COSC 310:
Software Engineering

Dr. Bowen Hui
University of British Columbia Okanagan
bowen.hui@ubc.ca

Implementation Considerations

e what are some issues to consider during
iImplementation?

Implementation Considerations

e what are some issues to consider during

iImplementation?

on track

meets requirements and design
tested "properly”

versioning

duplicate code segments
overwriting each other's code

O O O O O O

Implementation Issues

® [euse
o reusing existing components or systems

e configuration management
o keeping track of different versions of software
components being developed

e host-target development
o development vs production platform

Issue #1: Reuse

e between 1960s - 1990s, new software
mostly developed from scratch

e only reuse was functions and libraries
e this approach is costly and time consuming

e new ways of reuse needed

Levels of Reuse

e abstraction level
o doesn't involve software
o reuse knowledge of successful designs and
abstractions
o Ex: architectural pattern

e object level
e component level
e system level

Levels of Reuse

e abstraction level

e object level
o reuse objects from a library
o EXx: process mail messages in Java - can use
objects and methods from a JavaMail library

e component level
e system level

Levels of Reuse

e abstraction level
object level

e component level
o components = collections of objects and object
classes that operate together to provide related
functions and services
o can adapt or extend another component
o EXx: use framework to build GUI

e system level

Levels of Reuse

abstraction level
object level
component level

system level

o reuse entire application

o usually involves some configuration

o most commercial systems are now built this way

o EXx: Oracle's customer relationship management
systems

o new field emerged: software customization

Is it worth it?

e what are some benefits of reuse?

® costs?

Benefits of Reuse

e faster
e fewer development risks
e |ower (monetary) costs

e more reliable (existing pieces already tested)

Costs of Reuse

e time to search for opportunities to reuse

e time to search for software that may/may not
suit your needs

e additional testing in your environment

e cost of integrating code pieces that may
employ different assumptions

e monetary cost of purchasing software

e monetary cost of customization

Issue #2: Configuration Management

e don't interfere with team members' work

e if two people work on the same component,
their changes need to be coordinated

e life without configuration management:

O

O
O
O
O

‘member 1]
‘'members 1,2,3]
‘'members 1,2,3]
‘member 2]
‘member 3]

6am-2pm: code

2pm-3pm: compilers class
3pm-4pm: team meeting

4pm-11pm: code
11pm-6am: code

true story!

Purpose of Configuration Mgmt

e prescribe process for managing changes
during the development

® ensure everyone can access most recent
version

e maintains older versions (so can revert back)
e main purpose: support integration process

e applies to both code and documentation

Software Configuration Management (SCM)

e Configuration management 1s the process of
identifying, organizing and controlling modifications to
the software artifacts being built by the project team

e The items that comprise of all information produced as
a part of the software process are collectively called a

software configuration

27

Sharing the software development work
(SCM Scenario)

[mee P
20 @M\/L

Generate a list of
Active/Inactive Generate correspondence

Students \

NP |,
\\ / \ '

@;z &

prmtmg test exam Create/Modify Student Databyase
schedules

Software Configuration

e What are the various work products?
computer programs
both source and executable forms

documents that describe the program

targeted at technical practitioners and users

data contained within the program or external to it

e As software processes progress, the number of software
configuration items (SCI) grows rapidly

28

Role of a repository

e Data Integrity

Consistency among related objects

e Information Sharing
e Data Integration

e Documentation Standards

31

Requirements of an SCM Process

Five Principles tasks:
|dentification of Software Configuration Iltems
Version Control
Change Control
Configuration auditing
Reporting

32

Ex: Evolution Graph - Version Control

0bj (/t)bj\i Obj

Object Description:

J— ‘/Ob-]\\\
Oobj 1.4

\Z,W/ \Zfl/ |

SCI type (e.g., document, program and data)

a project identifier

Change and/or version information

34

Change Control (internal)

Access Control

Governs which software engineers/developers
have the authority to access and modify a
particular configuration object

Synchronization Control

Helps to ensure that parallel changes
performed by two different people do not
overwrite one another

These two controls apply to only baseline
SCls

35

Centralized Model

e Traditional revision control systems use a
centralized model, where all the revision control
functions are performed on a shared

e If two developers try to change the same file at the
same time, without some method of managing
access the developers may end up overwriting each
other's work.

e Solutions:
file locking (check-in/lock; check-out/unlock)
version merging (e.g., used in CVS)

e Alternative model: Distributed revision control,

http://en.wikipedia.org/wiki/Server_(computing)

Fundamental Activities

e version management
o keeps track of different versions of software
components
o include facilities to coordinate development by
several programmers

e system integration
o help define what versions of components are used to
create each system version
o this description is used to compile and link required
components automatically

e problem tracking
o allow users to report bugs
o allow developers to see who's working on these
problems and when they are fixed

Examples of CASE Tools

e Iintegrated tool to support all three activities:
o ClearCase

e separate tools:
o Subversion - version management
o make - system integration
o Bugzilla - problem tracking

Host-Target Development:
Motivating Example

e You joined Amazon as a programmer. In the
first week, you are asked to change an
online payment feature. From your
computer, you code, test, deploy. In the next
minute, millions of people are using the site
and they cannot purchase items anymore.

e \What went wrong?

Main Message

e don't ever make changes to a working
production environment without ensuring the
changes are correct and well-tested!

e always ask yourself:
o "If | made this proposed change and the system
became totally unusable for all my users during
normal business hours, would that be okay?"

Issue #3: Host-Target Development

e industrial development is based on a host-

target model

o software developed on one computer (host)
o but runs on a separate machine (target)

e e.g., website project
o host = your computer (localhost:3000)

o <upload your code>
o target = web server (www.xyz.ca) |"deploy"

e each machine may differ in:

o installed OS
o DBMS platform

o |IDE

Minimum Host-Target Model

Visually

Project
Site

target

7N

host 1

host 2

host n

Developers each work on a separate host

Implications on Testing

e sometimes the development and execution

platforms are the same
o can develop and test on the same machine

e more commonly, the platforms are different,

so to test, you need to either:

o move software to execution platform
o run simulator on dev machine

General Setup: 4 Tiers

development

o working platform for individual developers

o radical changes won't affect rest of the team
iIntegration

o common platform where all the developers to

commit code changes
o goal: validate entire project

staging

o aim is to use platform identical to that of production

o simulates production environment as closely as
possible

o often used for demo or training purposes

production

o final platform that all the users see

Tier Resources

e development and integration:
o independent copy of DB
o limited subset of data
o useful for boundary testing

e staging:
o (ideally) identical configuration of production platform
- software, DBMS, hardware
o independent copy of DB
supports QA testing
o performance testing provides accurate forecast of
capacity

O

hitp: /fdity. org/2006/1 2soNware-development-practice

Davalopar

Example
Interaction

Development

A 4. BN S

b
3. moosu»nu{n

| 1: Writes Code H

Z

H 3800*‘9““
| ‘msugs

4
F

L; Imo
6: Raviaws lnwfbn
1
|

|
e developers only make changes to
Development and Integration environments

QA Testing and Stage Advancement
arasres 1 =B B

Devalopar QA Reloase Mangar : '
|
|

UrPromuco "0

|
8: Tests Staging Vhrsion !

|
9. QA Reports |
1

l
|
10: Fixes Bugs | :
|

I
I

I

I

I

I

I

I

I

I

I

I

I

h 1140hecks into Subwirsion . :
| I
I

I

I

I

I

I

I

I

I

|
13: "Ckay loRdo‘u'

[12: Prameted tq Stagng
>~

1<

14: Packages Rd{uo Vorséon

| o

—_— = = e
—_— = — — = —

15: Reloase
.

e (A OCCurs In Staging
e Release Manager okays deploy to next stage

Ongoing Maintenance

¥ o r B EE B
Devalopar QA Release Manger i i
: : 15: Reloase
Ls 16:0Mnlmb:9wu i
17: Writes Code | |
|

18: C irin smvT

L J

e bug fixes after deployment
® process repeats

'
— e — e e e e e e e m —T—d
P o —

Multiple Versions

getting to Production:
o multiple versions in Staging

getting to Staging:
o multiple versions in Integration

getting to Integration:
o multiple versions in Development

sometimes Development and Integration are
combined

how to manage all this?

Example: PayPal Sandbox

PayPal b4

Integration Center

Home Partner Solutions How to Library Training Community
Integration Overview HTML APl Administration /Back Office Testing Product Availability

Home > How to > Testing > PayPal Sandbox
Testing

| PayPal Sandbox

Getting Started - Sandbox
Sign up

LogIn

PayPal Sandbox

Sandbox Forum

The PayPal Sandbox is a testing environment that is a duplicate of the live PayPal site, except
that no real money changes hands. The Sandbox allows you to test your entire integration before

Other Links submitting transactions to the live PayPal environment. Create and manage test accounts, and
» APl References view emails and API credentials for those test accounts.
»Documentation
For more information, see the Sandbox User Guide or the PayPal Sandbox: Getting started
tutorial.
» Login
» Sign Up

» Getting Started

Integration with PayPal

Y

Development | <

Y

PayPal Sandbox

A

Integration
Staging

A
Y

Step 1:

e get your system in the Staging environment
to work with PayPal sandbox
o Development / Integration environments also need

to work with PayPal sandbox
o process as usual, but stop at Staging

Integration with PayPal

Staging
Production PayPal
Approval
Business Process
Information
Step 2:

e submit for approval

Integrating with PayPal

Staging —

Y

PayPal Sandbox

l

A

Y

Production PayPal Production

Step 3:
* deploy changes to your Production
environment

— promote to Production (accounts etc. configured
for PayPay Production)

References

e http://dltj.org/article/software-development-practice/
e http://www.razorleaf.com/2009/12/prod-test-dev-
environments/

