COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Linear Data Structures

Linear data structures are flat and traversal
happens through elements one by one
Examples:

— Queue

— Stack

Non-linear data structures are not flat and
traversal can skip over elements in an organized
way

Examples:

— Tree

— Graph

Queues

A queue is a list that adds items only to the rear
of the list and removes them only from the front

e |tis a FIFO data structure: First-In, First-Out

* Analogy: a line of people at a bank teller’ s
window

Iltems go on the queue Items come off the queue
at the rear (enqueue) at the front (dequeue)

. .

Queues

* Classic operations for a queue

— engueue - add an item to the rear of the queue

— dequeue - remove an item from the front of the
gueue

— empty - returns true if the queue is empty

* Queues often are helpful in simulations or any
situation in which items get “backed up” while
awaiting processing

Queues are an ADT

* Queues are a data type because:
— Stores a set of information (e.g. people, cars, etc.)

e Queues are abstract because:

— Can be implemented in several ways

— Just need to know how to use the enqueue,
dequeue, empty operations

* Queues are an ADT

Examples

* Real world applications of queues?

Examples

Restaurant ordering system
— List of orders
Ticket purchasing system
— Requests for specific seats
Parks reservation system
— Camp site registration
Call centre phone routing system
— Directing to the right support department
Airline reservation system
— Booking flights
Text messaging system
— Incoming messages

Stacks

A stack is also linear, like a list or a queue

ltems are added and removed from only one end
of a stack

It is therefore LIFO: Last-In, First-Out

Analogies: a stack of plates or a stack of books

Stacks

» Stacks often are drawn vertically:

The last item to go must be the first item

on the stack (push)) r . to come off (pop)

Stacks

» Clasic stack operations:

— push - add an item to the top of the stack
— pop - remove an item from the top of the stack
— top - retrieves the top item without removing it
— empty - returns true if the stack is empty

» Real examples of stacks?

Examples

Taking dishes and putting them away
— Pile of dishes

Tennis balls in a container
— Top ball in/out
Program stack trace
— Method call stack in Java
Tower of Hanoi puzzle solver
— Each tower as a stack
Variable scoping

— Definitions of variables with the same name

Things to “undo”
— Undoing most recent items

Stacks are an ADT

e Stacks are a data type because:
— Stores a set of information (e.g. people, cars, etc.)

e Stacks are abstract because:

— Can be implemented in several ways

— Just need to know how to use the push, pop, top,
empty operations

e Stacks are an ADT

Enqueue

" =

Queue vs Stack

push pop

Dequeue

=)

13

How to Implement Queues and
Stacks?

* Asan array?

* As asingly linked list?

How to Implement Queues and
Stacks?

* Asan array?
— Simpler
— Difficult to maintain indices
* As asingly linked list?
— Additional node class
— Easier for queues, harder for stacks

How to Implement Queues and
Stacks?

* Asan array?
— Simpler for stacks, harder for queues
— Difficult to maintain indices
* Asasingly linked list?
— Additional node class
— Easier for queues, harder for stacks

* As a doubly linked list?
— Not yet needed
— Assignment 3 — see word processor problem

Exercise: Implement Stack as Array

* Problem specification:
— A stack to store a set of integers
— Assume fixed stack size (given)

 Where to start in implementation?

— Classes?
— Methods?
— What to keep track of?

Exercise: Implement Stack as Array

* Classes?
— Test class with main()
— Stack class with its operations

e Methods?

— push(), pop(), top()
— is_empty() (may also want is_full())

— toString()

 What to keep track of?
— Whether stack is empty
— Index of array to push, pop, or top

~/Documents/121/code$ cat StackDemo.java
public class StackDemo

{

public static void main(String[] args)

{
Stack mystack = new Stack(5);
System.out.println(mystack.is_full());
mystack.push(4);
mystack.push(2); Output?
mystack.push(9);
System.out.println(mystack.is_full());
mystack.push(3);
mystack.push(7);
mystack.push(6);
System.out.println(mystack.is_full());
System.out.println(mystack.toString());
System.out.println(mystack.top());
mystack.pop();
mystack.push(6);
System.out.println(mystack.toString());

Output

~/Documents/121/code$ javac Stack.java StackDemo.java
~/Documents/121/codes$s java StackDemo

false

false

true

4 2 9 37

7

4 2 9 36

~/Documents/121/code$% I

How to visualize stack operations with array?

Stack Class Skeleton

public class Stack

{

// attributes

// methods

public
public
public
public
public
public
public

Stack(i1nt sz) {
boolean 1s empty ()
boolean 1is full ()
int top() { .. }

{

-

}

vold push(1nt 1tem)

int pop() { .. }
String toString()

{

-

{
J

}

Summary of Linear Data Structures

 Queues and stacks
— Know what they are conceptually
— Know their basic operations

— Understand implementation tradeoffs when:
* Implemented as an array

* Implemented as a linked list

* Next: continue implementation exercises

