
COSC 122: Computer Fluency

How do Computers Represent Data?

2

How do Computers Represent Data?

analog data digital (binary) data

3

Visual Difference

continuous

discrete

4

- Computers use a binary system (two digits: 0 and 1)
- System is ideal because it can be physically represented by electrical

states
- Transistors act as switches
- An "on" transistor represents a 1,

allowing electrical current to flow.
- An "off" transistor represents a 0,

blocking the electrical current.

Why Binary?

5

Binary Representation

- Combinations of these binary digits are used to represent more
complex information

- Each digit is called a bit
- Can we count beyond 2?

- 0 → 0
- 1 → 1
- 2 → ?

- Put more digits together (next slide)
- Each chunk of 8 digits is called a byte

6

Binary Representation

- Combinations of these binary digits are used to represent more
complex information

- Each digit is called a bit
- Can we count beyond 2?

- 0 → 0
- 1 → 1
- 2 → ?

- Put more digits together (next slide)
- Each chunk of 8 digits is called a byte

7

Decimal to Binary

- Our number system is called decimal (base 10)
- Each digit (position in a number) represents a power of 10
- E.g. 345 = (3 x 100) + (4 x 10) + (5 x 1)

= (3 x 102) + (4 x 101) + (5 x 100)
- Larger number corresponds to multiplying 10 with a higher exponent

- What about binary numbers?
- E.g. 0 = (0 x 20) = 0 x 1 → 0

1 = (1 x 20) = 1 x 1 → 1
10 = (1 x 21) + (0 x 20) = 2 + 0 → 2
11 = (1 x 21) + (1 x 20) = 2 + 1 → 3
100 = (1 x 22) + (0 x 21) + (0 x 20) = 4 + 0 + 0 → 4
…

8

Decimal to Binary

- Our number system is called decimal (base 10)
- Each digit (position in a number) represents a power of 10
- E.g. 345 = (3 x 100) + (4 x 10) + (5 x 1)

= (3 x 102) + (4 x 101) + (5 x 100)
- Larger number corresponds to multiplying 10 with a higher exponent

- What about binary numbers?
- E.g. 0 = (0 x 20) = 0 x 1 → 0

1 = (1 x 20) = 1 x 1 → 1
10 = (1 x 21) + (0 x 20) = 2 + 0 → 2
11 = (1 x 21) + (1 x 20) = 2 + 1 → 3
100 = (1 x 22) + (0 x 21) + (0 x 20) = 4 + 0 + 0 → 4
…

9

Decimal to Binary

- Our number system is called decimal (base 10)
- Each digit (position in a number) represents a power of 10
- E.g. 345 = (3 x 100) + (4 x 10) + (5 x 1)

= (3 x 102) + (4 x 101) + (5 x 100)
- Larger number corresponds to multiplying 10 with a higher exponent

- What about binary numbers?
- E.g. 0 = (0 x 20) = 0 x 1 → 0

1 = (1 x 20) = 1 x 1 → 1
10 = (1 x 21) + (0 x 20) = 2 + 0 → 2
11 = (1 x 21) + (1 x 20) = 2 + 1 → 3
100 = (1 x 22) + (0 x 21) + (0 x 20) = 4 + 0 + 0 → 4
…

10

Decimal to Binary

- Our number system is called decimal (base 10)
- Each digit (position in a number) represents a power of 10
- E.g. 345 = (3 x 100) + (4 x 10) + (5 x 1)

= (3 x 102) + (4 x 101) + (5 x 100)
- Larger number corresponds to multiplying 10 with a higher exponent

- What about binary numbers?
- E.g. 0 = (0 x 20) = 0 x 1 → 0

1 = (1 x 20) = 1 x 1 → 1
10 = (1 x 21) + (0 x 20) = 2 + 0 → 2
11 = (1 x 21) + (1 x 20) = 2 + 1 → 3
100 = (1 x 22) + (0 x 21) + (0 x 20) = 4 + 0 + 0 → 4
…

11

Decimal to Binary

- Our number system is called decimal (base 10)
- Each digit (position in a number) represents a power of 10
- E.g. 345 = (3 x 100) + (4 x 10) + (5 x 1)

= (3 x 102) + (4 x 101) + (5 x 100)
- Larger number corresponds to multiplying 10 with a higher exponent

- What about binary numbers?
- E.g. 0 = (0 x 20) = 0 x 1 → 0

1 = (1 x 20) = 1 x 1 → 1
10 = (1 x 21) + (0 x 20) = 2 + 0 → 2
11 = (1 x 21) + (1 x 20) = 2 + 1 → 3
100 = (1 x 22) + (0 x 21) + (0 x 20) = 4 + 0 + 0 → 4
…

12

Common Numbers

13

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

Decimal Binary

8 1000

10 1010

20 10100

40 101000

80 1010000

100 1100100

1000 1111101000

…

- Exercise: Given 1011, what is this number in decimal?
- Answer: 11
- Show your work:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 8 + 2 + 1 = 11
- Exercise: Given 00101010, what is this number in decimal?
- Answer: 42
- Show your work:

0 x 27 + 0 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20
= 1 x 25 + 1 x 23 + 1 x 21
= 32 + 8 + 2 = 42

How to Convert?

14

- Exercise: Given 1011, what is this number in decimal?
- Answer: 11
- Show your work:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 8 + 2 + 1 = 11
- Exercise: Given 00101010, what is this number in decimal?
- Answer: 42
- Show your work:

0 x 27 + 0 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20
= 1 x 25 + 1 x 23 + 1 x 21
= 32 + 8 + 2 = 42

How to Convert?

15

- Exercise: Given 1011, what is this number in decimal?
- Answer: 11
- Show your work:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 8 + 2 + 1 = 11
- Exercise: Given 00101010, what is this number in decimal?
- Answer: 42
- Show your work:

0 x 27 + 0 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20
= 1 x 25 + 1 x 23 + 1 x 21
= 32 + 8 + 2 = 42

How to Convert?

16

- Exercise: Given 1011, what is this number in decimal?
- Answer: 11
- Show your work:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 8 + 2 + 1 = 11
- Exercise: Given 00101010, what is this number in decimal?
- Answer: 42
- Show your work:

0 x 27 + 0 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20
= 1 x 25 + 1 x 23 + 1 x 21
= 32 + 8 + 2 = 42

How to Convert?

17

Conversion Rule from Binary to Decimal

- Identify the binary number to convert
- Assign powers of 2 from right to left

- Rightmost digit is 20

- The next digit to the left is 21

- The next digit to the left is 22

- etc.
- Multiply each digit of the binary number with the corresponding power

of 2
- Sum up the results

18

Binary
Decimal

- Exercise: Given 13, what is this number in binary?
- Answer: 1101
- Show your work:

13 ÷ 2 = 6 remainder 1
6 ÷ 2 = 3 remainder 0
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 1101

- Check: 1 x 23 + 1 x 22 + 1 x 20 = 8 + 4 + 1 = 13

The Other Direction?

19

- Exercise: Given 13, what is this number in binary?
- Answer: 1101
- Show your work:

13 ÷ 2 = 6 remainder 1
6 ÷ 2 = 3 remainder 0
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 1101

- Check: 1 x 23 + 1 x 22 + 1 x 20 = 8 + 4 + 1 = 13

The Other Direction?

20

- Exercise: Given 13, what is this number in binary?
- Answer: 1101
- Show your work:

13 ÷ 2 = 6 remainder 1
6 ÷ 2 = 3 remainder 0
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 1101

- Check: 1 x 23 + 1 x 22 + 1 x 20 = 8 + 4 + 1 = 13

The Other Direction?

21

- Exercise: Given 123, what is this number in binary?
- Answer: 111 1011
- Show your work:

123 ÷ 2 = 61 remainder 1
61 ÷ 2 = 30 remainder 1
30 ÷ 2 = 15 remainder 0
15 ÷ 2 = 7 remainder 1
7 ÷ 2 = 3 remainder 1
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 11110111

- Check: 1 x 26 + 1 x 25 + 1 x 24 + 1 x 23 + 1 x 21 + 1 x 20
= 64 + 32 + +16 + 8 + 2 + 1 = 123

Another Example

22

- Exercise: Given 123, what is this number in binary?
- Answer: 111 1011
- Show your work:

123 ÷ 2 = 61 remainder 1
61 ÷ 2 = 30 remainder 1
30 ÷ 2 = 15 remainder 0
15 ÷ 2 = 7 remainder 1
7 ÷ 2 = 3 remainder 1
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 1111011

- Check: 1 x 26 + 1 x 25 + 1 x 24 + 1 x 23 + 1 x 21 + 1 x 20
= 64 + 32 + +16 + 8 + 2 + 1 = 123

Another Example

23

- Exercise: Given 123, what is this number in binary?
- Answer: 111 1011
- Show your work:

123 ÷ 2 = 61 remainder 1
61 ÷ 2 = 30 remainder 1
30 ÷ 2 = 15 remainder 0
15 ÷ 2 = 7 remainder 1
7 ÷ 2 = 3 remainder 1
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Write remainders in reverse: 1111011

- Check: 1 x 26 + 1 x 25 + 1 x 24 + 1 x 23 + 1 x 21 + 1 x 20
= 64 + 32 + +16 + 8 + 2 + 1 = 123

Another Example

24

- Identify the decimal number to convert
- Repeatedly divide the number by 2 until

answer is 0
- Keep track the remainder each time (0 or 1)
- Write the remainders in reverse

Conversion Rule from Binary to Decimal

25

Binary
Decimal

26

What does this say?

27

What does this say?

Taking a Step Back …

28

What's inside the box?

What's Inside the Computer Box?

29

Zooming into the Motherboard

30

Connects to monitor, speakers,
keyboard, mouse

provides power to connected component

memory

"brain"various
slots to
connect to
other
hardware

Using the Numbers

- CPU (central processing unit) is the computer's brain
- Basic operations:

- Arithmetic (add, subtract, multiply, divide)
- Logical operations (and, or, not, xor)
- Data movement (load, store, move)
- Bit shifting and rotation (shift left, shift right, wrap around)
- Comparisons (equal, less than, greater than)
- Control flows (jump/branch, call/return)

- Fundamental concepts to all programming

31

Adding Binary Numbers

- Works the same way as addition with decimal numbers
- Example:

 1 1 (carries)
 1 0 0 1 0 1 1 1
+ 0 1 1 0 0 1 1 0
 1 1 1 1 1 1 0 1

- Add one digit at a time from right to left
- If adding two values is bigger than the base max value, carry 1 to next

digit
32

How about?
 1011
+ 0110
 10001

Adding Binary Numbers

- Works the same way as addition with decimal numbers
- Example:

 1 1 (carries)
 1 0 0 1 0 1 1 1
+ 0 1 1 0 0 1 1 0
 1 1 1 1 1 1 0 1

- Add one digit at a time from right to left
- If adding two values is bigger than the base max value, carry 1 to next

digit
33

How about?
 1011
+ 0110
 10001

Adding Binary Numbers

- Works the same way as addition with decimal numbers
- Example:

 1 1 (carries)
 1 0 0 1 0 1 1 1
+ 0 1 1 0 0 1 1 0
 1 1 1 1 1 1 0 1

- Add one digit at a time from right to left
- If adding two values is bigger than the base max value, carry 1 to next

digit
34

How about?
 1011
+ 0110
 10001

Adding Binary Numbers

- Works the same way as addition with decimal numbers
- Example:

 1 1 (carries)
 1 0 0 1 0 1 1 1
+ 0 1 1 0 0 1 1 0
 1 1 1 1 1 1 0 1

- Add one digit at a time from right to left
- If adding two values is bigger than the base max value, carry 1 to next

digit
35

How about?
 1011
+ 0110
 10001

Number Systems

36

Hexadecimal Representation (Base 16)

- Compact and more human-friendly representation of binary data
- Hex is short for hexadecimal
- 16 values: 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Comparison: With 8 digits, how big of a number can the system

represent?
28 = 256
108 = 1 0000 0000 = 100,000,000
168 = 4,294,967,296

- Physical computer addresses use hexadecimal representation:
04-33-C2-F8-EA-7C

37

Hexadecimal Representation (Base 16)

- Compact and more human-friendly representation of binary data
- Hex is short for hexadecimal
- 16 values: 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Comparison: With 8 digits, how big of a number can the system

represent?
28 = 256
108 = 1 0000 0000 = 100,000,000
168 = 4,294,967,296

- Physical computer addresses use hexadecimal representation:
04-33-C2-F8-EA-7C

38

Hexadecimal Representation (Base 16)

- Compact and more human-friendly representation of binary data
- Hex is short for hexadecimal
- 16 values: 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Comparison: With 8 digits, how big of a number can the system

represent?
Binary: 28 = 256
Decimal: 108 = 100,000,000
Hexadecimal: 168 = 4,294,967,296

- Physical computer addresses use hexadecimal representation:
04-33-C2-F8-EA-7C

39

Hexadecimal Representation (Base 16)

- Compact and more human-friendly representation of binary data
- Hex is short for hexadecimal
- 16 values: 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Comparison: With 8 digits, how big of a number can the system

represent?
Binary: 28 = 256
Decimal: 108 = 100,000,000
Hexadecimal: 168 = 4,294,967,296

- Physical computer addresses use hexadecimal representation:
04-33-C2-F8-EA-7C

40

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
41

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
42

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
43

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
44

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
45

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
46

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
47

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
48

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
49

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
50

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
51

From Binary to Hexadecimal

- The 32 bits here represent a computer instruction:
1000 1110 1101 1000 1010 0011 1010 0000

- Problem: long sequences of 0's and 1's is tedious and error prone
- Convert each 4-bit group to hex to get shorter instruction:

1000 1110 1101 1000 1010 0011 1010 0000
 8 E D 8 A 3 A 0
→ 8E D8 A3 A0

- Hex is easier to read and write
- Each hex digit corresponds to a 4-big binary sequence

e.g. 11 (decimal) = 1011 (binary) = B (hex)
52

Table of 3 Systems

- Mapping across decimal,
binary, and hexadecimal

- What is 32 (decimal) in
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000
0010 0000 → 20

53

Table of 3 Systems

- Mapping across decimal,
binary, and hexadecimal

- What is 32 (decimal) in
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000
0010 0000 → 20

54

Table of 3 Systems

- Mapping across decimal,
binary, and hexadecimal

- What is 32 (decimal) in
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000
0010 0000 → 20

55

Table of 3 Systems

- Mapping across decimal,
binary, and hexadecimal

- What is 32 (decimal) in
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000
0010 0000 → 20

56

Table of 3 Systems

- Mapping across decimal,
binary, and hexadecimal

- What is 32 (decimal) in
binary?
32 ÷ 2 = 16 remainder 0
… etc.
→100000

- What is 32 (decimal) in hex?
10 0000 (binary)
0010 0000 (padding)
→ 20 57

ASCII Table

- In fact, all other input characters get their own special mapping!
- ASCII = the American standard code for information interchange
- Invented in 1963
- Advantages of a standard:

- Computer parts built by different manufacturers can be connected
- Programs can create data and store it so that other programs can

process it later
- 7-bit ASCII encoding handles:

- All basic letters (upper and lower case)
- All numbers, punctuation marks, and special characters

58

ASCII Table

- In fact, all other input characters get their own special mapping!
- ASCII = the American standard code for information interchange
- Invented in 1963
- Advantages of a standard:

- Computer parts built by different manufacturers can be connected
- Programs can create data and store it so that other programs can

process it later
- 7-bit ASCII encoding handles:

- All basic letters (upper and lower case)
- All numbers, punctuation marks, and special characters

59

ASCII Table Mapping

- Uses 7-bit encoding
- 7 bits gives 27 = 128 possible

symbols
- 1981, IBM extended this to

8-bit encoding
- To allow more space to

represent characters from
other languages

- 1991: Unicode was introduced
as the universal character
encoding system
(supports 216 characters)

60

ASCII Table Mapping

- Uses 7-bit encoding
- 7 bits gives 27 = 128 possible

symbols
- 1981, IBM extended this to

8-bit encoding
- To allow more space to

represent characters from
other languages

- 1991: Unicode was introduced
as the universal character
encoding system
(supports 216 characters)

61

ASCII Table Mapping

- Uses 7-bit encoding
- 7 bits gives 27 = 128 possible

symbols
- 1981, IBM extended this to

8-bit encoding
- To allow more space to

represent characters from
other languages

- 1991: Unicode was introduced
as the universal character
encoding system
(supports 216 characters)

62

Encoding Higher-Level Information

- ASCII or Unicode tells us how to map text to binary representation

63

Encoding Higher-Level Information

- ASCII or Unicode tells us how to map text to binary representation

64

What about
images and
sounds?

Representing Images

- Images are made up of pixels
- Consider black and white images
- Mapping: 1 is black (or on) and 0 is white (or off)

65

Representing Images

- Images are made up of pixels
- Consider black and white images
- Mapping: 1 is black (or on) and 0 is white (or off)

66

Representing Images

- Images are made up of pixels
- Consider black and white images
- Mapping: 1 is black (or on) and 0 is white (or off)

67

Representing Colours

- Suppose computers use RGB (red, green, blue)
- Suppose we use a 2-bit mapping for 4 colours:

00 = white
01 = blue
10 = green
11 = red

68

How many colours do we have?
How many bits do we need?

How many bits do we need to represent these colours?

Representing Colours

- Suppose computers use RGB (red, green, blue)
- We can use a 2-bit mapping for 4 colours:

00 = white
01 = blue
10 = green
11 = red

69

How many colours do we have?
How many bits do we need?

Representing Colours

- Suppose computers use RGB (red, green, blue)
- We can use a 2-bit mapping for 4 colours:

00 = white
01 = blue
10 = green
11 = red

70

How many colours do we have?
How many bits do we need?

Representing Colours

- Suppose computers use RGB (red, green, blue)
- We can use a 2-bit mapping for 4 colours:

00 = white
01 = blue
10 = green
11 = red

71

How many colours do we have, in general?
How many bits do we need, in general?

Remember Painting?

72

Colour Systems

- Red-Yellow-Blue is a traditional pigment-based (subtractive) system
used in painting for mixing physical paints

- Red-Green-Blue is an light-based (additive) system used for digital
screens and light

- Combines red, green, and blue light in various intensities
- Creates a wide range of colors
- All colors mixing to white
- Based on how the human eye cone cells perceive colors

73

Reading Colour Pickers

- Common format: Each of R, G, and B is stored
as an 8-bit number

- Pure red = (255, 0, 0)
- Pure green = (0, 255, 0)
- Pure blue = (0, 0, 255)
- 0 means no light (dark)

Black = (0, 0, 0)
- 255 means full brightness

White = (255, 255, 255)
- Gives 2563 = 16,777,216 possible colors

74

Reading Colour Pickers

- Common format: Each of R, G, and B is stored
as an 8-bit number

- Pure red = (255, 0, 0)
- Pure green = (0, 255, 0)
- Pure blue = (0, 0, 255)
- 0 means no light (dark)

Black = (0, 0, 0)
- 255 means full brightness

White = (255, 255, 255)
- Gives 2563 = 16,777,216 possible colors

75

Why 6 digits?

Reading Colour Pickers

- Common format: Each of R, G, and B is stored
as an 8-bit number

- Pure red = (255, 0, 0)
- Pure green = (0, 255, 0)
- Pure blue = (0, 0, 255)
- 0 means no light (dark)

Black = (0, 0, 0)
- 255 means full brightness

White = (255, 255, 255)
- Gives 2563 = 16,777,216 possible colors

76

What is 6D?
What about FF?

Representing Sounds

- Sound waves are captured and sampled at regular discrete points in time
- These "samples" represent the amplitude (strength) of the sound wave

77

Other Systems of Data
Representations

- QR Codes
- NATO broadcast alphabet
- Morse code

…
- Different systems used for different

purposes
- Starts with basic units, then

combine to create larger data items

78

