diagram

Follow this notation:

https://online.visual-paradigm.com/knowledge/software-design/dfd-using-yourdon-and-demarco
https://online.visual-paradigm.com/knowledge/software-design/dfd-using-yourdon-and-demarco
https://blog.hubspot.com/marketing/data-flow-diagram

Next Steps

- Design your microservices architecture
- Contrast your architecture with other teams

(same project option)
- Develop DFD levels 0 and 1
-
- Next week:

- No lecture, just team support
- Design before code
- Align code to your design

21

