248 Chapter 6 B HCl in the software process

6.5

First, it is often the case that design decisions made at the very beginning of the
prototyping process are wrong and, in practice, design inertia can be so great as
never to overcome an initial bad decision. So, whereas iterative design is, in theory,
amenable to great changes through iterations, it can be the case that the initial pro-
totype has bad features that will not be amended. We will examine this problem
through a real example of a clock on a microwave oven.” The clock has a numeric
display of four digits. Thus the display is capable of showing values in the range from
00:00 to 99:99. The functional model of time for the actual clock is only 12 hours,
so quite a few of the possible clock displays do not correspond to possible times (for
example, 63:00, 85:49), even though some of them are legal four-digit time desig-
nations. That poses no problem, as long as both the designer and the ultimate users
of the clock both share the knowledge of the discrepancy between possible clock dis-
plays and legal times. Such would not be the case for someone assuming a 24-hour
time format, in which case the displays 00:30 and 13:45 would represent valid
times in their model but not in the microwave’s model. In this particular example,
the subjects tested during the evaluation must have all shared the 12-hour time
model, and the mismatch with the other users (with a 24-hour model) was only dis-
covered after the product was being shipped. At this point, the only impact of iterat-
ive design was a change to the documentation alerting the reader to the 12-hour
format, as it was too late to perform any hardware change.

The second problem is slightly more subtle, and serious. If, in the process of evalu-
ation, a potential usability problem is diagnosed, it is important to understand the
reason for the problem and not just detect the symptom. In the clock example, the
designers could have noticed that some subjects with a 24-hour time model were
having difficulty setting the time. Say they were trying to set the time for 14 : 45, but
they were not being allowed to do that. If the designers did not know the subject’s
goals, they might not detect the 24/12 hour discrepancy. They would instead notice
that the users were having trouble setting the time and so they might change the but-
tons used to set the time instead of other possible changes, such as an analog time
dial, or displaying AM or PM on the clock dial to make the 12-hour model more
obvious, or to change to a 24-hour clock.

The moral for iterative design is that it should be used in conjunction with
other, more principled approaches to interactive system design. These principled
approaches are the subject of Part 3 of this book.

DESIGN RATIONALE

In designing any computer system, many decisions are made as the product
goes from a set of vague customer requirements to a deliverable entity. Often it is
difficult to recreate the reasons, or rationale, behind various design decisions. Design

2 This example has been provided by Harold Thimbleby.



6.5 Design rationale 249

rationale is the information that explains why a computer system is the way it is,
including its structural or architectural description and its functional or behavioral
description. In this sense, design rationale does not fit squarely into the software life
cycle described in this chapter as just another phase or box. Rather, design rationale
relates to an activity of both reflection (doing design rationale) and documentation
(creating a design rationale) that occurs throughout the entire life cycle.

It is beneficial to have access to the design rationale for several reasons:

B In an explicit form, a design rationale provides a communication mechanism
among the members of a design team so that during later stages of design and/or
maintenance it is possible to understand what critical decisions were made, what
alternatives were investigated (and, possibly, in what order) and the reason why
one alternative was chosen over the others. This can help avoid incorrect assump-
tions later.

B Accumulated knowledge in the form of design rationales for a set of products
can be reused to transfer what has worked in one situation to another situation
which has similar needs. The design rationale can capture the context of a design
decision in order that a different design team can determine if a similar rationale
is appropriate for their product.

B The effort required to produce a design rationale forces the designer to deliberate
more carefully about design decisions. The process of deliberation can be assisted
by the design rationale technique by suggesting how arguments justifying or
discarding a particular design option are formed.

In the area of HCI, design rationale has been particularly important, again for several
reasons:

B There is usually no single best design alternative. More often, the designer is faced
with a set of trade-offs between different alternatives. For example, a graphical
interface may involve a set of actions that the user can invoke by use of the mouse
and the designer must decide whether to present each action as a ‘button’ on the
screen, which is always visible, or hide all of the actions in a menu which must be
explicitly invoked before an action can be chosen. The former option maximizes
the operation visibility (see Chapter 7) but the latter option takes up less screen
space. It would be up to the designer to determine which criterion for evaluating
the options was more important and then communicating that information in a
design rationale.

B Even if an optimal solution did exist for a given design decision, the space of altern-
atives is so vast that it is unlikely a designer would discover it. In this case, it is
important that the designer indicates all alternatives that have been investigated.
Then later on it can be determined if she has not considered the best solution or
had thought about it and discarded it for some reason. In project management,
this kind of accountability for design is good.

B The usability of an interactive system is very dependent on the context of its use.
The flashiest graphical interface is of no use if the end-user does not have access
to a high-quality graphics display or a pointing device. Capturing the context in



250 Chapter 6 B HCl in the software process

which a design decision is made will help later when new products are designed.
If the context remains the same, then the old rationale can be adopted without
revision. If the context has changed somehow, the old rationale can be re-
examined to see if any rejected alternatives are now more favorable or if any new
alternatives are now possible.

Lee and Lai [209] explain that various proponents of design rationale have differ-
ent interpretations of what it actually is. We will make use of their classification to
describe various design rationale techniques in this section. The first set of tech-
niques concentrates on providing a historical record of design decisions and is very
much tailored for use during actual design discussions. These techniques are referred
to as process-oriented design rationale because they are meant to be integrated in the
actual design process itself. The next category is not so concerned with historical or
process-oriented information but rather with the structure of the space of all design
alternatives, which can be reconstructed by post hoc consideration of the design
activity. The structure-oriented approach does not capture historical information.
Instead, it captures the complete story of the moment, as an analysis of the design
space which has been considered so far. The final category of design rationale con-
centrates on capturing the claims about the psychology of the user that are implied
by an interactive system and the tasks that are performed on them.

There are some issues that distinguish the various techniques in terms of their
usability within design itself. We can use these issues to sketch an informal rationale for
design rationale. One issue is the degree to which the technique impinges on the design
process. Does the use of a particular design rationale technique alter the decision pro-
cess, or does it just passively serve to document it? Another issue is the cost of using
the technique, both in terms of creating the design rationale and in terms of access-
ing it once created. A related issue is the amount of computational power the design
rationale provides and the level to which this is supported by automated tools. A design
rationale for a complex system can be very large and the exploration of the design space
changes over time. The kind of information stored in a given design rationale will
affect how that vast amount of information can be effectively managed and browsed.

6.5.1 Process-oriented design rationale

Much of the work on design rationale is based on Rittel’s issue-based information
system, or IBIS, a style for representing design and planning dialog developed in
the 1970s [308]. In IBIS (pronounced ‘ibbiss’), a hierarchical structure to a design
rationale is created. A root issue is identified which represents the main problem or
question that the argument is addressing. Various positions are put forth as potential
resolutions for the root issue, and these are depicted as descendants in the IBIS
hierarchy directly connected to the root issue. Each position is then supported or
refuted by arguments, which modify the relationship between issue and position. The
hierarchy grows as secondary issues are raised which modify the root issue in some
way. Each of these secondary issues is in turn expanded by positions and arguments,
further sub-issues, and so on.



6.5 Design rationale 251

‘s supports
Position < Argument
responds to
Issue
responds to
Positi B objects to A
specializes osition < rgument
generalizes

sub-issue questions

sub-issue

/7N
ZANN

sub-issue

ZANN

Figure 6.8 The structure of a gIBIS design rationale

A graphical version of IBIS has been defined by Conklin and Yakemovic [77],
called gIBIS (pronounced ‘gibbiss’), which makes the structure of the design ratio-
nale more apparent visually in the form of a directed graph which can be directly
edited by the creator of the design rationale. Figure 6.8 gives a representation of the
gIBIS vocabulary. Issues, positions and arguments are nodes in the graph and the
connections between them are labeled to clarify the relationship between adjacent
nodes. So, for example, an issue can suggest further sub-issues, or a position can
respond to an issue or an argument can support a position. The gIBIS structure can
be supported by a hypertext tool to allow a designer to create and browse various
parts of the design rationale.

There have been other versions of the IBIS notation, both graphical and textual,
besides gIBIS. Most versions retain the distinction between issues, positions and
arguments. Some add further nodes, such as Potts and Bruns’s [297] addition of
design artifacts which represent the intermediate products of a design that lead to the
final product and are associated with the various alternatives discussed in the design
rationale. Some add a richer vocabulary to modify the relationships between the
node elements, such as McCall’s Procedural Hierarchy of Issues (PHI) [231], which
expands the variety of inter-issue relationships. Interesting work at the University
of Colorado has attempted to link PHI argumentation to computer-aided design
(CAD) tools to allow critique of design (in their example, the design of a kitchen) as
it occurs. When the CAD violates some known design rule, the designer is warned
and can then browse a PHI argument to see the rationale for the design rule.



252 Chapter 6 B HCl in the software process

The use of IBIS and any of its descendants is process oriented, as we described
above. It is intended for use during design meetings as a means of recording and
structuring the issues deliberated and the decisions made. It is also intended to
preserve the order of deliberation and decision making for a particular product,
placing less stress on the generalization of design knowledge for use between dif-
ferent products. This can be contrasted with the structure-oriented technique
discussed next.

6.5.2 Design space analysis

MacLean and colleagues [222] have proposed a more deliberative approach to design
rationale which emphasizes a post hoc structuring of the space of design alternatives
that have been considered in a design project. Their approach, embodied in the
Questions, Options and Criteria (QOC) notation, is characterized as design space
analysis (see Figure 6.9).

The design space is initially structured by a set of questions representing the major
issues of the design. Since design space analysis is structure oriented, it is not
so important that the questions recorded are the actual questions asked during
design meetings. Rather, these questions represent an agreed characterization of the

Criterion
Option //
\\ /
\ //
Question Option \/\ Criterion
. 7\ <
Ay »//
. /N N\
/// P \\
Option & \
Oy \
\N
% Criterion
Consequent question oo
Question oo

Figure 6.9 The QOC notation



6.5 Design rationale 253

issues raised based on reflection and understanding of the actual design activities.
Questions in a design space analysis are therefore similar to issues in IBIS except
in the way they are captured. Options provide alternative solutions to the question.
They are assessed according to some criteria in order to determine the most
favorable option. In Figure 6.9 an option which is favorably assessed in terms of
a criterion is linked with a solid line, whereas negative links have a dashed line.
The most favorable option is boxed in the diagram.

The key to an effective design space analysis using the QOC notation is deciding
the right questions to use to structure the space and the correct criteria to judge the
options. The initial questions raised must be sufficiently general that they cover a
large enough portion of the possible design space, but specific enough that a range
of options can be clearly identified. It can be difficult to decide the right set of
criteria with which to assess the options. The QOC technique advocates the use of
general criteria, like the usability principles we shall discuss in Chapter 7, which are
expressed more explicitly in a given analysis. In the example of the action buttons
versus the menu of actions described earlier, we could contextualize the general
principle of operation visibility as the criterion that all possible actions are displayed
at all times. It can be very difficult to decide from a design space analysis which
option is most favorable. The positive and negative links in the QOC notation
do not provide all of the context for a trade-off decision. There is no provision for
indicating, for example, that one criterion is more important than any of the others
and the most favorable option must be positively linked.

Another structure-oriented technique, called Decision Representation Language
(DRL), developed by Lee and Lai, structures the design space in a similar fashion
to QOC, though its language is somewhat larger and it has a formal semantics.
The questions, options and criteria in DRL are given the names: decision problem,
alternatives and goals. QOC assessments are represented in DRL by a more complex
language for relating goals to alternatives. The sparse language in QOC used to assess
an option relative to a criterion (positive or negative assessment only) is probably
insufficient, but there is a trade-off involved in adopting a more complex vocabulary
which may prove too difficult to use in practice. The advantage of the formal seman-
tics of DRL is that the design rationale can be used as a computational mechanism
to help manage the large volume of information. For example, DRL can track the
dependencies between different decision problems, so that subsequent changes to
the design rationale for one decision problem can be automatically propagated to
other dependent problems.

Design space analysis directly addresses the claim that no design activity can hope
to uncover all design possibilities, so the best we can hope to achieve is to document
the small part of the design space that has been investigated. An advantage of the post
hoc technique is that it can abstract away from the particulars of a design meeting
and therefore represent the design knowledge in such a way that it can be of use in
the design of other products. The major disadvantage is the increased overhead such
an analysis warrants. More time must be taken away from the design activity to do
this separate documentation task. When time is scarce, these kinds of overhead costs
are the first to be trimmed.



254 Chapter 6 B HCl in the software process

6.5.3 Psychological design rationale

The final category of design rationale tries to make explicit the psychological claims
of usability inherent in any interactive system in order better to suit a product for
the tasks users have. This psychological design rationale has been introduced by
Carroll and Rosson [62], and before we describe the application of the technique it
is important to understand some of its theoretical background.

People use computers to accomplish some tasks in their particular work domain,
as we have seen before. When designing a new interactive system, the designers take
into account the tasks that users currently perform and any new ones that they may
want to perform. This task identification serves as part of the requirements for the
new system, and can be done through empirical observation of how people perform
their work currently and presented through informal language or a more formal
task analysis language (see Chapter 15). When the new system is implemented,
or becomes an artifact, further observation reveals that in addition to the required
tasks it was built to support, it also supports users in tasks that the designer never
intended. Once designers understand these new tasks, and the associated problems
that arise between them and the previously known tasks, the new task definitions can
serve as requirements for future artifacts.

Carroll refers to this real-life phenomenon as the task—artifact cycle. He provides a
good example of this cycle through the evolution of the electronic spreadsheet.
When the first electronic spreadsheet, VisiCalc, was marketed in the late 1970s, it was
presented simply as an automated means of supporting tabular calculation, a task
commonly used in the accounting world. Within little over a decade of its introduc-
tion, the application of spreadsheets had far outstripped its original intent within
accounting. Spreadsheets were being used for all kinds of financial analysis, ‘what-if’
simulations, report formatting and even as a general programming language
paradigm! As the set of tasks expands, new spreadsheet products have flooded the
marketplace trying to satisfy the growing customer base. Another good example
of the task—artifact cycle in action is with word processing, which was originally
introduced to provide more automated support for tasks previously achieved with a
typewriter and now provides users with the ability to carry out various authoring
tasks that they never dreamed possible with a conventional typewriter. And today,
the tasks for the spreadsheet and the word processor are intermingled in the same
artifact.

The purpose of psychological design rationale is to support this natural task—
artifact cycle of design activity. The main emphasis is not to capture the designer’s
intention in building the artifact. Rather, psychological design rationale aims to
make explicit the consequences of a design for the user, given an understanding of
what tasks he intends to perform. Previously, these psychological consequences were
left implicit in the design, though designers would make informal claims about their
systems (for example, that it is more ‘natural’ for the user, or easier to learn).

The first step in the psychological design rationale is to identify the tasks that the
proposed system will address and to characterize those tasks by questions that the
user tries to answer in accomplishing them. For instance, Carroll gives an example



6.5 Design rationale 255

of designing a system to help programmers learn the Smalltalk object-oriented
programming language environment. The main task the system is to support is
learning how Smalltalk works. In learning about the programming environment, the
programmer will perform tasks that help her answer the questions:

B What can I do: that is, what are the possible operations or functions that this
programming environment allows?

B How does it work: that is, what do the various functions do?

B How can I do this: that is, once I know a particular operation I want to perform,
how do I go about programming it?

For each question, a set of scenarios of user—system behavior is suggested to support
the user in addressing the question. For example, to address the question “‘What can
I do?’, the designers can describe a scenario whereby the novice programmer is first
confronted with the learning environment and sees that she can invoke some demo
programs to investigate how Smalltalk programs work. The initial system can then
be implemented to provide the functionality suggested by the scenarios (for example,
some demos would be made accessible and obvious to the user/programmer from
the very beginning). Once this system is running, observation of its use and some
designer reflection is used to produce the actual psychological design rationale for
that version of the system. This is where the psychological claims are made explicit.
For example, there is an assumption that the programmer knows that what she can
see on the screen relates to what she can do (if she sees the list of programs under a
heading ‘Demos’, she can click on one program name to see the associated demo).
The psychological claim of this demo system is that the user learns by doing, which
is a good thing. However, there may also be negative aspects that are equally import-
ant to mention. The demo may not be very interactive, in which case the user clicks
on it to initiate it and then just sits back and watches a graphic display, never really
learning how the demo application is constructed in Smalltalk. These negative
aspects can be used to modify later versions of the system to allow more interactive
demos, which represent realistic, yet simple, applications, whose behavior and struc-
ture the programmer can appreciate.

By forcing the designer to document the psychological design rationale, it is
hoped that she will become more aware of the natural evolution of user tasks and the
artifact, taking advantage of how consequences of one design can be used to improve
later designs.

Worked exercise

Answer

What is the distinction between a process-oriented and a structure-oriented design rationale
technique? Would you classify psychological design rationale as process or structure oriented?
Why?

The distinction between a process- and structure-oriented design rationale resides in
what information the design rationale attempts to capture. Process-oriented design
rationale is interested in recording an historically accurate description of a design team
making some decision on a particular issue for the design. In this sense, process-
oriented design rationale becomes an activity concurrent with the rest of the design



256 Chapter 6 B HCl in the software process

process. Structure-oriented design rationale is less interested in preserving the histor-
ical evolution of the design. Rather, it is more interested in providing the conclusions of
the design activity, so it can be done in a post hoc and reflective manner after the fact.

The purpose of psychological design rationale is to support the task—artifact cycle. Here,
the tasks that the users perform are changed by the systems on which they perform the
tasks. A psychological design rationale proceeds by having the designers of the system
record what they believe are the tasks that the system should support and then build-
ing the system to support the tasks. The designers suggest scenarios for the tasks which
will be used to observe new users of the system. Observations of the users provide the
information needed for the actual design rationale of that version of the system. The
consequences of the design’s assumptions about the important tasks are then gauged
against the actual use in an attempt to justify the design or suggest improvements.

Psychological design rationale is mainly a process-oriented approach. The activity of
a claims analysis is precisely about capturing what the designers assumed about the
system at one point in time and how those assumptions compared with actual use.
Therefore, the history of the psychological design rationale is important. The discipline
involved in performing a psychological design rationale requires designers to perform
the claims analysis during the actual design activity, and not as post hoc reconstruction.

6.6

SUMMARY

In this chapter, we have shown how software engineering and the design process
relate to interactive system design. The software engineering life cycle aims to struc-
ture design in order to increase the reliability of the design process. For interactive
system design, this would equate to a reliable and reproducible means of designing
predictably usable systems. Because of the special needs of interactive systems, it is
essential to augment the standard life cycle in order to address issues of HCI.

Usability engineering encourages incorporating explicit usability goals within the
design process, providing a means by which the product’s usability can be judged.
Iterative design practices admit that principled design of interactive systems alone
cannot maximize product usability, so the designer must be able to evaluate early
prototypes and rapidly correct features of the prototype which detract from the
product usability.

The design process is composed of a series of decisions, which pare down the
vast set of potential systems to the one that is actually delivered to the customer.
Design rationale, in its many forms, is aimed at allowing the designer to manage the
information about the decision-making process, in terms of when and why design
decisions were made and what consequences those decisions had for the user in
accomplishing his work.



Recommended reading 257

/EXERCISES \)

6.1

6.2

N

(a) How can design rationale benefit interface design and why might it be rejected by
design teams?
(b) Explain QOC design rationale using an example to illustrate.

Imagine you have been asked to produce a prototype for the diary system discussed in the worked
exercise in Section 7.2.3. What would be an appropriate prototyping approach to enable you to
test the design using the usability metrics specified, and why? j

RECOMMENDED READING

J. A. McDermid, editor, The Software Engineer’s Reference Book, Butterworth—
Heinemann, 1992.
A very good general reference book for all topics in software engineering. In
particular, we refer you to Chapter 15 on software life cycles and Chapter 40 on

prototyping.
I. Sommerville, Software Engineering, 6th edition, Addison-Wesley, 2000.

This textbook is one of the few texts in software engineering that specifically treats
issues of interface design.

X. Faulkner, Usability Engineering, Macmillan, 2000.
An excellent and accessible introduction to usability engineering covering,
amongst other things, user requirements capture and usability metrics.

J. Whiteside, J. Bennett and K. Holtzblatt, Usability engineering: our experience and
evolution. In M. Helander, editor, Handbook for Human—Computer Interaction,
North-Holland, 1988.

The seminal work on usability engineering. More recent work on usability engi-
neering has also been published by Jakob Nielsen [260, 261].

J. M. Carroll and T. P. Moran, editors, Design Rationale: Concepts, Techniques and
Use, Lawrence Erlbaum, 1996.
Expanded from a double special journal issue, this provides comprehensive
coverage of relevant work in the field.



