COSC 310:
Software Engineering

Dr. Bowen Hui
University of British Columbia Okanagan
bowen.hui@ubc.ca

Testing

e what's the purpose of testing?
e what is the process involved?

e why might things go wrong after you do
testing?

Testing

e what's the purpose of testing?
o show that a program works as intended
o find and fix all defects before deployment

e what is the process involved?
o different levels of test cases using artificial data

e why might things go wrong after you do
testing?

Related Terminology

Testing can only show the presence of
errors, not their absence

validation: are we building the right

product?
o ensures software meets customer expectations

verification: are we building the product
right?

o ensures software meets all requirements

V&V establishes software's fit for purpose

V&V

e validation
o e.g., can test user-friendliness, usability, often under
real use environments
o example activities:
m usability testing
m informal user feedback

e verification
o e.d., can test timeliness, interoperability
o example activities:
m testing
m inspections
m static analysis

Elevator Response Example

e "if user presses button for floor x, then
elevator must arrive at floor x within 30

seconds”

o requirement specifies a precise quantity that is
measurable

o requires verification

e "if user presses button for floor x, then

elevator must arrive at floor x soon”
o requirement specifies a subjective quantity
o requires validation

Why Test?

e software is never correct

o 80% errors found often traced back to 20% of
components

e ability to measure and improve the quality of
product

e goals of testing and analysis
o find faults
o formal proof of software properties (e.g., flowgraphs)
o provide confidence
o compromise between software accuracy, generality,
complexity

Traditional Testing Process

e used in plan-driven development

Software Test Plan

e document to explain testing approach
exhaustive testing is not possible
e serves as link between development and

testing

items to be tested

resource requirements (people, hardware, software)

test schedule

reporting requirements

outcomes (evaluation criteria, level of acceptable

risk)

e all test cases should be traceable to
requirements

O O O O O

Elements of a Test Case

reference number
description
preconditions
Input

expected output
outcome

Example Test Case

TC#. S-221

TC Description: This test is checks the system
response to an invalid input selection.

TC Precondition: Go to screen
Flight Management

TC Input. Enter <F7>

TC Expected OQutput: Error message: “Invalid
input, Enter “1” to “4” or ESC”

TC Outcome: Pass, Fail

Development Testing

unit testing
o white box approaches
o black box approaches

iIntegration testing
o non-incremental (big bang)
o incremental (top-down, bottom-up, sandwich)

system testing

o performed using system level input and outputs on
target platform

o answers: "can we ship the product yet?"

regression testing
o ensure changes don't cause unintended effects
elsewhere

Testing Order

e which testing approach first?

Testing Order

e which testing approach first?
e from small to large:

O
O
O

individual units (white box testing)

units integrated as subsystems (black box testing)
subsystems integrated into system (integration
testing)

system placed in real environment (system testing)
system tests are preserved to be re-run when
changes are made (regression testing)

Unit Testing Considerations

Interface is tested to ensure information properly
flows into and out of the unit

Examines local data structure

Tests boundary conditions

Tests all independent paths

o Ensures statement coverage
o Ensures branch coverage

Tests all error handling paths

Black-Box Testing Example

« Code description:

« Given two integers, return the larger one. Return
the first integer if tie.
« Test case description and input:
e Casenl>n2: nl=2,n2=1
e Case nlkn2: nl=1, n2=2
e Case nl=n2: nl=2, n2=2

Black-Box (Behaviour) Testing

e Subsystems can be subject to:

o Boundary value testing

e Equivalence partitioning

o Useful for improving testing efficiency
o Input domain partitioned into finite number of equivalence

classes
o A representative test case used for each class

o E.g. condition x>y has two equivalence classes for inputs:
1. Values of xand y such that x>y
2. Values of xand y such that x <=y

White-box Testing Strategies

Statement coverage

o Tests each statement

Branch coverage

o Tests each possible outcome from a branch

(Multiple) Condition coverage

o Tests each combination of conditions in decision nodes
Loop coverage

e Executes each loop zero, one, and more than one time
Path coverage

e Simple paths (contains no repeated nodes, except
start/end nodes may be the same)

o All paths

e Basis paths (calculated by cyclomatic complexity)

Flow Graph Representation:
Basic Constructs

S=quence If-Then-Else If-Then Do-While

Case Repeat-Until

Example Source Code and
Corresponding Flow Graph

?UClld(int m, int n) Graph:

// assuming m and n are both greater than @

// return their gcd

// enforce m »>= n for efficiency

int r;

ifl n>m)

{
r
m
n

m;
n;
rs

r = % n;
while(r !=)

3

-
nonn
-

Example

o Recover the code structure for this flowgraph:

« How many if statements are here?

 \AMhich lAAARE ara chAawvvie hara)

Corresponding Code Structure

Code:

Statement and Branch Coverage

o Statement coverage

e Min # test cases =2
° PathS:

e Branch coverage

e Min # test cases =4
e Paths:

4

&

S @f—}

.

Nk W N

o Examples of complex conditions and test cases:

o B B B B B

=g
M

b
F
T
T
T
T

Multiple Condition Coverage

&&

(c ||

- o |

(d &&

I =3 =3 = |

m

I =3 = |

T

H O W oo & DN

((a ||

F

e L B B B e B e B B

| &&

o]
F
T
T
T
T
T

(¢ ||

S

d))

I =3 3 = |

I =3 3 = |

=g}
=g}
m

- = =] = | =] = -]

Loop Coverage

o LOOpSsS:

o Do-while
o Condition at node 5
o Body at node 6

o Repeat-until
o Condition at node 9
o Body at node 8

« Ensure loop bodies are executed zero, one,
more than one time

Loop Coverage

e Min # test cases=6

o Do-while paths:
e Zero:
e One:
e TWO+:

o Repeat-until paths:
o Zero:
e One:
e TWO+:

Simple Path Coverage

e« Min # test cases =4

o Paths: »‘/
a. (1,2,3,4,5,10)

S @f}

v. (1,2,3,4,5,6,5,10) ©

C. (1;2;4/5/10) 6 G)

d. (1,2,4,5,6,5,10)

.. (1,7,10) e—&
@

r. (1,7,8,9,10)

« Which two paths are not simple paths?

All Paths Coverage

o Min # test cases = infinity

e Paths:

Example

« Possible paths:
e a,b,de
e a,b,c,b,de
e a,b,c,b,c,b,d,e
e a,b,c,b,c,b,c,b,de

. Which path gives full statement

coverage?
« Which path gives full branch coverage?

Example:
Read P
Read O
IF P+Q > 700 THEN
Print “Large”
ENDIF
IfP > 50 THEN
Prnt “P Larpe”
ENDIF

Reaad P 1
A
2
YES
D
Frimt *Large”
E
5 emir
e
F
6
P=50
G H
Prirt" P Large "

8 “endii

Calculating Statement Coverage
1

Read P
A
Define test case Fead G 2
Identify traversed path % .
correspond to test case —«"f
Does test case cover all Ny °
nodes? e
Example: 5 _enai -
e How many test cases are TF
needed for full statement N8
coverage? G pso H
Goal: identify min # paths pert "B Large

)
- ..
& endif

Calculating Branch Coverage

Read P l
A

Start with paths that cover e 2
B

most number of branches X -
ro Araa N\ yes

ldentify new paths to cover —< 15

remaining branches
Are all branches covered? i
Example: 5_enii -
« How many test cases are TF

needed for full branch VA

coverage? G| PSU H
Goal: identify min # paths pert " Large "

ldentifying All Paths

|dentify all unique paths
from start to end

Considers all combinations,
of branches

Example:

« How many test cases are
needed for full path
coverage?

What are all the paths?

Read P

0 4 N
L s P+Q \

D

Frint *Large”

E

Prrt" P Large "

L
- ..
& endif

Test-Driven Development

e Interleave testing and coding
e develop code iteratively with test case
e originally introduced as part of XP

e can be incorporated into plan driven
development as well

TDD Process

write a new failing tes

e run tests
(expectations?)

e getitto pass

e refactor

e repeat

TDD Example: Ruby on Rails

e RSpec - language for testing

Listing 3.9. Code to test the contents of the Home page.
spec/requests/static_pages spec.rb

require 'spec helper'
describe "Static pages" do
describe "Home page” do

it "should have the content 'Sample App'" do
visit '/static pages/home'’
page.should have content('Sample App')
end
end
end

Example cont.
Test fails

e O O 1. ~/rails_projects/sample_app (bash) e

[sample_app (master)]S bundle exec rspec spec/requests/stat1c_pages spec rb
F

Failures:

1) StaticPages Home page should have the content 'Sample App'
Failure/Error: page.should have_content('Sample App')
expected there to be content "Sample App" in "SampleApp\n\nStaticPages#ho
me\nFind me in app/views/static_pages/home.html.erb\n\n"
./spec/requests/static_pages_spec.rb:9:1n "block (3 levels) in <top (requ
ired)>"’

Finished in 6.69 seconds
1 example, 1 failure

Failed examples:

rspec ./spec/requests/static_pages_spec.rb:7 # StaticPages Home page should have
the content 'Sample App'

[sample_app (master)]$ |

Example cont.
Write code to pass test

Listing 3.10. Code to get a passing test for the Home page.
app/views/static_pages/home.html.erb

<hl>Sample App</hl>

<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.

</p>

Example cont.
Pass test

e 0o 1. ~/rails_projects/sample_app (ruby)
[sample_app (master)]$ bundle exec rspec spec/requests/static_pages_spec.rb

Finished in 6.62 seconds
1 exaple. @ faillures

[sample_app (master)]$ |}

See http://ruby.railstutorial.org/

TDD Benefits

e why is TDD helpful in the development
process?

TDD Benefits

e clarity
o helps programmers clarify what the code is
supposed to do
e code coverage
o at least one test per code segment

e regression testing
o Incremental development process enables
regression tests to be run any time
e simplified debugging
o when a test fails, it should be obvious where the
problem lies
e system documentation
o use tests as a form of documentation

Writing Tests

e what test(s) would you write if you have to...

o write a feature that sums up the prices of the items
In a shopping cart

o write a feature that shows the time left in a user's
turn (max 30 sec) in Tic-Tac-Toe

o write a feature that shows who's turn it is currently in
a two player game

o write a feature that lets users delete their own
entries in a blog

Stress Testing

e a type of performance testing at system level
e stress the system by making demands that
are outside the design limits of the software

e e.g.: process 300 transactions per second
o start by testing system with < 300 trans/sec
o gradually increase load beyond 300 trans/sec
o stop when load is well beyond 300 or when system
fails

e tests system's failure behaviour

o ensure no data corruption or unexpected loss of user
services

e may cause unusual defects to be discovered

User Testing

e users provide advice on system testing

e alpha testing
o users work with development team to test software
o at developer's site

e beta testing
o software release made available to users
o allows users to experiment and raise problems that
they discovered

e acceptance testing
o users test a system to decide whether or not it is
ready to be accepted for deployment in user's
environment

Software Quality

e what are some desirable software qualities?
o from the correctness perspective?
o from the development perspective?

o from the users' perspective?

Software Quality Attributes
(Boehm 1978)

Safety Understandability | Portability
Security Testability Usability
Reliability Adaptability Reusability
Resilience Modularity Efficiency
Robustness Complexity Learnability

e difficult to take direct measurements of these

Measuring Internal Attributes

Cyclomatic complexity v(G)
Measures logical complexity of program

v(G) = |E| = |N| +2
o G =flow graph

o E =set of edges

o N =set of nodes

This value gives the number of linearly
independent paths in G
Indicates minimum effort to code and test

N T

Examples

e V(G)=|E| —|N|+2
« small examples:

v(G)

Example

. |E|=? ﬁ
ED

° |N|=?

e vV(G)="7

° |E|=‘P
° |N|=?
. V(G)=’P

Example

Guidelines for V(G)

« High complexity ~ more bugs and security
flaws

Complexity Corresponding Meaning of V(G)
No.
1-10 1) Well-written code,
2) lestabihty s high,
3) Cost/effort to maintain is low

10-20) Moderately comple x code,
V lestabihityis mpdlum

yCost/eftorttomamntam s medium.

_(».' _t\) —

20-40) Very comple x code,
V lestabihtyis low,

Cost/effort to maintainis high.

(A. _l‘\) —

> 40 1) Not testable,
2 Any amount ofmoney /etfort 1©
mamian may not be enr*u-"h.

Something Simple

Program: cache 01724708 Armotated Source Listing
cache "Writehddresz (F) Ewperimposed ___

Cyclomatic Graph Tpward Flows SRS

Cyclomatic 3 Loop Exits Frogram :

Ezsential 1 Plain Edges

Design 2

cache "Writeldddr

FO static int

'* write addr to cache. Obserwe write po

int rv = 0

nCache (addr, cachel]

(MRITE_POLICY == WRITE_EA&CK)
PlacebddrezzInCache (addr

Something Not So Simple

' Graph g for ‘crackaddr’ I

Zoom Out Print... Save As_.. Save Text... Close Help... Graph [45])%6: __1__|

Magnification Level: &
N | Page 1 of 3 crackaddr

Anmnotated Source Listing
Program: Security
Program : Security 04,17
crackaddr (ATL) File : C:nDocuments and SettingshtmocabetDesktophallchcrackaddr-bad. c
Language: cw C_inst
Module Module Atart Num
wiG) ew(F) iwv(G) Line Lin

Cyrclomatic Graph
Cyrclomatic 839

Ezgential 30

Design 192 ATLO

crackaddr (addr)
register char *addr;

i
register char *p;
register char c;
int cmtlew;
int realcmtlew;:
int anglelew, realanglelew;:
int copylew;
int bracklew;
ermam bool omode;
erman bool realomode;
erman bool skipping:

ernum bool putgmac = false;
ermm bool quoteit = false:
ermam bool gotangle = false:
ermm bool gotcolon = false;
register char *bp;
char *obp:
char *buflim:
char *bufhead;
char *addrhead;
static char buf[MLIAME + 17:
static char test buf[l0]: /% will use as
Pl o) o 2 g

ATL1*® AILZ streopy(test buf, "EO0DT) ;

ATL3* AIL4 printf("Inside crackaddr!n™):

Relation to Testing and Quality

e high cyclomatic complexity and white box
testing?

e how to reduce code's cyclomatic complexity?

Changing views of quality

‘Past

Present

uality is responsibility of blue

ollar workers and direct labour

mployees working on the
product

Quality is everyone's

responsibility including white
collar workers, the indirect labour
force and the overhead staff

uality defects should be hidden
rom the customer and
management

Defects should be highlighted
and brought to surface for
corrective action

uality problems lead to blame
aulty justifications and excuses

Quality problems lead to
cooperative solutions

Changing views of quality

Past

Present

orrections-quality problems
hould be accompanied with
Iminimum documentation

Documentation is essential for
‘lessons learnt” report

Increase quality will increase
project cost

Improved quality saves money
and increase business

ill not occur without close
upervision of people

People want to produce quality
products

What is Software Quality
Assurance?

e reviews all software products and activities

e auditing can be performed to ensure
products and processes conform to
organizational standards

e must define:
o product standards
o process standards

e what might be some examples of these
standards?

Example Standards

Product Standards Process Standards

Design review form Design review conduct
Requirements document Submission of new code to
structure configuration management
Method header format Version release process
Java programming style Project plan approval process
Project plan format Change control process
Change request form Test recording process

Software Quality
Assurance

Process
Definition &
Standards

Formal
Technical
Reviews

Analysis
&
Reporting

Test
Planning
& Review

Measurement

A Detailed Look at SQA

SQA plan - created to define team's strategy
In achieving quality

explicitly defines what is meant by "software
quality”

create activities to ensure every work
product exhibits high quality

use metrics to develop strategies for
improving software process and product
quality

when is the SQA plan created?

SQA Responsibilities

e prepares SQA plan

e participates in development of software
process description

e review all activities to verify compliance

e audits designated software product

e ensures deviations on software work and
work products are documented and handled
according to procedure

e records any non-compliance

Software Inspection

e static V&V activity

e use knowledge of system, application
domain, programming experience to
discover errors

e a meeting conducted by technical people for
technical people

e inspects any readable representation of

software

o source code (most emphasis)
o requirements

o design models

o test plans

Who are the Practitioners?

Software Assurance practitioners include a wide
range of personnel employed throughout SDLC

Software Assurance personnel aren’t just those Software Quality folks!!

Advantages of Inspections over
Testing

e do not have to consider system interactions

o errors may mask other errors - difficult to identify
source of error

e able to inspect incomplete versions of system

e able to consider broader quality attributes:

o compliance with standards, portability, maintainability
o look for inefficiencies, inappropriate algorithms, poor
programming style

Software Reviews

e less structured static V&V activity

e aim to improve software quality by detecting
defects

e creates technical assessment of a work
product

e may also serve as training ground

e example activities:
o pair programming
o system walkthroughs
o formal inspections

Cost Impact- Defect Amplification model

Errors
from
previous

ste

Defects

Detection

Errors passed through

Amplified errors 1: x

Newly generated errors

% efficiency
for error
detection

Errors passed to
The next step

How to convince the management that reviews are cost-effective!

Example

Prelim. Design Detailed Design Code/Unit test
, 10 6 ~ 37 10
0 AN 6 | < 10
0 | 0% 14x1.5 0% 27 4 27x3 20%

10 | 25 25

93

Defect Amplification model —No review Model

Prelim. Design

0

0

10

0%

Integration

Detailed Design

10 6

AN

4x1.5

25

Code/Unit test

37 10

0%

Validation test

27

A:

509

Test
47 47
93 \ 47
o [50% O 0
0

0]

24 24

0 N 0

27 X 3 120%
25
116
System test
24 12
50%
errors

0

Defect Amplification model — Reviews conducted

Prelim. Design

Detailed Design

0

0

10

70Y

3 2
j 2
1
3 1x1.5
25

Code/Unit test

Integration

Validation test

5
50%]k 10 x 3

Test
2%, 24 —Lz—iz 12
0 0o |50% Y 0
0

0]

50%

5
24
60%
25
60
System test
6
o 3
0 50%
errors

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed

References

e http://www.sa-depot.com/?p=203

