COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Quick Review

Representative example:

Animal[] myPets = new Animal[4]; OUtDUt
myPets[0] = new Dog(); Woof
myPets[1l] = new Cat(); g:?
myPets[2] = new Sheep|(); Moo
myPets[3] = new Cow()

for(int 1=0; i<myPets.length; 1++)

{
System.out.println(myPets[1].talk())

}

* How are Animal, Dog, Cat, Sheep, Cow
related?

Polymorphism via Interfaces

* Can also use interfaces to setup polymorphic
references

* Follows same rules as inheritance

* Suppose we declare an interface Speaker:

public interface Speaker
{
public void speak();

public voild announce(String str);

How to use it

* Interface used as type of object reference
variable

— EX: Speaker presenter;
presenter.speak() ;

— Presenter reference used to point to any class that
implements Speaker

— Version of speak () invoked depends on type of
object being referenced at runtime

e Recall, we cannot write:
Speaker presenter = new Speaker();

How to use it (cont.)

* Suppose we have two classes:
Philosopher, Dog
— Both implement Speaker
— Both have different speak () methods

* Example:
Speaker guest = new Philosopher();
guest.speak () ;
guest = new Dog();

guest.speak();

In Detail

Example:
Speaker guest = new Philosopher ()

guest.speak () ;
guest = new Dog() ;
guest.speak () ;

First call to speak ():
— Calls definition in Philosopher

Second call to speak ():
— Calls definition in Dog

Same reference variable (guest) used both
times

Calling Class-specific Methods

Compiler restricts calls to methods not in the interface

Ex: Suppose Philosopher also had a method called
pontificate():

Speaker special = new Philospher();
special.pontificate(); // error

— Causes a compiler error

Reason: compiler bases its rules on the reference type
How to fix this?

Using Casting

* Fixing previous example:

Speaker special = new Philosopher();
((Philosopher)special) .pontificate()

* Tells compiler special reallyisa
Philosopher

Which way when?

* Polymorphism via inheritance

* Polymorphism via interfaces

Which way when?

* Polymorphism via inheritance
— Extends an abstract class (or a parent class)
— Inheritance necessarily means similar classes (IS-A)

— Abstract class method definitions provide default
behaviour (less redundant code)

* Polymorphism via interfaces
— Implements an interface

— No semantic relationship needed!
* Example: Human and Table can both stand ()

Example

e Which of these statements are valid?

1. Speaker first = new Dog();
first.speak();

Philosopher second = new Philosopher();
second.pontificate();

first = second;

first.speak();

Dog third = new Dog();

third.speak () ;

third = first;

O.third = second;

W 0 J o U &= W N

Example

e Which of these statements are valid?

. Speaker first = new Dog()

|_\

. first.speak();

. Philosopher second = new Philosopher();
. second.pontificate();

. first = second;

. first.speak();

. Dog third = new Dog();

. third.speak () ;

. third = first;

10.third = second;

e Whose method is called on line 27

O O 31 O U1 b W N

Example

e Which of these statements are valid?

. Speaker first = new Dog()

|_\

. first.speak();

. Philosopher second = new Philosopher();
. second.pontificate();

. first = second;

. first.speak();

. Dog third = new Dog();

. third.speak () ;

. third = first;

10.third = second;

e Whose method is called on line 47

O O 31 O U1 b W N

Example

e Which of these statements are valid?

. Speaker first = new Dog()

|_\

. first.speak();

. Philosopher second = new Philosopher();
. second.pontificate();

. first = second;

. first.speak();

. Dog third = new Dog();

. third.speak () ;

. third = first;

10.third = second;

e Whose method is called on line 67

O O 31 O U1 b W N

Example

e Which of these statements are valid?

. Speaker first = new Dog()

|_\

. first.speak();

. Philosopher second = new Philosopher();
. second.pontificate();

. first = second;

. first.speak();

. Dog third = new Dog();

. third.speak () ;

. third = first;

10.third = second;

e Whose method is called on line 8?

O O 31 O U1 b W N

Example

e Which of these statements are valid?

Speaker first = new Dog();

|_\

first.speak();

. Philosopher second = new Philosopher();
second.pontificate();

first = second;

first.speak();

. Dog third = new Dog();

. third.speak () ;

. third = first;

10.third = second;

e How to fix line 97

O O 31 O U1 b W N

Fix for Line 9

* Options:
— Change 9 to: third = (Dog)first;
— Change 7 to: Speaker third = new Dog();
— Change 1 to: Dog first = new Dog();

e Casting conflicts with lines 3-6 because
Philosopher cannot be casted to a Dog:

3. Philosopher second = new Philosopher();

4. second.pontificate();
5. first = second;
6. first.speak();

Example

e Which of these statements are valid?

Speaker first = new Dog();

|_\

first.speak();

. Philosopher second = new Philosopher();
second.pontificate();

first = second;

first.speak();

. Dog third = new Dog();

. third.speak () ;

. third = first;

10.third = second;

e How to fix line 107

O O 31 O U1 b W N

Modeling Example

A company sells merchandise (e.g., clothing items) to customers

Since children’s clothing are not tax applicable, two classes have
been created

Clothing

1>

| |
Children’s Adult
Clothing Clothing

In which class(es) would you put the method computeTax () ?

Would you implement Clothing as aregular class, abstract
class, or an interface? Why?

Modeling Example 2

Similar setup

Now, suppose there are many types of merchandise
the company sells

Merchandise
T2
I
Children’s Adult Toys
Clothing Clothing

Would you implement Merchandise as a regular
class, abstract class, or an interface? Why?

Polymorphic References as
Input Parameters

* A powerful way to both specify the types of
parameters to pass into a method

* Gives flexibility to the types of method
parameters to accept

 Example:

public void sayIt(Speaker current)

{

current.speak () ;s

Polymorphic References as
Input Parameters

* |f types are related, overloading is not needed
* We do this:

public void sayIt(Speaker current){ current.speak(); }

* Instead of:
public void sayIt(Philosopher current)

{

current.speak () ;

}
public void sayIt(Dog current)

{

current.speak () ;

}

// etc. one per each signature

Review

* Polymorphism is achieved by:
a. Overloading

b. Overriding

c. Embedding

d. Abstraction

e. Encapsulation

Review (cont.)

 What is the term to describe the technique
that Java uses to determine the type of object
a polymorphic reference is bound to at run

time?

Review (cont.)

* A polymorphic reference can refer to different
types of objects over time.

— True?

— False?

Review (cont.)

* Java allows us to create polymorphic
references using inheritance but not using
interfaces.

— True?
— False?

Review (cont.)

* Areference variable can refer to any object
created from any class related to it by
inheritance.

— True?
— False?

Review (cont.)

* |n the following statement, what is the type of
the reference variable?

Speaker person;

person = new Philosopher();
— Speaker?
— Philosopher?

Review (cont.)

* |n the following statement, what is the type of
the object?

Speaker person;

person = new Philosopher();
— Speaker?
— Philosopher?

Review (cont.)

* The type of the reference variable, not the
type of the object, is used to determine which
version of a method is invoked in a

polymorphic reference.
— True?
— False?

Review (cont.)

e System.out.println () is able to handle
a variety of objects and print them correctly is
an example of the polymorphic nature of
println ().

— True?
— False?

Exercise

* Write Bear andmain () to generate:

Goldilocks tried Daddy bear's porridge and said: This porridge is too hot!
Goldilocks tried Mommy bear's porridge and said: This porridge is too cold!
Goldilocks tried Baby bear's porridge and said: This porridge is just right!

public class DaddyBear implements Bear

{ public class BabyBear implements Bear
PUBLLE SEFTag Rame; ' public String name;
blic DaddyB Stri ’
?u ic DaddyBear(ring n) public BabyBear(String n)
name = n; {
} name = n;
. . . }
blic Strin etPorridge
?u 99 ge() public String getPorridgel()
return "This porridge is too hot!"; { N . I . "
} return "This porridge is just right!";
. . }
N H) .
} public String getName() { return name; } public String getName() { return name; }
public class MommyBear implements Bear }
{
public String name;
public MommyBear(String n) .
; make sure solution uses
name = n; .
} polymorphism
public String getPorridge()
{
return "This porridge is too cold!";
}
public String getName() { return name; }
}

Sample Bear and main ()

public interface Bear

{
public String getPorridge();
public String getName();

}

// your main():

DaddyBear dad
MommyBear mom
BabyBear baby

new DaddyBear("Daddy bear");
new MommyBear("Mommy bear");
new BabyBear("Baby bear");

Bear[] hosts = new Bear[3];

hosts[@] = dad;
hosts[1] = mom;
hosts[2] = baby;

for{ int i=0; i<hosts.length; i++)
{
System.out.println({ "Goldilocks tried " + hosts[i].getName()
+ "'s porridge and said: " + hosts[i).getPorridge());

Summary of Polymorphism

* Polymorphism is an OOP technique that
allows us to reference different object types
at different points in time via late binding

* A reference variable:
Occupation job;
can point to an Occupation object, or any
object of a compatible type
— Established via inheritance or interface
* Polymorphism improves program design
— More elegant and robust code

