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How do Computers Represent Data?
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How do Computers Represent Data?

analog data digital (binary) data
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Visual Difference

continuous

discrete
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- Computers use a binary system (two digits: 0 and 1)
- System is ideal because it can be physically represented by electrical 

states
- Transistors act as switches
- An "on" transistor represents a 1, 

allowing electrical current to flow.
- An "off" transistor represents a 0, 

blocking the electrical current.

Why Binary?
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Binary Representation

- Combinations of these binary digits are used to represent more 
complex information

- Each digit is called a bit
- Can we count beyond 2?

- 0 → 0
- 1 → 1
- 2 → ?

- Put more digits together (next slide)
- Each chunk of 8 digits is called a byte
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Decimal to Binary

- Our number system is called decimal (base 10)
- Each digit (position in a number) represents a power of 10
- E.g. 345 = (3 x 100) + (4 x 10)  + (5 x 1)

= (3 x 102)  + (4 x 101) + (5 x 100)
- Larger number corresponds to multiplying 10 with a higher exponent

- What about binary numbers?
- E.g. 0 = (0 x 20) = 0 x 1 → 0

1 = (1 x 20) = 1 x 1 → 1 
10 = (1 x 21) + (0 x 20) = 2 + 0 → 2 
11 = (1 x 21) + (1 x 20) = 2 + 1 → 3 
100 = (1 x 22) + (0 x 21) + (0 x 20) = 4 + 0 + 0 → 4
… 
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Common Numbers

13

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

Decimal Binary

8 1000

10 1010

20 10100

40 101000

80 1010000

100 1100100

1000 1111101000

…



- Exercise: Given 1011, what is this number in decimal?
- Answer: 11
- Show your work:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 8 + 2 + 1 = 11
- Exercise: Given 00101010, what is this number in decimal?
- Answer: 42
- Show your work:

0 x 27 + 0 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 
= 1 x 25 + 1 x 23 + 1 x 21 
= 32 + 8 + 2 = 42

How to Convert?
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Conversion Rule from Binary to Decimal

- Identify the binary number to convert
- Assign powers of 2 from right to left

- Rightmost digit is 20

- The next digit to the left is 21

- The next digit to the left is 22

- etc.
- Multiply each digit of the binary number with the corresponding power 

of 2
- Sum up the results

18

Binary
Decimal



- Exercise: Given 13, what is this number in binary?
- Answer: 1101
- Show your work:

13 ÷ 2 = 6 remainder 1
6 ÷ 2 = 3 remainder 0
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 1101

- Check: 1 x 23 + 1 x 22 + 1 x 20 = 8 + 4 + 1 = 13

The Other Direction?
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- Exercise: Given 123, what is this number in binary?
- Answer: 111 1011
- Show your work:

123 ÷ 2 = 61 remainder 1
61 ÷ 2 = 30 remainder 1
30 ÷ 2 = 15 remainder 0
15 ÷ 2 = 7 remainder 1
7 ÷ 2 = 3 remainder 1
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 11110111

- Check: 1 x 26 + 1 x 25 + 1 x 24 + 1 x 23 + 1 x 21 + 1 x 20 
= 64 + 32 + +16 + 8 + 2 + 1 = 123

Another Example
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- Identify the decimal number to convert
- Repeatedly divide the number by 2 until 

answer is 0
- Keep track the remainder each time (0 or 1)
- Write the remainders in reverse

Conversion Rule from Binary to Decimal
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What does this say?
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What does this say?



Taking a Step Back …
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What's inside the box?



What's Inside the Computer Box?
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Zooming into the Motherboard

30

Connects to monitor, speakers, 
keyboard, mouse

provides power to connected component

memory

"brain"various 
slots to 
connect to 
other 
hardware



Using the Numbers

- CPU (central processing unit) is the computer's brain
- Basic operations:

- Arithmetic (add, subtract, multiply, divide)
- Logical operations (and, or, not, xor)
- Data movement (load, store, move)
- Bit shifting and rotation (shift left, shift right, wrap around)
- Comparisons (equal, less than, greater than)
- Control flows (jump/branch, call/return)

- Fundamental concepts to all programming
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Adding Binary Numbers

- Works the same way as addition with decimal numbers
- Example:

               1 1 (carries)
   1 0 0 1 0 1 1 1
+ 0 1 1 0 0 1 1 0
   1 1 1 1 1 1 0 1

- Add one digit at a time from right to left
- If adding two values is bigger than the base max value, carry 1 to next 

digit
32

How about?
   1011   
+ 0110 
 10001
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Number Systems
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Hexadecimal Representation (Base 16)

- Compact and more human-friendly representation of binary data
- Hex is short for hexadecimal
- 16 values: 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Comparison: With 8 digits, how big of a number can the system 

represent?
28 = 256
108 = 1 0000 0000 = 100,000,000 
168 = 4,294,967,296

- Physical computer addresses use hexadecimal representation:
04-33-C2-F8-EA-7C
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From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
    8      E      D      8       A      3        A      0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
41
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Table of 3 Systems

- Mapping across decimal, 
binary, and hexadecimal 

- What is 32 (decimal) in 
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000
0010 0000 → 20
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Table of 3 Systems

- Mapping across decimal, 
binary, and hexadecimal 

- What is 32 (decimal) in 
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000 (binary)
0010 0000 (padding)
→ 20 57



ASCII Table

- In fact, all other input characters get their own special mapping!
- ASCII = the American standard code for information interchange
- Invented in 1963
- Advantages of a standard:

- Computer parts built by different manufacturers can be connected
- Programs can create data and store it so that other programs can 

process it later
- 7-bit ASCII encoding handles:

- All basic letters (upper and lower case)
- All numbers, punctuation marks, and special characters
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ASCII Table Mapping 

- Uses 7-bit encoding
- 7 bits gives 27 = 128 possible 

symbols
- 1981, IBM extended this to 

8-bit encoding
- To allow more space to 

represent characters from 
other languages

- 1991: Unicode was introduced 
as the universal character 
encoding system 
(supports 216 characters)
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Encoding Higher-Level Information

- ASCII or Unicode tells us how to map text to binary representation
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Encoding Higher-Level Information

- ASCII or Unicode tells us how to map text to binary representation

64

What about 
images and 
sounds?



Representing Images

- Images are made up of pixels
- Consider black and white images
- Mapping: 1 is black (or on) and 0 is white (or off)
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Representing Colours

- Suppose computers use RGB (red, green, blue)
- Suppose we use a 2-bit mapping for 4 colours:

00 = white
01 = blue
10 = green
11 = red

68

How many colours do we have?
How many bits do we need?

How many bits do we need to represent these colours?
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Representing Colours

- Suppose computers use RGB (red, green, blue)
- We can use a 2-bit mapping for 4 colours:

00 = white
01 = blue
10 = green
11 = red
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How many colours do we have, in general?
How many bits do we need, in general?



Remember Painting?
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Colour Systems

- Red-Yellow-Blue is a traditional pigment-based (subtractive) system 
used in painting for mixing physical paints

- Red-Green-Blue is an light-based (additive) system used for digital 
screens and light

- Combines red, green, and blue light in various intensities 
- Creates a wide range of colors
- All colors mixing to white
- Based on how the human eye cone cells perceive colors
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Reading Colour Pickers

- Common format: Each of R, G, and B is stored 
as an 8-bit number 

- Pure red = (255, 0, 0)
- Pure green = (0, 255, 0)
- Pure blue = (0, 0, 255)
- 0 means no light (dark)

Black = (0, 0, 0)
- 255 means full brightness

White = (255, 255, 255)
- Gives 2563 = 16,777,216 possible colors
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Why 6 digits?
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What is 6D?
What about FF?



Representing Sounds

- Sound waves are captured and sampled at regular discrete points in time
- These "samples" represent the amplitude (strength) of the sound wave
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Other Systems of Data 
Representations

- QR Codes
- NATO broadcast alphabet
- Morse code

…
- Different systems used for different 

purposes
- Starts with basic units, then 

combine to create larger data items
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