COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Recall use of +

* Consider the following +:
—4+5
—3.14+2.9
— strl + “bar”

— System.out.printin(“the value is: “+ n);
e What does + mean in each case?
* How to achieve this?

Defining +

e How to achieve this?

public 1nt +(int x, int vy)
{ .

}
public double +(double x, double vy)

{ .
}

N

What does this remind you of?
Note: different parameter lists

Applying to Other Methods

e What if related classes have methods of the same
signature?

public String talk()
{

return “beh”;

}
public String talk()

{

return “meow’”;

}

* Depending on caller object, different talk() would
be called

Polymorphism

* Polymorphism is an OOP technique that
allows us to reference different object types

at different points in time
— Literal meaning “having many forms”

* Achieved via inheritance or interface
relationships

Late Binding

Example:

myPet.talk () ;

This call is bound to the definition of the method that
it invokes

If this binding occurred at compile time, then that line
of code would call the same method every time

However, Java defers method binding until run time —
so it delays binding until as late as possible

— This approach is called dynamic binding or late binding

Essence of Polymorphism

Representative example:

Animal[] myPets = new Animal[4];
myPets[0] = new Dog();

myPets[l] = new Cat();

myPets[2] = new Sheep();
myPets[3] = new Cow();

for(int 1=0; i<myPets.length; 1++)
{
System.out.println(myPets[1].talk()

strange?

Essence of Polymorphism

Representative example:

Animal[] myPets = new Animal[4];

myPets[0] = new Dog(); :

myPets[1l] = new Cat(); myPe?cs > an .array
of Animal objects

myPets[2] = new Sheep();

myPets[3] = new Cow();

for(int 1=0; i<myPets.length; 1++)
{
System.out.println(myPets[1].talk())

Essence of Polymorphism

Representative example: Output
Animal[] myPets = new Animal[4];

myPets[0] = new Dog(); g:zf,
myPets[1] = new Cat(); 3:;
myPets[2] = new Sheep();

myPets[3] = new Cow();

for(int 1=0; i<myPets.length; 1++)
{
System.out.println(myPets[1].talk())

Essence of Polymorphism

Representative example:

Output

Woof
Meow

= new Cat () ; Beh
Moo

Animal[] myPets = new Animal[4];
myPets | = new Dog() ;

myPets [

0]

1]

myPets[2] = new Sheep();
myPets[3] = new Cow();
for(int 1=0; i<myPets.length; 1++)
{

System.out.println(myPets[1].talk())

at i=0: talk() is the method from Dog class

Essence of Polymorphism

Representative example:

Output

Woof
Meow

= new Cat () ; Beh
Moo

Animal[] myPets = new Animal[4];
myPets | = new Dog() ;

myPets [

0]

1]

myPets[2] = new Sheep();
myPets[3] = new Cow();
for(int 1=0; i<myPets.length; 1++)
{

System.out.println(myPets[1].talk())

at i=1: talk() is the method from Cat class

Essence of Polymorphism

Representative example:

Output

Woof
Meow

= new Cat () ; Beh
Moo

Animal[] myPets = new Animal[4];
myPets | = new Dog() ;

myPets [

0]

1]

myPets[2] = new Sheep();
myPets[3] = new Cow();
for(int 1=0; i<myPets.length; 1++)
{

System.out.println(myPets[1].talk())

at i=2: talk() is the method from Sheep class

Essence of Polymorphism

Representative example:

Output

Woof
Meow

= new Cat () ; Beh
Moo

Animal[] myPets = new Animal[4];
myPets | = new Dog() ;

myPets [

0]

1]

myPets[2] = new Sheep();
myPets[3] = new Cow();
for(int 1=0; i<myPets.length; 1++)
{

System.out.println(myPets[1].talk())

at i=3: talk() is the method from Cow class

Polymorphism

e Recall: Polymorphism refers to different
object types at different points in time

— Done via a polymorphic reference — a variable
that refers to different types

e Recall: Achieved via inheritance or interface
relationships

— In example, Dog, Cat, Sheep, Cow are must all
either extends or implements Animal

Polymorphism via Inheritance

* An object reference can refer to an object of any
class related to it by inheritance

* For example, if Holiday is the superclass of
Christmas, thena Holiday reference could be
used to refer to a Christmas object

Holiday

AN

Christmas

Holiday day;
day = new Christmas() ;

Polymorphism via Inheritance

* An object reference can refer to an object of any
class related to it by inheritance

* For example, if Holiday is the superclass of
Christmas, thena Holiday reference could be
used to refer to a Christmas object

Holiday

AN

Christmas

Holiday day;
day = new Christmas() ;

Okay to assign Christmas object
toaHoliday reference
because Christmas is-a Holiday 16

References and Inheritance

* Type compatibility rules are part of IS-A
relationship established by inheritance

* To assign child object to parent reference:

— Just do a simple assignment (=)

* To assign parent object to child reference:
— Must use casting
— Not recommended in practice

— After all, not all holidays are Christmases

Method Invocation

* Suppose Holiday class has celebrate (),
and Christmas overrides it

e Which method is invoked when:
day.celebrate () ;

Method Invocation

* Suppose Holiday class has celebrate (),
and Christmas overrides it

 Which method is invoked when:
day.celebrate () ;
* Depends on what day is at time of method call

— If day refers to a Holiday object,
invoke the Holiday definition of celebrate ()

— If day refers to a Christmas object,
invoke the Christmas definition of celebrate ()

How it works

 Compiler restricts the method invocations
based on the reference type

e Suppose Christmas had getTree ()
but Holiday didn't have this method, then:

day.getTree(); // compiler error

* Because the compiler doesn't "know" which
type of Holiday object is being referenced

Calling Children Methods

Compiler can only guarantee calls to methods
defined within Holiday class

One way to solve it is instead of:

day.getTree(); // compiler error

Write:
((Christmas) day) .getTree () ;

Only if you’re absolutely sure day is a
Christmas object

Another Example uscrayer
/\
* Given the diagram,
are the following valid? CDPlayer
— MusicPlayer mplayer = new CDPlayer();

— CDPlayer cdplayer = new MusicPlayer () ;

Another Example uscrayer

JAN
* Given the diagram,
are the following valid? CDPlayer
— MusicPlayer mplayer = new CDPlayer();

— Yes: CDPlayeris-aMusicPlayer

— CDPlayer cdplayer = new MusicPlayer () ;

Another Example uscrayer

JAN
* Given the diagram,
are the following valid? CDPlayer
— MusicPlayer mplayer = new CDPlayer();

— Yes: CDPlayeris-aMusicPlayer
— CDPlayer cdplayer = new MusicPlayer () ;
— No: notall MusicPlayer are CDPlayer

— You could force this to work by casting

Example from Text

* Given partia

class hierarchy:

StaffMember

ﬁk

Volunteer

Employee

T

Executive

Hourly

<%Efffifgjbublic class StaffMember

protected String name;
protected String address;
protected String phone;

public StaffMember(String eName, String eAddress, String ePhone)
{

name = eName;
address = eAddress;
phone = ePhone;

}

public String toString()
{

String result = "Name: " + name + "\n”;
result += "Address: " + address + "\n";
result += "Phone: " + phone;

return result;

public abstract double pay(); } Why bOther?

26

public class Volunteer extends StaffMember
{

{

super (eName, eAddress, ePhone);

}

// doesn’t override toString()

public double pay ()
{

return 0.0;

public Volunteer(String eName, String eAddress, String ePhone)

» What does this do?

27

public class Employee extends StaffMember

{
// additional attributes

protected String ssn;
protected double payRate;

public Employee(String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

{

super (eName, eAddress, ePhone);
ssn = socSecNumber;
payRate = rate;

}

public String toString()

{ :
String result = super.toString(); } What does this do?

result += "\nSocial Security Number: " + ssn;
return result;

public double pay() { return payRate; }

pAs)

Example from Text

* Recall class hierarchy:

StaffMember

ﬁk

Volunteer

Employee

T

Executive

Hourly

public class Executive extends Employee

{

private double bonus;

public Executive(String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

{

super (eName, eAddress, ePhone, socSecNumber, rate);

bonus = 0; // bonus has yet to be awarded

public void awardBonus(double execBonus)

{

bonus = execBonus;

}

// doesn’t override toString()

public double pay ()

{
double payment = super.pay() + bonus;

bonus = 0;
return payment;

public class Hourly extends Employee

{

private int hoursWorked;

public Hourly (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

super (eName, eAddress, ePhone, socSecNumber, rate);
hoursWorked = O;

}

public void addHours(int hours) { hoursWorked += hours; }

public double pay ()

{
double payment = payRate * hoursWorked;

hoursWorked = 0;
return payment;

public String toString()
{

String result = super.toString() ;
result += "\nCurrent hours: " + hoursWorked;
return result;

public class Staff // manages all StaffMembers

{
private StaffMember[] stafflist;

public Staff ()
{ . .
stafflList = new StaffMember[6]; } |s this valid?

continue

Are we instantiating StaffMember objects?

32

continue in Staff class Instantiations

stafflList[0] = new Executive ("Sam", "123 Main Line",
"555-0469", "123-45-6789", 2423.07);

staffList[1l] = new Employee ("Carla", "456 Off Line",
"555-0101", "987-65-4321", 1246.15);

stafflList[2] = new Employee ("Woody", "789 Off Rocker",
"555-0000", "010-20-3040", 1169.23);

stafflList[3] = new Hourly ("Diane", "678 Fifth Ave.",
"555-0690", "958-47-3625", 10.55);

stafflist[4] = new Volunteer ("Norm", "987 Suds Blvd.",

"555-8374") ;
staffList[5] = new Volunteer ("Cliff", "321 Duds Lane",
"555-7282") ;
((Executive)staffList[0]) .awardBonus(500.00); VVh)/iS
((Hourly)staffList[3]).addHours(40); casting
} needed?

continue in Staff class

33

continue in Staff class

// Pays all staff members.
public void payday ()
{

double amount;

for(int count=0; count < stafflist.length; count++)

{ }What IS this

System.out.println(stafflist[count]),

printing?
amount = stafflist[count].pay(); // polymorphic
if(amount == 0.0)
System.out.println("Thanks for volunteering!”);
else
System.out.println("Paid: " + amount) ;

System.out.println ("--------——————————————————————— ")

34

public class Firm // test class

{

public static void main (String[] args)

{
Staff personnel = new Staff():;

personnel .payday () ;

35

public class Firm // test class

{

public static void main (String[] args)

{
Staff personnel = new Staff():;
personnel.payday () ;
}
}
Output | Output (continued)

Name: Sam

Address: 123 Main Line

Phone: 555-0469

Social Security Number: 123-45-6789
Paid: 2923.07

Name: Carla

Address: 456 Off Line

Phone: 555-0101

Social Security Number: 987-65-4321
Paid: 1246.15

Name: Woody

Address: 789 Off Rocker

Phone: 555-0000

Social Security Number: 010-20-3040
Paid: 1169.23

Name: Diane

Address: 678 Fifth Ave.

Phone: 555-0690

Social Security Number:

Current hours: 40
Paid: 422.0

Name: Norm

Address: 987 Suds Blvd.

Phone: 555-8374
Thanks!

Name: Cliff

Address: 321 Duds Lane
Phone: 555-7282
Thanks!

958-47-3625

Use of Abstract Class in Polymorphism

 Recall:
private StaffMember[] stafflist;

stafflList

= new StaffMember[6];
stafflist[0] = new Executive ...
stafflist[5] = new Volunteer ...

* Array is declared to hold StaffMember
references

— Actually filled with objects of subclasses
— Another good use of abstract classes

Review

* How does inheritance support polymorphism?

Review

* How does inheritance support polymorphism?

— A reference variable of class X can be used to refer
to an object of class Y if Y is a descendent of X

— If both classes contain the same method (i.e.,
same signature), the parent reference can be
polymorphic

Review (cont.)

* What is the difference between overriding
and polymorphism?

Review (cont.)

* What is the difference between overriding
and polymorphism?
— When a child class overrides the definition of a

parent’s method, two versions of that method
exist

— A single polymorphic reference can be used to
invoke the child or parent method

e Method version invoked is determined at runtime
e Contrast to the use of super

public class Figure

{
}

public class Rect extends Figure

{
}

public class Box extends Figure

{

}
public class TestDisplay

{

public void display() { System.out.printIn(“Figure”);

public void display() { System.out.printin(“Rectangle”);

public void display() { System.out.printin(“Box”);

{public static void main(String[] args)
Figure f = new Figure();
Rect r=new Rect();
Box b =new Box();
f.display();
f=r;
f.display();
f=b;
f.display();

Last
Example

Output: ?

public class Figure

{
}

public class Rect extends Figure

{
}

public class Box extends Figure

{

}
public class TestDisplay

{

public void display() { System.out.printIn(“Figure”);

public void display() { System.out.printin(“Rectangle”);

public void display() { System.out.printin(“Box”);

{public static void main(String[] args)
Figure f = new Figure();
Rect r=new Rect();
Box b =new Box();
f.display();
f=r;
f.display();
f=b;
f.display();

Last
Example

Output:
Figure
Rectangle
Box

Summary of Polymorphism

Polymorphism is an OOP technique that allows us
to reference different object types at different
points in time

Makes use of late binding

Possible when objects related via inheritance
— Use of casting to explicitly refer to specific object type
— Use of abstract class as polymorphic reference

Polymorphism # overriding
Next class: Polymorphism via interfaces

