COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Admin

e Lab5:

— Week 6: Start this week

— Week 7 (next week): reading week

— Week 8: Due this week at beginning of your lab
e A2:

— Due this Saturday morning

— Will return before Midterm

* Linked list:
— Tested on midterm
— Practice using class and textbook exercises

Quick Review

* Linked lists basic operations

— add, delete, insert

— traverse, toString

— Keeping track of current and previous nodes
* Manipulations in:

— Visual representation

— Java code

Exercise: insert()

// inserts a new node with given name and ID

// assumes list is sorted by

IDs from largest to smallest

// adds node in the sorted order based on node IDs

public void insert(String name, int id) { .. }

Write the pseudocode first, then fill in code
details. Test your code with these cases:

* Inserting a new node to an empty list

* Inserting a new nodetot
* Inserting a new nodetot
* Inserting a new node to't

ne beginning of the list
he end of the list

he middle of the list

Sample Solution (cont.)

// inserts a new node with given name and ID

// assumes list is sorted by IDs from largest to smallest

// adds node in the sorted order based on node IDs

public void insert (

{

//
//
//
//
//
//
//

String name, 1int 1d)

make new elem with input name and id

case 1. if student list 1is null

otherwise, student list has at least one node

case 2. traverse
a. elem i1d 1is
b. elem id 1is

c. elem 1d 1is

list to find insertion spot
bigger than i1d of first node
bigger than id of some node in 1list

smaller than all nodes 1in 1list

Sample Solution (cont.)

// inserts a new node with given name and ID

// assumes list is sorted by IDs from largest to smallest

// adds node in the sorted order based on node IDs

public void insert(String name, 1int id)

{

// make new elem with input name and id

SNode elem = new SNode (name, id);
// case 1. if student 1list is null

// case 2. traverse list to find insertion spot

Sample Solution (cont.)

// inserts a new node with given
// assumes list is sorted by IDs
// adds node in the sorted order
public void insert(String name,

{

name and ID

from largest to smallest
based on node IDs

int id)

// make new elem with input name and id

// case 1.

// set student list to elem
1f(student list == null)
{

student list = elem;

}

else

{

// case 2.

1f student list 1s null

traverse list to find insertion spot

Sample Solution (cont.)

// inserts a new node with given name and ID

// assumes list is sorted by IDs from largest to smallest

// adds node in the sorted order based on node IDs

public void insert(String name, 1int id)

{

//
//
//
//
//
//

make new elem with input name and id
case 1. if student list 1is null
case 2. traverse list to find insertion spot
a. elem i1id is bigger than id of first node
b. elem 1d 1s bigger than i1id of some node 1in list

c. elem 1d 1s smaller than all nodes in 1list

Sample Solution (cont.)

public void insert(String name, int id)
{
// make new elem with input name and id
// case 1. if student list is null
// case 2. traverse list to find insertion spot
// a. elem id is bigger than id of first node
SNode curr = student list;
1f(1d > curr.getlId())
{
student list = elem;
elem.next = curr;

}

// b. elem 1d is bigger than i1id of some node in list
// c. elem 1d is smaller than all nodes in 1list

Sample Solution (cont.)

public void insert (String name, int id)
{
// case 2. traverse list to find insertion spot
// a. elem id is bigger than id of first node
SNode curr = student list;
if(id > curr.getId())
{
student list = elem;
elem.next = curr;
}
// b. elem id is bigger than id of some node in list
SNode prev = null;
while(curr.next != null)

{

prev = curr;
curr = curr.next;

if(id > curr.getId())
{

prev.next = elem;
elem.next = curr;
break;

// c. elem id is smaller than all nodes in list

Sample Solution (cont.)

public void insert(String name, int id)

{

// case 2. traverse list to find insertion spot
// a. elem id is bigger than id of first node
SNode curr = student list;

if(id > curr.getId())

{

student list = elem;
elem.next = curr;
}
// b. elem id is bigger than id of some node in list
SNode prev = null;
while(curr.next != null)
{
}
// c. elem id is smaller than all nodes in list

if(curr.getlId() > 1id)
curr.next = elem;

11

Practical Example

Think about a blog

What is it consist of?

— Posts (by the same author)
— Comments (by various readers)

How many posts are there in a blog?
How many comments are there in a post?

What data structure should be used to model
a blog?

A Blog as a Linked List

 Ablogisalist of Post nodes

* Each Post node has some content including:
— Author’s name
— Text to be posted

— A list of zero or more Comment nodes

* How to visually represent a blog?

Modeling Nodes

e What do these have in common?

— Posts (by the same author)

— Comments (by various readers)

 Classes to model:

Entry

Post

Comments

Entry class

public abstract class Entry

{
protected String author;

protected String text;

public abstract String getAuthor();

public abstract String getText ()

public abstract void String setAuthor(String name) ;

public abstract void setText(String content);

public String toString () { return text + “By: ” + author; }

 How would you define Comment and Post classes?
— Comments can be anonymous
— Posts must have authors and associated comments

Comment class

* Create constructor
— |Initialize attributes

* Overload constructor with:
author = “anonymous”;

e Define abstract methods

Post class

Declare list of Comment nodes
Create constructor

— Initialize attributes

Define abstract methods

Define methods to operate on comments:
— Add a Comment node
— For simplicity: don’t worry about delete/insert

Override toString () to include printing list
of comments

Where to Create and Manage a Blog?

Where to Create and Manage a Blog?

* ABlogclass

* Define methods to operate on the blog:
— Create a new Blog
— Add a Post toit
— Delete a Post (and its Comment nodes) from it
— Printa Blog

* Where do we create a new B1og?

* Note: Real-world blogs have users and
permissions

So far: Singly Linked List

* Textbook representation:

Tist

|

info info info info

Next = NexXt = —— NexXt = —— next _N

* Handwritten representation:

|5"|’

nfo

LF——?L&%\ —>

FJ/ >/:\;\@,

\

‘

Other Dynamic Representations

* Bidirectional linked list is called a doubly linked
list
* With next and previous references:

list info info info info

* When might this be more useful than a singly
linked list?

Other Dynamic Representations

 Another approach is to use a separate header
node, with a count and references to both the
front and rear of the list:

1ist =—————p count:4

/— front
rear
\ W
info info info info

Next e ——— next — next — next —N

Summary of Linked Lists

* Basic operations:
— add, delete, insert
— toString

— traverse
* Singly vs. doubly linked lists

e Use of test cases:

— Consideration of multiple scenarios to ensure
method details are implemented properly

23

Admin

A2 due this Saturday
Reading week next week: no classes, no labs
Week after reading week:

— Review class — bring questions
— Midterm: 20% of grade

Missed midterm without valid medical note
will receive O

