COSC 310:
Software Engineering

Dr. Bowen Hui

University of British Columbia
Okanagan

Admin

e A2isup
— Don’t forget to keep doing peer evaluations

— Deadline can be extended but shortens A3
timeframe

e Labs

— This week: set up team repo
— Next week: practice choosing SDLC

Software Process

* |s a set of activities that produce software
product

* A structured way of carrying out activities
* E.g.,
— Course registration process

— Course credit transfer process
— Online payment process

Fundamental Software Activities

Planning — resource allocation and management

Requirements Specification — identifies necessary
features

Design — architecture, modules, interfaces
Development —implementation

Testing — validation of correctness
Documentation — describes product
Maintenance —ongoing error correction
Evolution —ongoing requirements changes

Goals of Software Activities

Clarify steps to be performed

Produce tangible work products
Enable others to review work products
Specify next steps

Typical Stages of Software
Development

Planning

S =
Analysis
.
Design

Code
Test

Deploy

Time

Software Development Cost

/)g/amo

15\

“_wm/

L \

9p0D /

ir

ubisa

2\

\
,

L

sIsAjeuy

"

1ir

Buiuue|d

Time

Scenario 1

e Assume:;
— Cost of maintenance is 75% of total cost
— Cost of development is 25% of total cost

* |f development cost is S250K, what is the
maintenance cost?

Scenario 2

e Client asks for accounting information system
to be built in order to support 20 users

— Users all need new computers

— Client requires software to be completed in 4
weeks

— Budget is S50K for hardware and software

* |s this a good deal?

Scenario 3

* Relative cost of fixing errors at various stages
are:

— Specification (3)

— Design (5)

— Implementation (50)

— Maintenance — after deploy (300)

* |f cost to find and fix an error in design is
5100, what are the costs for other stages?

Simple Software Process (School work)

* Read question on assignment
 Think about it for a few minutes (design?)

Simple Software Process (School work)

* Read question on assignment
* Think about it for a few minutes (design?)
e Start coding — compile when done coding

Simple Software Process (School work)

* Read question on assignment

 Think about it for a few minutes (design?)
e Start coding — compile when done coding

e Compile —get 100+ errors

* Ditch assighment

Simple Software Process (School work)

* Read question on assignment

 Think about it for a few minutes (design?)
e Start coding — compile when done coding

e Compile —get 100+ errors

* Ditch assighment

 Resume coding next day... can’t understand it so
restart coding

* Compile —get 50+ errors
* Ditch assignment again

Simple Software Process (School work)

* Read question on assignment

 Think about it for a few minutes (design?)
e Start coding — compile when done coding

e Compile —get 100+ errors

* Ditch assighment

 Resume coding next day... can’t understand it so
restart coding

* Compile —get 50+ errors

* Ditch assignment again

* Night before due date: marathon coding

* Program “mostly” works — submit + never see it again

How to Improve Process?

How to Improve Process?

Ask clarification questions if specs aren’t clear

Design different solutions, consider the best
one

Repeat: code + test a bit at a time
Clean up code as you go

Managing Big Projects

Complexity grows quickly for large projects
Different teams working on different activities

— Necessary to facilitate communication
Need standardizations and careful

management in order to stay within budget
and time

Helpful to use CASE tools to support large
projects

Productivity Work Analysis
(McConnell)

Little attention paid to process
100% \Q§SS\\:§§\\> \\ \\ 3&&? NN \

\ N
RN \\\ \\\ \\ \\\

R \\ ‘nm-bso;

Percent
of Effort Productive Work

e
0% | ORI N NN §
ginning l[;.ndo.'

of Project ’

Time .

Productivity Work Analysis

(McConnell)

* Early attention paid to process

Percent
of Effort

100%

Thrashing

Productive Work
Process
Beginning End of
of Project Prosect

Time

20

Why Should You Care?

* As a programmer:
— Know the lingo
— Understand the big picture
— Understand your role

— Feel less frustrated

* As a project leader:

Why Should You Care?

* As a programmer:

* As a project leader:
— Assess risks
— Choose appropriate process model

— Have successful project

Process Management

Software lifecycle (SDLC) describes the
process of software development activities

Discipline of defining, implementing,
maintaining process in a project

Adopted/created by PM
Measures project progress

Ensures correct execution of organization’s
procedures and policies

“Starter” SDLC Models

Do-until-Done

Waterfall

V-Shaped

Rapid Prototyping

— Rapid application development (RAD)
— Incremental

— Spiral

Agile Development

— Scrum
— XP

Inputs

Do-Until-Done

\ Code & Test

Outputs

/

Do Until Done

25

Waterfall (several variants)

Waterfall (several variants)

Concept

Exploration

L System

' Exploration

\

Requirements]

N

Design

Need: well understood and
stable requirements upfront

Easy to plan and staff
lterations are costly

Implementation -

Installation

N

\

Operations

& Support

Maintenance

N

Retirement

27

V-Shaped

Project & Production,
Requirements [<---------ooeoe > Operation, &
Planning Maintenance
g Product System >
Requirements P &
& Specification Acceptance
Analysis Testing
Architecture Integration
or High- < m oo » &
level Design Testing
* Need: well understood and

= e - > stable requirements upfront
< > e Strong emphasis on
verification and validation

* Good for systems requiring
high reliability

29

Rapid Prototyping Models

Single hardest part of building software is deciding
what to build
Challenge for team

— Devise process that will discover, define, develop real
requirements

Central idea

— Create a prototype of software that may require us to
throw away at the next iteration

— Prototype = easy to build, readily modifiable/extensible,
partially specified working model of overall system

Good approach if system is something new

ing Model

=
2
©
=
T
@
(a]
c
-
w
o
o

Rapid Prototyp

Operation and Maintenance

31

Structured Evolutionary Rapid Prototyping Model

Just a Proof-of-Concept

* Prototype has limited functionality
— Limited functionality
— Limited platform interoperability
— Need to manage client expectations

* Non-functional requirements not considered
— Reliability? Performance? Usability?

32

When to use Rapid Prototyping?

When requirements are ill-understood
— Too complex
— Always evolving requirements

Medium or high risk projects
When only proof-of-concept is needed

Suitable for Ul intensive systems and research
projects

Often used in combination with other SDLC

Three Types of Rapid Prototyping

* Rapid application development (RAD)
* Incremental

e Spiral

RAD

Created by IBM 1980s
Quick turnaround time: ~60 days
Users involved in ALL phases

Heavy dependence on:
— Code generators

— Screen generators

— Other productivity tools

More work for users in planning and design

RAD Model

Development Effort

Requirements
Planning

Time

FIGURE 4-12
The Rapid Application Development Model

Phases:

e Joint
Requirements
Planning

e Joint
Applications
Development

e Code
generation

e User
acceptance

36

When to use RAD

Requirements are well-understood

Low risk projects where performance and
reliability are not an issue

Short development times
High end-user involvement
Automated tools available
Ex: information system

Incremental

Validation
Sv5|em Validation Increment 3
Feasibility Software Plans Verification
and Verification
Pcplciar da Unit Test Product
A Product Verification

System Test

Design

| Integration Revalidation

1

Maintenance

Increment 1

Verification

i Detailed ifi
Verification Increment 2

Unit Test Produc' \

| Design

System Test
K ; Revalidation Verification
‘L - pratins Detailed Unit Test Product
i | and Design Verification
i Maintenance : System Test
Revalidation
Operations
and
T Maintenance
FIGURE 4-13

The Incremental Model

Main features of Incremental

FIGURE 4-13
The Incremental Model

* Does not allow iterations

 Complete system definition required in order to create
meaningful chunks

* Divide-and-conquer approach
* Prioritizes important functionality

39

Spiral

* Focuses on risk analysis and management
— Cost
— Life
— High-profile missions
* Takes advantage of strengths from:
— Waterfall
— Prototyping
— Incremental

Main features of Spiral

* Reviews (requirements, design, product)

» Specific deliverables
* Coding is de-emphasized

waterfall

prototyping

* Allows users to see system early on

e Splits large effort into chunks
— Implement high risk functions first

incremental

DETERMINE OBJECTIVES, A EVALUATE ALTERNATIVES,
ALTERNATIVES, AND ' IDENTIFY AND RESOLVE RISKS
CONSTRAINTS 3
i Risk
! Analysis
‘Support and i
Maintenance | Risk
Objectives, ! Analysis
Alterna(t’ives, - y Updated
an Implementation g g Operational
Constraints ~Opjectives, Design 1 An’gls';is Operational™_ Prototyping
Alternatives, ~~ Objectives, : y Prototyping
and Alternatives, AT ' Risk Desi
Constraints /810 G Siicuer °“} Analysis e AR
Alternatives, I Prototypin
and ek NQemonstration typing
Constraints / Project — Prototyping
Product Design Rqmts System | Definition } Prototypin
Review Review Review Review Concept of Simulations,] Models,
ot Engineering and gg&':r:im SR%%‘:"?": and Benchmarks
esign a i i ;
Enhanced CSCI Dengrelopmem Project Planning goftware ents Spec, %eta_lled Updated
Operational lnlegragon Transition e Syslf’e%wdated o S— &estailed
ili an Plannin oftware ign
Clanptgglrlg‘yion Test S'te g _'.twa.re rchitectur Code g
Activation Activation Specification and Unit Code
et g Training Preliminary Test :
and Planning SDDs Unit
Training Test
Planning :
Integration
e Chnd Tl : /
IOC| |Qualification Integration
DELIVERY | |Testing and Test
__—"| Formal
User Testing
FOC Acceptance
DELIVERY | Jestand
Bl 225
FCA/PCA
PLAN NEXT PHASE DEVELOP NEXT-LEVEL PRODUCT

Simplified View of Spiral

Risk

Sanning
Planning Based on
Customer Comments Risk Analysis Based on
Initial Initial Requirements
Hequirements , :
Gathering and Risk Analysis
Broi Based on Customer
foject Reaction
Planning /
Go/No Go Decision
Customer
Evaluation Toward a Co\mpleted System
Initial Software
Prototype
Next-Level Prototype
Engineered System
Customer

* Partitions Process Into Distinct Quadrants

Engineering

¢ Emphasizes Revolutionary Development
e Accommodates Proven Quality Paradigms

» Stress Formal Risk Analysis

43

When to use Spiral?

Requirements are too complex or evolving
Medium to high risk projects

New technology or proof of concept only
See system early on

— How many loops?

Ex: aerospace (Mars rover), defense apps,
engineering projects

Agile Development

* Lightweight approach
— Adapt quickly and painlessly to evolving requirements
— Use short, frequent iterations (~15 days)
— Highly collaborative
* Does not require PM
— Self-organizing teams
— Minimal management
— Some still use a PM for communication purposes
 Well-known methods:
— Scrum
— Extreme programming (XP)

Major Disadvantages

 Examples?

Major Disadvantages

Difficult to integrate inexperienced
programmers

— May fall back to “cowboy” coding
Hard to estimate schedule completion
Increases risk of scope creep

— How many iterations?

Can be inefficient

— No authority to make decisions

Scrum Construction Daily Scrum
Lifecycle Meeting:
4 — —Share status and
identify potential
issues
Sprint review: Demo
S Brinet == . system to stakeholders and
= f;gehiisrte:gtl;y’ N Véor‘:'ngp gain funding for next sprint
= 9 Sprint Sprint YSIEM " Sprint Retrospective: Learn
= Backlog Tasks from your experiences
= | Cemseser rundngs
— u
P— Feedback
——— for current Sprint ~%—
and to identify work Copyright 2005-2008
Scott W. Ambler
Product tasks
Backlog Original Diagram Copyright Mike Cohn

48

XP

Practices common sense principles to the extreme
Follows SE practices that support high quality software
“Code for today, not for tomorrow”

— Just-in-time design

Emphasize customer involvement

Test-driven development
— Write test stubs first then fill in code
— Continuous integration testing

Pair programming environment
Short iterations with fact delivery

49

How to choose an SDLC

Requirements
— Defined and stable early on?
— Is early functionality a requirement?

Project team
User involvement
Project type/risk

How to choose an SDLC

Requirements

Project team
— Training available?
— Likely to have changing team members?

User involvement
Project type/risk

How to choose an SDLC

Requirements
Project team

User involvement
— Do they want to be involved? How much?
— Does client want to track progress?

Project type/risk

How to choose an SDLC

Requirements
Project team
User involvement

Project type/risk
— Funding stable through lifecycle?
— Reusable components available?

TABLE 4-2 (Contnued)
Selecting a Life Cycle Model Bazed on Charactenstics of the Project Team

Project Team Waterfall V-Shaped Prototype Spiral RAD Incremental

Will the project Yes Yes No Yes No Yes
manager closely

track the team’s

progress?

Is ease of Yes Yes No No Yes ‘es
resource

allocation

important?

Does the team Yes Yes Yes Yes No Yes
accept peer

reviews and

inspections,

management/

customer

reviews, and

milestones?

54

TABLE 4-3

Selecting a Life Cycle Model Based on Charactenstics of the User Community

User
Community

Waterfall

V-Shaped Prototype Spiral

RAD

Incremental

Will the
availability of
the user
representatives
be restricted or
limited during
the life cycle?

Are the user
representatives
new to the
system
definition?

Are the user
representatives
experts in the
problem
domain?

Do the users
want to be
involved in all
phases of the life
cycle?

Does the
customer want
to track project

progress?

Yes

No

No

No

No

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

No

No

Yes

Yes

No

Yes

Yes

Yes

No

No

55

Project Type
and Risk

Waterfall

V-Shaped

Prototype

Spiral

RAD

Incremental

Does the project
identify a new
product
direction for the
organization?

Is the project a
system inte-
gration project?

Is the project an
enhancement to
an existing
system?

Is the funding
for the project
expected to be
stable through-
out the life
cycle?

Is the product
expected to
have a long
life in the
organization?

Is high
reliability a
must?

Is the system

expected to

be modified,

perhaps in

ways not antici-

pated, post-
deployment?

No

Yes

Yes

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

No

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

56

TABLE 4-4 (Cantinued)
Selecting a Life Cycle Model Based on Charactenstics of Project Type and Risk

Project Type
and Risk

Is the schedule No No Yes Yes Yes Yes
constrained?

Are the module Yes Yes No No No Yes
interfaces clean?

Waterfall V-Shaped Prototype Spiral RAD Incremental

Are reusable No No Yes Yes Yes No
components
available?

Are resources No No Yes Yes No No
(time, money,

tools, people)

scarce?

57

