COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Abstract Data Types

* An abstract data type (ADT) is an organized collection of
information

— Provides a set of operations to manage that info
— These operations define the interface to the ADT
* Purpose:
— Lets other classes use ADT based on operations expected
— No need to know how operations are implemented

— Provides layer of abstraction in the design
* E.g.,, car ADT

— Start the engine, change gears, drive, turn, accelerate, stop, etc.

Data Structures

Data types in Java: int, double, String, etc.
Data structure we’ve seen: array
Array is a static data structure because it has a fixed size
E.g., int[] intarray = new 1nt[10];
— Length of this array is always 10

— What if we don’t need to use all the slots?

— What if we need to use more slots?

BUT: Sometimes you want to have a data structure that can
change in size

How to Implement?

* Example:

int[] intarray = new int[10 1];
intarray[0] = 0O;

intarray[1l] = 1;

intarray[9] = 9;

 What if you want to continue adding elements?

How to Implement?

* Example:

int[] intarray = new int[10 1];
intarray[0] = 0O;

intarray[1l] = 1;

intarray[9] = 9;

 What if you want to continue adding elements?
— Double the size of the array as needed
— Create a new array
— Copy all the old elements into it
— Lots more room to add additional elements

p{)ublic class ArrayDemo Exe rC i Se

public static void main(String[] args)

{

int i; e Complete the Growable class:
int len = 10; — Growable initializes variables
Growable arr = new Growable(len); — add () adds an element into

int rez = 0;

for(i=0; i<(len+1l); i++) currpos of intarray

{ . — doubleup () returnsa new
rez = arr.add(i); . . .
integer array that is twice as

if(rez < 1)

System.err.printin("item not added"); Iarge
}
public class Growable
System.out.println(arr.toString()); { . . .
} private int[] intarray;
} private int currpos;

public Growable(int size) { ... }
public int add(int elem) { ... }
private int[] doubleup(int[] arr) { ... }

public String toString()

{
String str = "";
for{ int i=0; i<intarray.length; i++)

str += "myarray i="+ i +": "+intarray[i] + "\n";

return str;

}

} 6

public class ArrayDemo E :
e | Xercise
public 5
{
int Output e Complete the Growable class:
"t myarray i=0: 0 — Growable initializes variables
Groy myarray i=1: 1 — add () adds an element into
tor| Myarray i=2: 2 currpos of intarray
t zyzi:y i:zj 2 — doubleup () returns a new
$1 . S integer array that is twice as
myarray i=5: 5
: dded"); large
} myarray i=6: 6
myarray i=7: 7 public class Growable
Syst - _ .); { , . .
} myarray i=8: 8 private int[] intarray;
} myarray i=9: O private int currpos;
myarray i=10: 10 public Growable(int size) { ... }
myarray i=11: O
myarray i=12: O pUbllC int add(int elem) { sess }
myarray i=13: 0 private int[] doubleup(int[] arr) { ... }
myarray i=14: O
myarray i=15: 0 public String toString()
. {
myarray i=16: 0 String str = "";
myarray i=17: 0O for{ int i=0; i<intarray.length; i++)
. . str += "myarray i="+ i +": "+intarray[i] + "\n";
myarray i=18: 0 return str:
myarray i=19: 0 }
}
7

What Happens in Memory

int[] arr = new int[5];

l

J

2
3
Y

L

What Happens in Memory

&
int[] arr = new int[5]; :
for(int i=0; i<arr.length; i++) arr ﬂ;"

arr[i] = 2%i; o =
// do some stuff) L
// occupy additional memory 2 4
- A

i 2

&

J £

How to Manage Dynamic Structures?

* If array is “growable”:

— Need to find a contiguous block of memory to create
a bigger array

e |f array is “shrinkable”:

— Give up some memory slots that other code may later
occupy

* Real problem: How big should we make an array?
— Memory is not unlimited

— Finding an arbitrarily large contiguous block of
memory is not always feasible

Managing Dynamic Structures

* Solution:
— Break up what you need to store into small pieces
— Efficient use of memory
— Add and delete small memory blocks as we go

e Downside:

— You need to keep track of the positioning
manually

Using Non-Contiguous Memory

1
orr
0> o
) 7
7. 4
3 [/
4 ?

12

Using Non-Contiguous Memory

(@) aﬂ—o\é o)
7 B = 6

indices no longer
in meaningful
order

13

Using Non-Contiguous Memory

| : . |

orr s 5 arr o = oiE -
) 7 2 6 6

2 4 >) 7L > y &

3 b Y 8 8

4 4 o L i

indices no longer
in meaningful
order

Simplified Visualization

* Visualizing the data in its own context
* Thisis a linked list representation
* Each node is its own structure

avy

i

L —

T

>l 4|

a4

e

* Managing space for adding and deleting
elements is easier

15

How to Implement a Linked List?

* Recall representation:

avy

—

OEEBESOE

| &

e What is a node?
e How to create two nodes?

>3]

e How to link one node to another?

16

Review: Object References

* Object reference is a variable that stores the address

of an object

* Areference also can be called a pointer

* References often are depicted graphically:

student

_

a N
| John Smith |

/

17

Implementing Nodes

Nodes can be created as class objects

Object references can be used to create links
between objects

. public class Node
E.g.: (
private int info;
private Node next;

}

A node can hold any kind/quantity of info

Exercise

Define a class called StudentNode that holds:
— A nhame

— A student ID

— And a GPA

Create two student nodes
Get the first node to point to the second node

. public class ExampleNode
Recall:
{

private int info;
private ExampleNode next;

}

Visual Representation of Linked List

* Textbook representation:

Tist

|

info info info info

Next = NexXt = —— NexXt = —— next _N

* Handwritten representation:

|5"l’

LF—? infa

nfo

)il /]

Operations to Manipulate a Linked List

e Add a node
— Add a new node to the end of the list

* Delete a node
— Find a node
— Delete it from the list
— Reconnect remaining list

* |nsert a node

— Add a new node in a particular location within the
list

Operations to Manipulate a Linked List
(cont.)

* Advanced operations:
— Search (needed for delete, insert)
— Sort (facilitates other operations)

 Search for a node

— Find a node with certain information in it

e Sort the entire linked list

— Based on the information stored in the nodes,
reorder the list

Adding a Node

A node can be added to the end of a linked
list by changing the next pointer of the
preceding node:

[15+

8

. /

| Mo

28

preceding node:

[igt

8

Adding a Node

A node can be added to the end of a linked
list by changing the next pointer of the

°—

| Mo

7;\14/ 4

29

Quick Check

Write code that adds elem after the node pointed to
by currNode.

Node elem = new Node(info) ;

// get currNode to point to elem

[igt

s

/

—T>

];\-ﬁ / >

Quick Check

Write code that adds elem after the node pointed to
by currNode.

[igt

s

Node elem = new Node(info) ;

currNode.next = elem;

mfs

o

&

o /

31

Quick Check

What if the list is empty? Write code that adds elem
to an empty list.

Quick Check

What if the list is empty? Write code that adds elem
to an empty list.

Node elem = new Node(info) ;

list = elem;

Whatis 1ist?

Deleting a Node

* Likewise, a node can be removed from a
linked list by changing the next pointer of
the preceding node:

LF—?lkﬁka

nfo

FJ/ >/:\;\€o;//

34

Deleting a Node

* Likewise, a node can be removed from a
linked list by changing the next pointer of

the preceding node:

29 .) r
(e[| 6] o] nf k/i[me) /
| B e /_

=

Quick Check

Write code that deletes currNode from the list.

c,\ &> | b

i

\

kl :h |
el

Quick Check

Write code that deletes currNode from the list.

// reconnect prevNode to nextNode
Node nextNode = currNode.next;

prevNode.next = nextNode;

V\wNoo\L

15"’ P

gﬁﬁ——?tmﬁ\gal—)\m{o k/ij}héw//

Quick Check

What if the node to delete is ...
At the end of the list?

[

— >

mfs

. /

38

Quick Check

What if the node to delete is ...
At the end of the list?

// end

prevNode.next = null;

[igt

.

b

\L—

A

I, /

Quick Check

What if the node to delete is ...
« At the beginning (first node) of the list?

l S

o

F

?

k)]

Quick Check

What if the node to delete is ...
At the beginning (first node) of the list?

// beginning

list = list.next;

// may update currNode too

| ¥

-

?

ﬂ

41

Quick Check

What if the node to delete is ...
 Not found?

Quick Check

What if the node to delete is ...
 Not found?

// do nothing

Inserting a Node

* A node can be inserted into a linked list with
a few reference changes:

l \S¥

e

44

Inserting a Node

* A node can be inserted into a linked list with
a few reference changes:

| Y4

ok e |]

L”i «;J .

g

45

Quick Check

Write code that inserts elem after the node pointed
to by currNode.

|S+

B R e L A
2/

i

46

Quick Check

Write code that inserts elem after the node pointed
to by currNode.

elem.next = currNode.next;

} reversible?

currNode.next = elem;

‘S+Inx~sj., {n{. E *_}):% M
2/

i

47

Quick Check

Write code that inserts e1em as the first element in
the list.

\S-l'

[

- %@;,M

Quick Check

Write code that inserts e1em as the first element in
the list.

elem.next = list;

list = elem;

l ¥

e
R D

Quick Check

Write code that inserts el em as the last element In
the list.

[igt

8

[

—>

b

I /‘

Quick Check

Write code that inserts el em as the last element In
the list.

What does this

currNode.next = elem; .
remind you of?

t>

l;\-ﬁ / >

Summary of ADTs

An abstract data type (ADT) is an organized collection of
information

Makes use of OOP technique called abstraction

Static lists store information in fixed sized structures
— Easier to manage and operate

— Less efficient in memory use
Dynamic lists store information in variable sized structures
— Efficient memory usage

— Harder to implement (must manage everything manually)

— Abstracts implementation detail from other classes

52

