COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Quick Review

* Linked lists is a dynamic ADT that store
information in variable sized structures

— Efficient memory usage

— Harder to implement (must manage everything
manually)

— Abstracts implementation detail from other
classes

* Operations we saw: add, delete, insert

Quick Review (cont.)

* Textbook representation:

Tist

|

info info info info

Next = NexXt = —— NexXt = —— next _N

* Handwritten representation:

15"]'

LF—% Likﬁ

nfo

F—-

kj/ >/:\;\€D‘3//

Short Conceptual Exercises

labTAs
L\\Ragl. " \lw - Il " \‘Rodﬂty Y 4
1 2 3)

“Nic.” | w YO\S‘\G\” \gu,‘uu
4 = 6

1. Using the above list, draw the resulting linked list that changes the node with “Rodney” to “Yasha”,
while leaving the section number the same.

Short Conceptual Exercises

labTAs
L“ﬂa@ﬁ' " \\w - “ " . “Rodlty W 3]
: 2 =)

‘“N;t..” “Y skq” : ‘uu.'“:/
Q4 7 / ¢

2. Draw the resulting linked list that deletes the node with “Will” and section 6 from the above list.

Short Conceptual Exercises

labTAs
L\\Ra“.. " \\w - " II} i “Kodﬂty U 4
agirdagbrady)

.“Nic." w o “H'- l:/
FETH]

3. Draw the resulting linked list that deletes the node with “Will” and section 2 from the above list.

Short Conceptual Exercises

labTAs
L“Ra‘(:(l' " \\w : " III A “Kodﬂty ol, 4
: 2 =t

.“N;c_” & “yq,kq"/ Wil
q 4 f 5 6

4. Draw the resulting linked list that deletes the node with “Raffi” and section 1 from the above list.

Short Conceptual Exercises

labTAs
&l “Rafh g g “Kalney' A “Yasha'
A 3 5

5. Draw the resulting linked list that adds the node with “Will” and section 6 to the end of the above
list.

Short Conceptual Exercises

labTA%

t“k.\c« |] ["Redaey’ .__J “Yasha'
A T 5 |

6. Draw the resulting linked list that adds the node with “Rodney” and section 3 to the end of the
resulting list from the previous question.

Short Conceptual Exercises

labtAS
&‘\\Kvﬂi 3 : “Mncyv E “Yasha'
1 3)

7. Using the above list, draw the resulting linked list that inserts the node with “Nic” and section 4 to
the above list, directly after the node with “Rodney” and section 3.

10

Short Conceptual Exercises

ALY

&‘\\RA‘F‘F : i “Mney“ i “Yasha'
A E 5

8. Using the above list, draw the resulting linked list that inserts the node with “Will” and section 2 to
the above list, directly after the node with “Raffi” and section 1.

11

Short Conceptual Exercises

labTAs
&- \\R&H{ g 8 “Kalncy" o “Yasha'
A 3 5

9. Using the above list, draw the resulting linked list that inserts the node with “Nic” and section 4 to
the above list, directly before the node with “Raffi” and section 1.

12

Short Conceptual Exercises

labTAs
2\. A 3 uMuw.y“ o9 “Yasha'
A 3 5

10. Using the above list, draw the resulting linked list that inserts the node with “Will” and section 2 to
the above list, directly after the node with “Yasha” and section 5.

13

A Complete Linked List Class

* Write a program that models a list of students
so we can keep track of them, who is
registered, and who is not.

* Which classes will you need?

A Complete Linked List Class

* Write a program that models a list of students
so we can keep track of them, who is
registered, and who is not.

* Which classes will you need?

— A class to store the student as a node

— A class to keep track of students as a linked list
* Has methods for adding and deleting nodes

— A class to test the entire program

StudentNode.java from Last Class

public class StudentNode {
private String name;
private int id;
private StudentNode next;
public Node(String sn, int sid)
{

name = sn;
1d = sid;
next = null;
}
public String getName () { return name; }
public String getId() { return id; }

public void setNext (StudentNode other) { next = other; }
public String toString/()

{

return “Name: ” + name + “(” + 1id + W) ”;

Writing the Registration Class

public class Registration {
// keep track of the list of students

// creates an empty list of students
public Registration() { .. }

// creates a new node with given name and id
// adds it to end of list
public void add(String name, int id) { .. }

// finds node with given ID and deletes it
public void delete(int id) { .. }

// inserts new node based on IDs
// assume list is sorted from largest to smallest
public void insert(String name, int i1id) { .. }

// traverse each node in list
// concat each node’s toString() info
public String toString () { .. }

Summary of Linked Lists

* Basic operations:
— add
— delete
— insert
— toString

— traverse

e Use of test cases:

— Consideration of multiple scenarios to ensure method
details are implemented properly

