COSC 310:
- Software Engineering

Dr. Bowen Hui
University of British Columbia Okanagan
bowen.hui@ubc.ca

What is system design?

e what does it mean to develop a "design" of
the system?

e why bother designing it?
e how to document a design?

e why bother with documentation?

System Modeling

e develop abstract models of system
each model represent a different view

e typically done via graphical notation
o e.g., DFD, UML

e some can also be formally modeled using
mathematics

e most important aspect: leave out details

Different System Views

e context models (DFD, UML)
o external perspective - model context/enwronment
set system boundary
e interaction models (DFD, UML)
o model interactions between system and lts
environment, or between system components
e structural models (UML class diagrams, ERD)
o model system organization, or structure of data that
is processed by system
e behavioural models
o model dynamic behaviour of system and how
system responds to events

Architectural Design

e provides description of how system is
organized

e influences system properties such as
performance and security

e includes decisions on:

o types of application

o distribution of system

o architectural styles used

o ways to document and evaluate system

Architectural Patterns

e abstract description of good practice that
have been tried and tested

e reuse knowledge about generic system
architectures

o explain when specific architecture is used
o compare advantages and disadvantages

Common Architectural Patterns

e model-view-controller
e layered architecture
e repository

e client-server

® pipe and filter

Model View Controller

o separates presentation and interaction from
system data

e structured into 3 logical components:
o Model - manages data and their operations
o View - defines and manages how data is presented
to the user
o Controller - manages user interaction, passes them
to the View / Model

iew of MVC

Visual V

tate Ciuer

b

using

Example
Website
MVC

MVC Pros and Cons

e used when there are multiple ways to
interact and view the data

e allows for separation of concerns

e changes are localized within each
component

e for simple data model and interactions, MVC
can involve additional complexity

Layered Architecture

e system functionality is organized into
separate layers

e each layer involves related functionality

e each layer only relies on facilities and
services offered by layer immediately
beneath it

e |owest layer represents core services (e.g.,
DB)

e achieves separation and independence

System for sharing copyright
ocuments held in different libraries

Layered Architecture:
Pros and Cons

supports incremental development of systems

allows layers to be completely replaced

redundant facilities can be provided to increase

dependability

clean separation of layers is often difficult in practice

o upper layers may have to interact directly with lower
layers

performance may be slower due to layered requests

used when:

o building new facilities on top of existing systems

o multiple teams working on separate layers

o there's a requirement for multi-level security

Repository Architecture

describes how a set of interacting
components can share data

all data in a system is managed in a central
repository that is accessible to all
components

components do not interact directly, only via
repository

®

Example:
{i’;‘““’[gDleing a Repository pattern

; LS LY \) "

Repository Architecture:
Pros and Cons

e components can be designed/implemented independent
of other components

all data in one place so can be managed consistently
failures in repository affect entire system

communication via repository may be inefficient
distributing repository across machines may be difficult

e used when:
o there's large volumes of information that has to be
stored for a long time
o data that needs to be shared

Client-Server Architecture

e functionality of system is organized into
services

e each service delivered from a separate
server

e clients are users of these services

e commonly used run-time organization for
distributed systems

Visual View of Client-Server
Architecture

Server
- Computer

Shared Database
=== Applications
| Files

NETWORK

e clients are connected in a network together
with one/more servers

xample:

ilm Library using Client-Server

attern

Client-Server Details

strictly speaking, clients and servers are

software

o both may exist on the same physical machine
client's tasks:

o sends requests to servers

o display results from server to user

server's responsibilities

o satisfies requests

o consult other sources

o fail to satisfy requests

note: servers cannot initiate dialog wi
clients

Client-Server Pros and Cons

servers can be distributed across a network
server functionality can be available to all
clients

each service is a single point of failure
o susceptible to denial of service attacks or server
failure

performance depends on network and
system

used when shared DB requires access from
a range of locations

Pipe and F|Iter Archltecture

models| run-tlme prganlzatlon of system
each component is a transformation of data
input data flows through these transforms
until converted to output

transformations may execute sequentially or
in parallel

data can be single item or in batch

Example:
Invoice processing

Pipe and Filter Pros and Cons

e easy to understand

supports transformation reuse

e workflow style matches structure of many
business processes

e evolution by transformations is
straightforward

e format of data transfer needs standardization

e each transformation needs to parse and
unparse data format

e used in data processing applications

Views for Documenting Design

e logical view

O shows key abstractions as objects or classes

O should be possible to relate requirements to entities in this view ‘
® process view

O shows interacting processes at system run-time

O useful for judging non-functional requirements e.g., performance,
availability
development view

O decomposes system into components that are implemented by a
single person/team

O useful for managers and programmers

e physical view
O shows hardware and distribution of software across processors
O useful for planning and deployment

Physical vs. Logical Views

e purpose is to show high level system
specification

e physical design = mapping of logical design
to physical components
o- e.g. actual servers and communications

e logical design = description of flow of
information and major processes and

relationships involved
o major system components and their inputs/outputs

-~

Physical vs. Logical Views

Financial
Network

fderchant Server

C Internet

Catalog
and Qrder
Database

Buyer with Browser

Data Flow Diagram

e models the flow of data in a system

e identifies system processes, their inputs and
outputs

e focus on system functions

cannot represent system objects

e example: |

Credit
Card
Order
Need formal 4 iri e Capture
Catalog Static Forms
syntax Page Generation Content

Notation

® process
e datastore/file

e data flow

e external entity

DFD Layers

e each layer
expands a
process from
the previous
layer

Level 0: Context Diagram

e contains one process only
e describes system's external interactions -

DFD Level 1

e illustrates main processes ;‘

e levels can expand Jd Ve)
until pseudocode I N
is reached e U

Example:
Library loans

Find the
kool on
the shelves

Call #

Bcrs:ski

Borrower |

Book detads Call nummber

Boaok Shelves

Book catalog

Book

Book

Usze the

haolk

Example:
Cash Withdrawal from Teller

2. Complete
withdrawal
ship

Account Mo

e 3. Teller

1. Customer

Arnound

Receipt,
cash,
card

Signature,
card

4 Validatation
transaction
& halance

Mew halanced 5 Process

) Account,
transacton »

Cash amt.

Account No.

Crebat amt.
s

Wassr Cugtomer account data base

halatice T

Example:
Employee Payroll

Employee Record

COvertime \

Rate \\

Tax
Deducted .

Employee Regular Overtime

Id Hours Hours
3

g

Weekly
Timesheet

| Worker

Example:
Inventory Management

Supplies Register

Company Records

/N
Tax WNet
Deducted Pay

e -

Tax Rates
Worker

_| Customer

sy

COrder e ;
Supplies ,Stfffi’er

s

Example:
Project - Al option

.

darn . N \cﬁn Com
: /P aRss
I e Gy
| - [Aens
;mlxuﬁafs | ,ffffﬂf.hi
Y
infer) hpie
»k)f:»i(l AsSeci dons
‘ ¥
K lively
-\—D‘;}C : A
Ny’ conne
' enorae , heages T
arm i i template

Sevite.nces

Structural Models (Sommerville Ch5)

e display organization of system in terms of

system components and their relationships

e may be static or dynamic
e UML class diagrams can be used when

developing OO system models
o identify classes
o illustrate associations between classes
e high level class diagram resembles ERD
o classes and relationships
e add attributes and methods to each class

Example:
Patient Medical System

e start off with basic classes and their
association

Example:
Patient Medical System (cont.)

e expand
to include
other
classes

and their
associations

Example:
Patient Medical
System (cont.)

e for each class:
o add detailed attributes

(and their types)
o add detailed methods

Example:
Patient Medical
System (cont.)

e modify
associations by
combining
similar classes
using
generalization

Example:

Online Payment System

Shoﬁymg i:art

)

Customer

Credit Card

issuer: SEring

i ,ﬁq

‘*‘»*rﬁ YQ&;N‘”}'} *2 m::

1

Preferred Customer |

E

0..*

Itemt to Purchase

f:} f!y%f‘f—iﬁ*
cePerUnit Money

*:t *!,%"N

References

; i Product

discountRate: doubdle

http://www.smartdraw.com/resources/tutorials/data-flow-
diagrams/#/resources/tutorials/Data-Flow-Diagram-Notations
http://www.schools.ash.org.au/olshc/infotech/dataflow.htm
Somerville's text Ch 5 and Ch 6
http://lwww.alasdairking.me.uk/research/King2004-
PresentingUMLDiagrams.htm

—

