COSC 310:
Software Engineering

Dr. Bowen Hui
University of British Columbia Okanagan
bowen.hui@ubc.ca

Good Code? Bad Code?

g= ((p<=1) 2 (p ?2 0 : 1) : (p==-4) *

Good Code? Bad Code? (2)

while (*a++ = *b—--) ;

Good Code? Bad Code? (3)

char b[2] [10000], *s, *t=b, *d, *e=b+1, **p;main(int
c,char**v) {int n=atci(v[1l]); strcpy(b,vI[2]);
while(n—-) {for(s=t,d=e; *s; s++)

{for(p=v+3;*p;p++) 1f(**p==*s) {strcpy(d, *p+2);d+=
strlen(d) ;goto x;}*d++=*s;x:} s=t;t=e;e=s;
*d++=0; }puts(t);}

Yes, But ...

e "nobody" really writes code like that
e Yyour code is (probably) great

e Dbut...
o others alter your code
o Yyou alter other people's code
o collaboration = better product, right?

Some Causes of Smelly Code

e code like that emerges after a collaborative
effort

o you won't get it right the first time around
o defects show up at all points of the lifecycle
o code is constantly being revisited

e accumulated modifications lead to this type

of code

o no such thing as a "perfect coder"

o external conditions can affect the quality of work
m approaching deadlines,
m stress,
m sSkunks, ...

Some Causes of Smelly Code (cont.)

e agile process with very small upfront design
o the simplest thing that could possibly work
o this code is expected in an agile process

in fact, if smelly code doesn't show up, then you

are probably not using an agile process

Solution?

1. improve the code without changing its
overall behaviour

2. spend more time designing upfront

e which is better?

Motivating Thought Experiment

e Case:
o You've written all the input analysis and response
generation code for your project.
o The code accidentally got deleted (no backups).

e Questions:
o How much time would it take you to rewrite the code
from scratch?
m same, more, less?
o Would the code have a better design the second
time around?

Code Evolves

e rule of thumb:

o it's harder to maintain (someone else's) code than to
write code from scratch
o extreme: NIH syndrome (not invented here)

o reality:
o most programmers spend their time evolving and
maintaining code

e advice:
o it pays off to keep code simple and clean

What is Refactoring?

‘[Refactoring is] the process of changing a software system
in such a way that it does not alter the external behavior of

the code yet improves its internal structure”

-- Martin Fowler

Refactoring Changes

e changes made to a system that:

O

O O O O O

do not change observable behaviour
remove duplication or needless complexity
enhance software quality

make code easier and simpler to understand
make code more flexible

make code easier to change

Why Refactor?

e bad code incurs in huge penalty in the long

run
o cost in reviewing, maintaining, fixing bad code
o cost in repeatedly having to do those activities

e Dbenefits of refactoring:
o not usually a short term benefit in cost/time
o long term investment in the quality of code and its
structure

When to Refactor?

e NOT: 2 weeks every 6 months

e opportunistic refactoring = do it as you
develop

e boy scout principle: leave it better than you
found it

e times when you might recognize a bad

smell:

o when you add a function
o when you fix a bug

o when you code review

The Rule of Three

1. the first time, just do it!
2. need it somewhere else? cut and paste it!

3. the third time, refactor!

When Not to Refactor?

e when tests are failing
o why?

e when you should just rewrite the code
o why?

e when you have impending deadlines
o why?

e when the smell is tolerable
o why?

Refactoring Process

Ensure all
tests pass

—

Find code
that smells

]

Ensure all
tests still pass

—

(—

Determine
refactoring

U

repeat until the smell is gone!

Refactor

Simple Example

int fa =« 1;
for(int i=2; i<a; ++i) fa *= 3i;

int fb = 1;
for(int i=2; i<b; ++i) fb *= 1i;

int fact(int x) |
return (x==1) 7 1 : fact(x-1l)*x;

fa « fact(a);
fb = fact(b);

Example Refactoring:
Pull Up Method

Refactoring: Pull up method - If there are identical
methods in more than one subclass, move it to
the superclass

Employee

eg.

getName

Salesman Engineer

getName getName

Example Refactoring:
PuII Up Method

: public abstract class Vehicle

2: |

cl // other methods

4: 1}

oS¢

6: public class Car : Vehicle
T: |

8 public void Turn(Directicn direction)
9: {
10: // code here
12: }
13:

14: public class Motorcycle : Vehicle
15: {

16: }

17:

18: public enum Directiocon
19: {

20: Left,

21: Right

22: }

"
PO W

12:
13:
14:
15:
16:
17:
18:
19:
20:

22:

@ ~J oW wN

Example Refactoring:
Pull Up Method

: public abstract class Vehicle

{
// other methods

}

public class Car : Vehicle

{
public void Turn(Direction direction)
{

// code here

}

public class Motorcycle : Vehicle
{
}

public enum Direction
{

Left,

Right

public void Turn(Directicn directiocon)

1: public abstract class Vehicle
2: |

3:

4: {

5 // code here

6 }

T: }

8:

9: public class Car : Vehicle
10: {
11: }
12:

13: public class Motorcycle
14: {

15: }

16:

17: public enum Directicn
18: {

19: Left,
20: Right

21: }

Vehicle

O Ww oo -Jd0 Wb wMN

Example Refactoring:
Rename

: public class Person

{
public string FN { get; set; }

public decimal ClcHrlyPR()
// code to calculate hourly payrate
return Om;

OWwo -J0W.d wh

Example Refactoring:
Rename

: public class Person

{

public string FN { get; set; }

public decimal ClcHrlyPR()
{

// code to calculate hourly payrate
return Om;

[—

: // Changed the class name to Employee
public class Employee
{

public string FirstName { get; set; }

2:
3:
4:
St
6: public decimal CalculateHourlyPay ()

s {

8: // code to calculate hourly payrate
9: return Om;

10: }

11: 1}

Example Refactoring:
Extract Method

public class Receipt

{
private IList<decimal> Discounts { get; set; }
private IList<decimal> ItemTotals { get; set; }

public decimal CalculateGrandTotal()

{

' 1
N

(N}
o

OWw o -Joh b W

' 1
Vo
LR LR LR

N NN
W N

decimal subTotal = Om;
foreach (decimal itemTotal in ItemTotals)
subTotal += itemTotal;

if (Discounts.Count > 0)

{

foreach (decimal discount in Discounts)
subTotal -= discount;

}
decimal tax = subTotal * 0.065m;
subTotal += tax;

return subTotal;

CEC T

.

.

@ ~J oW .d WM
.

.

Example Refactoring:
Extract Method

public class Receipt
{

private IList<decimal> Discounts { get; set; }
private IList<decimal> ItemTotals { get; set; }

public decimal CalculateGrandTotal()

{

decimal subTotal = 0Om;
foreach (decimal itemTotal in ItemTotals)
subTotal += itemTotal;

if (Discounts.Count > 0)

{ public class Receipt
{

foreach (decima. 2
} suSToTal == 2. private IList<decimal> Discounts { get; set; }
4: private IList<decimal> ItemTotals { get; set; }
decimal tax = subToi °° _ _
6: public decimal CalculateGrandTotal()
subTotal += tax; T: {
8: decimal subTotal = CalculateSubTotal():;
return subTotal; 9.
10: subTotal = CalculateDiscounts (subTotal);
12: subTotal = CalculateTax (subTotal);
13:
14: return subTotal;
15: }

w N

o ~J v Wn

Example Refactoring:
Introduce Parameter Object

: public class Registration

: |

public void Create(decimal amount, Student student,
IEnumerable<Course> courses, decimal credits)

// do work

w N -

@ ~J ovWn

Example Refactoring:
Introduce Parameter Object

public class Registration
{
public void Create(decimal amount, Student student,
IEnumerable<Course> courses, decimal credits)
{

// do work

public class RegistrationContext
{
public decimal Amount { get; set; }
public Student Student { get; set; }
public IEnumerable<Course> Courses { get; set; }
public decimal Credits { get; set; }

[—

.

public class Registration

{

W oo ~Joy b WM

public void Create(RegistrationContext registrationContext)

1
.

// do work

- =

(@ P

- - LR LR
.

Refactoring Practice

e split up into 5 teams

e work together on the following exercises as
a team

e ecach team select two exercises

Take Home Message

Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.

Martin Fowler

Refactoring: Improving the design of existing code

