COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan



Quick Review

Inheritance models IS-A relationship
Different from importing classes

Inherited classes can be organized in a
class hierarchy

Special classes to model generic concepts
that do not get instantiated are called

abstract classes



Abstract Class Example

public abstract class Animal

{
protected int numlegs;
protected int speed;
public abstract void walks() ;
public abstract void eats() ;
public int runs()

{

// statements to define how fast it runs based on speed

}




Abstract Class Example

public @ class Animal
{

}

protected int numlegs;
protected _int speed;

oid eats NO constructor

// statements to define how fast it runs based on speed

e Abstract methods end with semicolon
* All subclasses must define walks() and eats() or

declare them abstract too




Problem of Multiple Inheritance

e Recall Java does not allow this:

Vehicle

ZF

Car Tr@ck
le AN

PickupTruck




Problem of Multiple Inheritance

e Recall Java does not allow this:

Car inherits from Vehicle
Truck inherits from Vehicle

PickupTruck cannot inherit
from more than one class

Vehicle

ZF

Car

Tr@ck

e

PickupTruck




Origin of Interfaces

* An OOP programming technique that lets you
“conform to” multiple classes

* Avoids the collision problem that arises in
multiple inheritance
— Don’t have any attributes

* AlJava interface is a group of constants and
abstract methods
— All methods in an interface must be abstract
— Reserved word abstract is not needed



Example

 Example of an interface:

{

public
public
public
public

public interface Doable

void doThis () ;

int doThat () ;

void doThis2( double wvalue, char ch );
boolean doTheOther( int num ) ;




Example

 Example of an interface:

{

public
public
public
public

public@ Doable

] ] no constructor
void doThis () ;

int doThat() ;
void doThis2( double wvalue, char ch );
boolean doTheOther( int num ) ;

none of the methods

have body definitions

 What does this example remind you of?




Using an Interface

* Suppose you want to define different types of
memory storage components
e.g., CD, USB key, etc.

* You have:

public interface MemoryInterface
{
public void writeTo( int location, int value );
public int readFrom( int location );
public void loadMemory();
public int size();

10



Implementing an Interface

public class SmallDisk implements MemoryInterface
{

int[] memArray;

public SmallDisk( int size )

! memArray = new int[size];

gublic void writeTo( int location, int value )
! memArray[location] = value;

gublic int readFrom( int location )

! return memArray[location];

%ublic void loadMemory()

// re-initialize memArray to default values
memArray = new int[100];
memArray[@] = 799;
memArray[1] = 798;
// etc.
}

public int size()

{
return memArray. length;
} 11
}



Implementing an Interface
?ublic class SmallDiskemoryInterface

can have attributes int[] memArray;
public SmallDisk( int size )
{
memArray = new int[size];
have constructor }
public void writeTo( int location, int value )
{
memArray[location] = value;
}
public int readFrom( int location )
{

all abstract methods

must be defined oo
public void loadMemory()

{
// re-initialize memArray to default values
memArray = new int[100];
memArray[@] = 799;
memArray[1l] = 798;
// etc.
}
public int size()
{
return memArray. length;
} 12
}

return memArray[location];



About Interfaces

 An interface cannot be instantiated
* All methods are public abstract
— Even if reserved words not used

e All methods must be defined by classes that
implement the interface



About Interfaces

An interface cannot be instantiated

All methods are public abstract
— Even if reserved words not used

All methods must be defined by classes that
implement the interface

To implement an interface:

— Use reserved word implements

— Define all the methods from the interface

— Can define additional attributes and methods



Interfaces vs. Abstract Classes

* |Interfaces:

 Abstract classes:



Interfaces vs. Abstract Classes

* |Interfaces:
— No attributes
— All method are abstract
— All methods are public

 Abstract classes:
— Can have attributes
— Can have methods with body definitions

— Methods can have different visibility



When to Use Which?

* Interfaces:

— Want to guarantee another class will implement a set
of methods

— Choose when: want to specify method signatures to
enforce compliance

* Designed for standardizing communication across classes

 Abstract classes:

— No guarantee a subclass will override an abstract
method

— Choose when: want subclasses to have a default
behaviour

* Designed for conceptual modeling and to maximize reuse



Predefined Interfaces

* |Interfaces other people defined

* Comparable interface
— Contains one abstract method called compareTo ()
— Used to compare two objects

— How to call it:
ol.compareTo( 02 )
where o1 and o2 are the same types

— Looks just like any other method call with an
object passed in



The Comparable Interface

Any class can implement Comparable
Output type: 1nt

Output is ...

— negative if obj1 “is less than” obj 2

— O if the two are equal

— positive if obj 1 “is greater than” obj2
E.g.:

1f( objl.compareTo( obj2 ) < 0 )
System.out.println( “objl is less than obj2”

Your class gives meaning to less/greater than

) ;



String implements Comparable

* Recall from Ch 5 that String class lets us
compare strings by lexicographic order

e E.g., “abc” < “bed”

* You write:
String one = “abc”;
String two = “bcd”;
1f( one.compareTo( two ) < 0 )

System.out.println( one + “ 1is less than ”
+ two );



Defining compareTo ()

* Required header definition:
public 1nt compareTo( Object 02 )



Defining compareTo ()

* Required header definition:
public int compareTo (02 )
e How come we were able to write:

one.compareTo ( two )
where one and two are Strings?



Defining compareTo ()

* Required header definition:
public 1nt compareTo( Object 02 )

e How come we were able to write:
one.compareTo ( two )
where one and two are Strings?

 Makes use of polymorphism (next class)



Defining compareTo ()

Required header definition:

public 1nt compareTo( Object 02 )
How come we were able to write:
one.compareTo ( two )

where one and two are Strings?

Makes use of polymorphism (next class)

Inside compareTo (), need to cast types

— Explicitly tells Java what type it really is

— E.g., for the String class, you would have:
public int compareTo( Object 02 )

{
String other = ( String )o2;

}



Defining compareTo ()

Required header definition:
public 1nt compareTo( Object 02 )

How come we were able to write:
one.compareTo ( two )
where one and two are Strings?

Makes use of polymorphism (next class)

Inside compareTo (), need to cast types

— Explicitly tells Java what type it really is

— E.g., for the String class, you would have:
public int compareTo( Object 02 )

{
String other wo 2; says “02 really is a String type”
}

25



Shoe Size Comparison

 Compare two shoe sizes based on the
following chart:

Men’s
, 3 5 7 10 (11| 12|13 | 14| 15| 16
Shoe Size

* Note: Men sizes are +2 to women’s

26



Define Shoe class

* Which attributes will you keep track of?



Define Shoe class

* Which attributes will you keep track of?
— slze
— gender

 Which methods do you need?



Define Shoe class

* Which attributes will you keep track of?
— slze
— gender

 Which methods do you need?
— Shoe ()

— compareTo ()

 How to access other object’s private attributes?



Define Shoe class

* Which attributes will you keep track of?
— slze
— gender
 Which methods do you need?
— Shoe ()
— compareTo ()
 How to access other object’s private attributes?
— getSize ()
— getGender ()



Sample Solution

public class Shoe implements Comparable
{

private int size;

private int gender;

private static final int MALE = 9;

public Shoe( int myGender, int mySize )
{

gender = myGender;
size = mySize;

}

public int getSize() { return size; }
public int getGender() { return gender; }



Sample Solution (cont.)

public int compareTo( Object otherShoe )

{

Shoe other = ( Shoe )otherShoe;

int rez = -1;

if( gender == other.getGender() )

{
// within gender, just compare size
if( size < other.getSize() )

rez = -1;
else if( size > other.getSize() )
rez = 1;
else
rez = 9;
}
else
{

// compare across genders

32



Sample Solution (cont.)

else
{
// compare across genders
// male size always 2 sizes less
if( gender == MALE )
if( (size+2) == other.getSize() )

rez = 9;

else if( (size+2) > other.getSize() )
rez = 1;

else
rez = -1;

else

if( size == ( other.getSize()+2 ))
rez = 9;

else if( size > ( other.getSize(D+2 ))
rez = 1;

else
rez = -1;

}

return rez;

33



Testing Your Solution

Solution has lots of comparisons
Set up various Shoe objects
Compare them:

— Write down expected output
(based on your own logic in the comments)

— Display expected output via println ()
— Are they the same?

Make sure to check all your comparisons



Testing the Sample Solution

public class TestShoeSizes

{

public static void main(

{

Shoe m3
Shoe m5S
Shoe m?7
Shoe f5
Shoe f7
Shoe f9

System.
System.
System.
System.
System.
System.
System.

Il

I

Il

I

out.
out.

out

out.
out.
out.
out.

new Shoe( @,
new Shoe( @,
new Shoe( 9,
new Shoe( 1
new Shoe( 1
new Shoe( 1

3
3
3

println( f5

String[] args

3);
5 );
7 );
5 );
7 );
9)

.compareTo( f7
println( mS.
.println{ mS.
println( mS.
println( 7.
println( 7.
println( f7.

compareTo( f7
compareTo( f5
compareTo( f9
compareTo( m5
compareTo( m3
compareTo( m?

),

) );
) );
) );
) );
) );
) );
) );

//

//
//

//
//

£5

m5
m5

£7
£7

1s

1s
1s
1s
1s

smaller

bigger
smaller

bigger
smaller

35



Interface Hierarchies

e An interface can inherit from another interface
 Example:

public interface Sports

{
public void setHomeTeam( String name ) ;
public void setVisitingTeam( String name ) ;

}
public interface Volleyball extends Sports

{

public void setHomeTeamScore( int points );
public void setVisitingTeamScore( int points ) ;

}

* Aclass that implements Volleyball needs to define how
many methods?

36




Interface Hierarchies

e A child interface inherits all abstract methods
from the parent

* Aclass implementing the child interface must
therefore define all methods from both
interfaces

* Class hierarchies and interface hierarchies
don’t overlap

— A class cannot extends an interface
— Aclass canonly implements an interface



Multiple Interfaces

* A class can implement multiple interfaces

public class ManyThings implements interfacel, interface2

{
// all methods of both interfaces

}

* All listed in the same implements clause




Simple Example

public interface InterfaceA

{
public abstract void test( int 1 );
}
public interface InterfaceB
{

public abstract void test( String s );
}

39



Simple Example

public interface InterfaceA

{
public abstract void test( int 1 );
}
public interface InterfaceB
{
public abstract void test( String s );
}

public class ClassC implements InterfaceA, InterfaceB

{
public void test( int 1 )

{

System.out.println( "In C: test() due to A: " 4+ 1 );
}
public void test( String s )
{

System.out.println( "In C: test() due to B: " 4+ s );
}

}

40



Simple Example

public class TestABC

{

}

public static void main( String[] args )

{

}

ClassC ccc = new ClassC();

ccc.test( 42 );

ccc.test( "wow" );

l

[;’,_L Problems

@ Javadoc

K% Declaration ‘ El Console 23 L

<terminated> TestABC [Java Application] /System/Library/]ay

In C: test() due to A: 42
In C: test() due to B: wow

41



Combining extends and implements

e Recall origin of interfaces:
a way to get around not having multiple
inheritance

A class can extend another class and
implement yet other classes

 Example:
PickupTruck inherits from Truck
PickupTruck implements Car



PickupTruck Example

public class Truck

{

// define class as usual

}

public interface Car

{
// constants here (1f any)

// abstract methods here
}

public class PickupTruck extends Truck implements Car
{
// models Truck as parent class
// must define all abstract methods required by Car
// can have additional info: attributes, methods

}

43



Summary of Interface Concepts

Interface makes classes conform to a communication
standard

— All methods are abstract

— Can include constants definitions

— Cannot be instantiated

— No attributes

New reserved word: implements

Interfaces can extend other interfaces to form an
interface hierarchy

— All abstract methods are inherited
Overcomes not having multiple inheritance
Comparable interface comes with compareTo ()



Admin

* Next class:
— Practice between inheritance and interfaces

— Use them (both) in polymorphism after that
* Also use arrays and loops — finish A1 Q1 by Thursday

e Labs next week:
— Practice inheritance



