COSC 121: Review Exercises on Inheritance and Interfaces

1. Match each of the three relationships on the left to one terminology on the right:

* HAS-A * Inheritance
e.g., a Library has a Book

e IS-A * Aggregation
e.g., a Caris a Vehicle

e USES-A * Dependency

e.g., a Dog uses a Scanner

2. What are some of the benefits of software reuse? List at least one that relates to the
organization of your program, and one that relates to the maintenance of your program.

3. Why are the constructor methods in a parent class not inherited by a child class?

4. In the following example, list all three IS-A relationships defined:
public class Mammal { .. }

public class Bird extends Mammal { .. }
public class Penguin extends Bird { .. }

5. What problem arises if multiple inheritance were allowed in Java? Give an example to
illustrate this situation.

6. What is something you can do by extending a class that you cannot do by importing it
instead?
7. What is the root class of every class hierarchy?

8. Suppose you defined a Dog class and created two Dog objects. What criteria should be
used to determine if the two Dog objects are equal or not?

9. Ifyou were to define the equal () method from Question 8, in which class would you
need to define it?

10. Define the equal () method you suggested in Question 8.



COSC 121: Review Exercises on Inheritance and Interfaces

11. Fill in the blanks using the following diagram:

ClassAisa of class C.

a.

b. ClassBisa of class C.
c. ClassEisa of class A.
d. ClassDisa of class B.
e. ClassAisa of class D.

12. Draw the inheritance diagram for the following classes: Reading, Newspaper, Novel,
Textbook.

13. Based on your diagram from Question 12, which class(es) may make sense to be defined

as an abstract class? Why?

14. When we define a method inside a class, how is an abstract method different from a non-

abstract method?

15. List the differences between overriding and overloading.
* Overriding:

* Overloading:

16. List the differences between inheritance and interfaces.
¢ Inheritance:

¢ Interfaces:



COSC 121: Review Exercises on Inheritance and Interfaces

17. List the differences between abstract classes and interfaces.
e Abstract classes:

¢ Interfaces:

18. True or false?

a. Implementing interfaces is good object-oriented programming practice.

b. Any class can extend from any other class.

c. A parent class is the same as a super class, and a child class is the same as a
subclass.

d. A child class may define a method with the same name as a method in the parent
class.

e. A child class can override the constructor of the parent class.

A child class cannot override a final method of the parent class.

It is considered poor design when a child class overrides a method from the parent

class.

h. A child class may define an attribute with the same name as an attribute in the
parent class.

i. To reference a parent method, the child class can use super () ifitis the
constructor method it wants to call, or super.methodName () ifitis any other
method it wants to call.

j. Toreference a parent attribute, the child class can use super.attributeName
directly.

k. Overloading is the same as overriding.

Classes Y and Z are children of X, and classes A and B are children of Y. IfA, B, Y,

and Z all have the same attribute varl, then varl should be declared in X and

inherited into Y, Z, A, and B.

m. A private method cannot be modified by a subclass. So if I want this method to be

modifiable by subclasses, I must change its visibility to protected.

All methods in an abstract class must be abstract.

An abstract method can be defined as final.

An abstract method cannot be defined as static.

An abstract method must be have public visibility.

Abstract methods are used to define classes that have no constructors.

A class that inherits from an abstract class must define all the inherited abstract

methods.

An interface is a special type of class.

u. A class can implement as many interfaces as it wants.

g ™

fa—

RN R

cr



COSC 121: Review Exercises on Inheritance and Interfaces

19.

20.

21.

All methods in an interface must be abstract.
. An interface does not have any attributes.
Just like an abstract class, an interface cannot be instantiated.
A class that implements an interface must define all the implemented abstract
methods.
All the methods in an interface must be public.
aa. Interfaces cannot be extended.
bb. The method compareTo () is an inherited method available from the
Comparable class.
cc. Any class can define its own compareTo () method by implementing the
Comparable interface. In that case, the definition must follow the same signature
as dictated by the Comparable interface.
dd. Using an interface is a better choice than using an abstract class when you want
other classes to conform to a standard set of method protocols.
ee. Using an abstract class is a better choice when you want other classes to have some
default behavior.

< ¥ g <

N

When we first introduce shapes to children, there are typically three shapes we tell them
about: square, circle, and triangle. From these basic shapes, other shapes are derived.
Now, consider the classes Circle and Oval that share common attributes and methods.

Would you relate these two via an inheritance relationship or an interface relationship?
Why?

Imagine a game in which players can attack other players’ game elements, such as boxes,
mirrors, balloons, etc. Each type of game element belongs to a different class. For example,
there is a Box class, where a series of Box objects can be created; thereisaMirror

class, etc., there is a Balloon class, etc.

What these game elements have in common is that they all have a break () method that
explains what a player needs to do in order for the game element to break. They also all
have a 1 sBroken () method that returns a Boolean depending on whether the element is
intact or broken at the time.

Should the game element classes, Box, Mirror, Balloon, be related via inheritance or
interface? Why?

Continuing with Question 20. Suppose break () and isBroken () are abstract methods
initially defined in Breakable. Assuming it only has these two methods, define
Breakable fully.



COSC 121: Review Exercises on Inheritance and Interfaces

22.Consider the superclass Square and the subclass Rectangle. The Square class has

attributes numSides and 1ength, as well as the following methods:

e calcPerimeter (), which returns a double based on the standard definition of the
perimeter of a square

e calcArea (), which returns a double based on the standard definition of the area of
a square

* isBiggerThan (), which returns a Boolean that indicates if the object itself is bigger
in area than an input Square object.

If you had to define the Rectangle class:
a. What attributes will it have?
b. What methods will it have?
c. What will be the visibility for each?
d. Which inherited method will you override?

Practice by defining both classes fully.



