COSC 121: Computer Programming II

Dr. Bowen Hui
University of British Columbia
Okanagan

Course overview

Course outline

Course overview

- Course outline
- Today:
 - Course logistics, policies, expectations
 - Concepts and learning outcomes
 - Quick review

What to know before this class

- How to write a class in Java
 - From English description to requirements/design to Java class
 - Class responsibility
 - Attributes, Methods
 - Visibility modifiers
- Basic constructs in Java
- Checking your own work

What to know before this class

- How to write a class in Java
- Basic constructs in Java
 - Variables, data types, assignments, scoping
 - Arithmetic expressions
 - Control flow, method calls
 - Using classes, including Scanner, Random, Math
 - Conditionals, loops, arrays
 - Overloading methods
 - Pass by value vs. pass by reference
- Checking your own work

What to know before this class

- How to write a class in Java
- Basic constructs in Java
- Checking your own work
 - Documenting your code
 - "Tracing" your code
 - Using println statements to check if your code is doing what you think it's doing

What is this course about?

- How to write "more complicated" programs
 - Good coding practice
 - Class relationships
 - Eliminate redundant code
 - Standardizing how classes are developed
 - Using files
 - Abstract data types/data structures
 - Static vs. dynamic lists
 - Queues and Stacks
 - Algorithms: Sorting and Searching

Caution

 Concepts in this course are much more abstract

 Be sure you are comfortable with the concept, practice lots with actual examples, then move on

 Helps to do pencil-paper examples first i.e., don't just dive into the code!

Evaluation Criteria

- 20% Weekly labs (10 total)
- 20% Assignments (3 total)
- 20% Midterm
- 40% Final exam (cumulative)

A lot of work!

- Keep on top of the readings and lectures
- Do practice questions in the text
- Get help AS SOON AS you sense you're falling behind
- Participate actively and interactively
- Practice programming regularly

Late Policy

- Labs and assignments
 - Due at start of lab/class
 - E.g., 10:59AM not 11:00AM
 - Very stringent
 - No lates accepted without a medical note

Missed Exams

Missed midterms:

- Receive a mark of 0% without a valid medical note
- With a valid medical note: missed exam portion will be combined with the final exam (all exams taken will still be worth 60% of the course grade)

Missed final:

- Receive a mark of 0% without a valid medical note
- With a valid medical note accepted by the Dean's
 Office, a make-up exam will be scheduled

Passing Criteria

- Students <u>must</u> achieve a passing grade in the final exam in order to pass the course
- Students <u>must</u> achieve a passing grade in the lab component in order to pass the course
- Otherwise:
 - Student will receive a max of 45% as the final grade

Expectations in lectures

- Format:
 - Lectures (interaction!!!)
 - Slides & board notes
 - Group activities with TA support
 - Regular "showcase" of cool applications
- You need to:

Expectations in lectures

Format:

- Lectures (interaction!!!)
- Slides & board notes
- Group activities with TA support
- Weekly "showcase" of cool applications

You need to:

- Take notes (this is not a 39-hour movie)
- Participate in group activities
- Listen actively
- Ask questions
- Provide answers

Expectations in labs

- Pre-lab exercises
 - Handwritten exercises
- In-lab activities
 - Programming exercises
 - Modify games in each lab
- You need to:

Expectations in labs

- Pre-lab exercises
 - Handwritten exercises
- In-lab activities
 - Programming exercises
 - Modify games in each lab
- You need to:
 - Attend every lab on time
 - Submit pre-lab exercises at beginning of each lab
 - Submit your own work, option to collaborate with others
 - Complete lab activities (one week to submit)

Expectations on assignments

- Mix of written and programming questions
- Submit your own work
- Indicate all collaborations
- You need to:

Expectations on assignments

- Mix of written and programming questions
- Submit your own work
- Indicate all collaborations
- You need to:
 - Work on assignment questions honestly
 - Follow instructions on assignments to get points
 - Submit on time (very stringent)

Expectations on exams

- All individual, handwritten (even programming)
- One 8"x11" cheatsheet allowed
 - Helps organize notes into one spot
 - Process of writing notes reinforces concepts
 - Organization makes relationships more clear
 - Provide (helpful) starting point of reference for your answers
- You need to:

Expectations on exams

- All individual, handwritten (even programming)
- One 8"x11" cheatsheet allowed
 - Helps organize notes into one spot
 - Process of writing notes reinforces concepts
 - Organization makes relationships more clear
 - Provide (helpful) starting point of reference for your answers
- You need to:
 - Study
 - Understand examples from classes, labs, assignments
 - Sleep well the night before the exam

Resources

- Me
- TAs
- Course website *** know this well
- Lab manual
- Course discussion forum on Connect
- Textbook
- Math and Science Tutoring Centre in UNC 201
- Others:
 - You will find many others... we don't necessarily endorse them, but we can't prevent you from using them
 - Use with caution!
 - Don't plagiarize!

Readings

- Today:
 - Review

- Next class:
 - Ch. 9 on inheritance

Lab 1

- Labs start next week
 - Complete pre-lab before arriving to lab
 - Some changes to lab structure see Guidelines
 - Due: following lab

Templates for Starter Code

- Class template
 - All other classes you write
 - Test class
 - New ones introduced in this course
- Method template
 - Special method: Constructor
 - Special method: toString()
 - Accessors and mutators

Templates for Starter Code

- Special class:
 - Test class (your text calls this a driver class)
 - This course: others will be introduced

Templates for Starter Code

- Special methods:
 - Constructor
 - toString()
 - Accessors and mutators

In the following statement, what is the data type specified?

```
int identifier = -931;
```

- (a) int
- (b) identifier
- (c) 931
- (d) -931
- (e) None of the above

In the following statement, what is the name of the variable?

```
String playerName = "Terry Jones";
```

- (a) String
- (b) playerName
- (c) Terry Jones
- (d) "Terry Jones"
- (e) None of the above

In the following code, what is the name of the method?

```
public static void main( String[] args )
{
    // ... missing code
}
```

- (a) args
- (b) void
- (c) static
- (d) main
- (e) public

In the following statements, what type of object is postcard?

```
Post postcard;
postcard = new Post(52);
```

- (a) postcard
- (b) int
- (c) String
- (d) Post
- (e) Player

In the following statement, what is the name of the method? postcard.setAuthor("Daisy");

- (a) postcard
- (b) setAuthor
- (c) "Daisy"
- (d) Daisy
- (e) None of the above

In the following code, how many class attributes does the TestPost class have?

```
public class TestPost
      public static void main( String[] args )
        String str;
        Post p0;
        Comment c1;
        p0 = new Post(52);
        p0.setAuthor( "daisy" );
        str = "A Dog's Life";
        p0.setTitle( str );
        str = "Being a dog is tough. I sleep all day";
        str += " and work for cookies when Daddy's home.";
        p0.setText( str );
        System.out.println( p0.toString() );
    }
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
```

Given the statements below, which of the following boolean expressions evaluates to true?

```
int total = 10;
int MAX = 7;
boolean found = false;

(a) ( total > MAX + 5 && !found )
(b) ( total > MAX + 5 && found )
(c) ( total < MAX + 5 && !found )
(d) ( total < MAX + 5 && found )</pre>
(e) None of the above
```

Given the statements below, which of the following boolean expressions evaluates to false?

```
int x = 5;
int y = 10;
int z = 15;
boolean done = true;

(a) ( done || !done )
(b) (( x < y )||( z < y ))
(c) !( x == y )
(d) (( x + 5 ) >= z )
(e) None of the above
```

How many names will be printed in the following code?

```
String[] names = {"eva", "ann", "cam" };
for( int i=0; i<=names.length; i++ )
   System.out.println( names[i] );</pre>
```

- (a) 3, but the program will crash with an ArrayIndexOutOfBounds Exception
- (b) 3, with no errors
- (c) 4, with no errors
- (d) Keep printing until you interrupt the program; this is an infinite loop
- (e) Cannot be determined

```
In the following statement, how many method calls are there?
    System.out.println( casper.toString() );
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
```

In the following code, what is the value of y?

```
int i = 5;
for( i=0; i<10; i++ )
    if( i % 2 == 1 )
        break;
int y = i;

(a) 0
(b) 1
(c) 2
(d) 3</pre>
```

(e) None of the above

What output is printed by the following code?

```
int num1 = 2;
   int num2 = 10;
   if( num1 < num2 )
     System.out.print( "1 " );
   if(( num1 + 5 ) < num2 )
     System.out.print( "2 " );
   else
     System.out.print( "3 " );
   System.out.print( "4 " );
(a) 24
(b) 124
(c) 23
(d) 1 2 3 4
(e) 12
```

What is the output printed by the following code?

```
int[][] arr2d;
   arr2d = new int[3][5];
   System.out.println(arr2d.length);
(a) 3
(b) 5
(c) 8
(d) 15
(e) 0
```

Consider the following code:

```
int count = 2;
int MAX = 10;
String xx = "abba";
String yy = "abba";
boolean done = true;
```

Part b. (1 point) What is the value of the following condition:

!!!done

- Make sure you ...
 - Are able to read code given to you (with documentation)
 - Are able to write methods to carry out a specific operation
 - Are able to write classes that have certain responsibilities