COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Al Feedback

 Marks posted last Friday

¢ Common mistakes Q1:
— Incorrect visibility modifiers
— Not initializing attributes
— Not using constants consistently
— Submitting only .class files and no .java files

e Common mistakes Q2:
— Not using super.method() to call parent methods

— Children class attributes declared unnecessarily
protected

Quick Review

Potential problems need to be anticipated

Code should handle exceptions

— Immediately
— Handle elsewhere

Custom exception classes can be created

Today:
— Files and associated exceptions

Checked vs. Unchecked Exceptions

* An exception is either checked or unchecked

* Checked exceptions:

— Generally indicate invalid condition outside program,
which can be detected at compile time

— Requires programmer to explicitly handle it

— Must be either:

e Caught via try statement, or

* Belisted in the throws clause of any method that may throw or
propagate it

— Otherwise, the compiler will issue an error

Checked vs. Unchecked Exceptions

* An exception is either checked or unchecked

* Unchecked exceptions:

— Generally indicate program logic error that
happens at run-time

— Does not require explicit handling

— Only unchecked exceptions in Java are objects of
type RuntimeException or any of its
descendants

Error <}———— VirtualMachineError

% IOError
IOException
— StackOverflowError
*—| CloneNotSupportedException | - OutOfMemoryError

‘—' ReflectiveOperationException |

| FileNotFoundException

|

| ClassNotFoundException |

‘4‘ IndexOutOfBoundsException |
—| ArithmeticException I

{
| NullPointerException |

i ClassCastException |

i TlegalArgumentException |

ArrayIndexOutOfBoundsException |

NumberFormatException I

Java APl Documentation

e Search online “Java String class” or other classes

e Read Oracle documentation
— E.g., http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

 Know which exceptions are thrown under different
circumstances

charAt

public char charAt(int index)

Returns the char value at the specified index. An index ranges from 0 to length() - 1. The firstchar value of the sequence is atindex 0, the next atindex 1, and so on, as for array
indexing.

If the char value specified by the index is a surrogate, the surrogate value is returned.
Specified by:

charAt in interface CharsSequence
Parameters:

index - the index of the char value.
Returns:

the char value at the specified index of this string. The first char value is atindex 0.
Throws:

IndexOutOfBoundsException - ifthe index argumentis negative or not less than the length of this string.

Working with Files

Files may be various types (note: file extensions)

Two main operations on files:
— Read (when the file is used as input)
— Write (when the file is used as output)

Reading involves:
— Open file, get info from file, close file

Writing involves:

— May involve reading operations

— Open file, add info to file, close file

— Create new file, add info to file, close file

|OException Class

* Operations performed by some I/O classes may
throw an IOException

— A file might not exist

— Even if the file exists, a program may not be able to
find it

— The file exists but the program does not have the right
access to open it

— The file might not contain the kind of data we expect

* An IOException is a checked exception

/O Streams

* Astream is a sequence of bytes that flow from a
source to a destination

* |naprogram:
— Read information from an input stream

— Write information to an output stream

* A program can manage multiple streams
simultaneously

— E.g., read from multiple files at the same time

— E.g., read from one file, write to another file

Standard I/O

There are three standard I/O streams:

— Standard output — defined by System. out
— Standard input — defined by System. in
— Standard error —defined by System.err

We use System.out when we execute println ()
statements

System.out and System. err typically represent the
console window

System. in typically represents keyboard input, which
we've used many times with Scanner

— E.g., Scanner sysin = new Scanner(System.in);

Reading from Text File

e UseFile and Scanner classes

Reading from Text File

e UseFile and Scanner classes
* Create new File object with file name

— E.g., File readFrom = new File(“test.txt”);

Reading from Text File

e UseFile and Scanner classes
* Create new File object with file name

— E.g., File readFrom = new File(“test.txt”);

* Pass File object to Scanner during creation
— E.g., Scanner inFile = new Scanner(readFrom);
— This creates new input file stream
— Needs to handle FileNotFoundException

Reading from Text File

Use File and Scanner classes
Create new File object with file name

— E.g., File readFrom = new File(“test.txt”);

Pass File object to Scanner during creation

— Eg, Scanner inFile = new Scanner(readFrom) ;
— This creates new input file stream
— Needs to handle FileNotFoundException

Use Scanner object as usual

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class SimpleRead

{

Scanner filein;

public SimpleRead(String fileName)

{

}

Example

File readFrom = new File(fileName);
try

{
}

filein = new Scanner(readFrom);

catch(FileNotFoundException e)

{

}

System.err.println(fileName + " not found");

e.printStackTrace();

}

public void processByLine()

{
if(filein != null)
{
while(filein.hasNextLine())
{
System.out.println(filein.nextInt());
filein.nextLine(); // read rest of line
}
}
} 16

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class SimpleRead Exa m ple

{

Scanner filein;

public SimpleRead(String fileName)

{

}

File readFrom = new File(fileName); 1. create Flle ObjeCt
try
{ :
filein = new Scanner(readFrom); 2. create Scanner object
}
catch(FileNotFoundException e)
{
System.err.println(fileName + " not found");
) e.printStackTrace(); public void processBylLine()
{
if(filein != null)
{
. while(filein.hasNextLine())
3. use Scanner object {
: : System.out.println(filein.nextInt());
JUSt like before filein.nextLine(); // read rest of line
}
}
}

17

}

Specifying the File Name and Path

public class TestSimple

{
public static void main(String[] args)

{

SimpleRead exl = new SimpleRead("nums.txt");
exl.processBylLine();

// need to specify folder path for eclipse

SimpleRead ex2 = new SimpleRead("src/nums.txt");
ex2.processByLine();

18

public class TestSimple

{

public static void main(String[] args)

{

SimpleRead exl = new SimpleRead("nums.txt");
exl.processBylLine();

// need to specify folder path for eclipse

SimpleRead ex2 = new SimpleRead("src/nums.txt");
ex2.processBylLine();

~/code/java/Files/src$ java TestSimple

2

4

6

8

src/nums.txt not found

java.io.FileNotFoundException: src/nums.txt (No such file or directory)
at java.io.FileInputStream.open{Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:120)
at java.util.Scanner.<init>(Scanner.java:636)
at SimpleRead.<init>(SimpleRead.java:14)

at TestSimple.main(TestSimple.java:11) 19

~/code/java/Files/src$ |}

public class TestSimple

{

public static void main(String[] args)

{

SimpleRead exl = new SimpleRead("nums.txt");
exl.processByLine();

// need to specify folder path for eclipse

Sif;

e)

&

&

—

{ Problems | @ Javadoc E% Declaration | & Console &3 b ¢ %

<terminated> TestSimple [Java Application] /System/Library/Java/JavaVirtualMachines/1.

nums.txt not found
java.io.FileNotFoundException: nums.txt (No such file or directory)

co AN

at java.io.FilelnputStream.open(Native Method)

at java.io.FilelnputStream.<init>(FilelnputStream.java:128)
at java.util.Scanner.<init>(Scanner.java:636)

at SimpleRead.<init>(SimpleRead. java:14)

at TestSimple.main(TestSimple.java:6)

20

Writing to Text File

e UseFileWriter class
* Create new FileWriter object with file name

— E.g.,, FileWriter outFile = new FileWriter (“out.txt”);

— This creates new output file stream
— Needs to handle TOException
* Use methods such as:

—write ()

— close () —must do otherwise data won’t save

import java.io.FileWriter;
import java.io.IOException;

public class SimpleWrite
{

FileWriter fileout;

public SimpleWrite(String fileName)
{
try
{
fileout = new FileWriter(fileName);
fileout.write("some text here");
}
catch(I0Exception e)
{
e.printStackTrace();

}
finally

{
try
{

fileout.close();

}
catch(I0Exception e)

{
System.err.println(fileout + " could not be closed");
e.printStackTrace();
}
}
}
}

22

public class TestSimple
{
public static void main(String[] args)
{
SimpleWrite ex3 = new SimpleWrite("myFile.txt");

SimpleWrite ex4 = new SimpleWrite("myFile.txt");
}

}

~/code/java/Files$ 1s

bin/ myFile. txt src/
~/code/java/Files$ cat myFile.txt
some text here~/code/java/Files$
~/code/java/Files$ I

23

Appending to File

Previously, new FFileWriter object is created

— E.g.,, FileWriter outFile =

new FileWriter (

“out.txt”);

Even if “out.txt” exists, it overwrites content

Appending means to add to end of existing file

Change constructor statement with boolean flag:

— E.g,FileWriter outFile

true

) ;

new FileWriter (

“out.txt”,

public class SimpleWrite

{

FileWriter fileout;

public SimpleWrite(String fileName, boolean shouldAppend)

{
try

{
fileout = new FileWriter(fileName, shouldAppend);

fileout.write("some text here");

}

// ... same as before

25

public class TestSimple

{

public static void main(String[] args)

{

// create a new file
SimpleWrite ex3 = new SimpleWrite("myFile.txt", false);

// append to the given file
SimpleWrite ex4 = new SimpleWrite("myFile.txt", true);

~/code/java/Files$ 1s

bin/ myFile.txt src/
~/code/java/Files$ cat myFile.txt

some text heresome text here~/code/java/Filess
~/code/java/Files$ |}

26

Alternative Writer Class

Use PrintWriter class
Create new PrintWriter object with file name

— E.g., PrintWriter outFile = new PrintWriter(“out.txt”);

— This creates new output file stream

Also extension of Writer class, just like
FileWriter

Has different methods such as:

—write ()

—print ()

—println ()

— close () —must do otherwise data won’t save

Scanner

— 1mport
File

— 1import
FileWriter

— 1mport
PrintWriter
— 1mport
Exceptions
— import
— import

Importing Classes

java.

Jjava.

Jjava.

java.

Jjava.
Jjava.

util.Scanner;
10.File;
io0.FileWriter;
i10.PrintWriter;

10.I0Exception;
10.FileNotFoundException;

Multiple libraries from the same path:

— 1mport

.Java.l1o.*;

Exercise

Werite a class called CountWord that has
— A constructor

— private int countNumWords () toopen afileand
return the number of words in that file

— AwriteStats () method that counts the number of
words in a given file and adds the count to end of that file

— Used in test class as follows:

public class TestCountWords

{
public static void main(String[] args)

{
CountWord cw = new CountWord("myFile.txt");
cw.writeStats("results.txt");

}
¥ 29

Summary of File 1/0

Checked exceptions
— Describe bad situation outside of program

— Must be handled
Unchecked exceptions

— Describe bad situation when running the program
usually logic error

— Does not have to be explicitly handled

File I/O involve checked exceptions

New classes:
— File (used with Scanner)
— FileWriter, PrintWriter

33

