COSC 121:
Computer Programming |l

Dr. Bowen Hui

University of British Columbia
Okanagan

Admin: Lab overview

Lab organization

Website for lab manual

Review guidelines

Show list of labs

Quick demo of the provided Feed Me game
Pre-lab rules

New multiple choice site demo
— Bonus rule

Recap: Object-Oriented Design

* Process of building software based on a series of
objects that interact together to solve a problem

* Object-oriented programming (OOP)
— Set of programming techniques to support this design

* OOP examples from COSC 1117

Recap: Object-Oriented Design

* Process of building software based on a series of
objects that interact together to solve a problem

* Object-oriented programming (OOP)
— Set of programming techniques to support this design

* OOP examples from COSC 1117
— Classes and objects what will be involved

Recap: Object-Oriented Design

* Process of building software based on a series of

objects that interact together to solve a problem
* Object-oriented programming (OOP)

— Set of programming techniques to support this design
* OOP examples from COSC 1117

— Classes and objects what will be involved

— ldentifying attributes

Recap: Object-Oriented Design

* Process of building software based on a series of
objects that interact together to solve a problem

* Object-oriented programming (OOP)

— Set of programming techniques to support this design
* OOP examples from COSC 1117

— Classes and objects what will be involved

— ldentifying attributes what objects store

— Class responsibilities

Recap: Object-Oriented Design

* Process of building software based on a series of
objects that interact together to solve a problem

* Object-oriented programming (OOP)
— Set of programming techniques to support this design

* OOP examples from COSC 1117

— Classes and objects what will be involved
— ldentifying attributes what objects store
— Class responsibilities who interacts with whom

— Encapsulation

Recap: Object-Oriented Design

* Process of building software based on a series of
objects that interact together to solve a problem

* Object-oriented programming (OOP)
— Set of programming techniques to support this design

* OOP examples from COSC 1117

— Classes and objects what will be involved
— ldentifying attributes what objects store
— Class responsibilities who interacts with whom

— Encapsulation how they communicate

Class Relationships (Ch 7.4)

* Dependency (“Uses”): calls a method

— A class uses another class
* Ex: The Dog class uses the Scanner class

— An object of one class uses another object of the
same class

* Ex: A Dog object shares snacks with another Dog
* Aggregation (“Has-A”):
— A class has objects of another class
e Ex: A Library has Book objects

Inheritance (Ch 9)

* Another OOP technique

* Purpose:
— Organize “related” classes together
— Maximize reusable classes

 What is reusability and its advantages?
— Defined class once, don’t define it again
— Defined methods once, don’t define them again
— Changes isolated to one place
— Bugs isolated to one place

Relationship

 Inheritance relates two classes to each other

* Conceptual examples:
— Children inherit physical traits from their parents
— Humans inherit biological traits from Animals

* Terminology:
— A child class inherits from a parent class
— A subclass inherits from a superclass
— A child class is derived from a parent class
— A subclass is derived from a superclass

11

Visually in UML

* Use a box to represent a class

 Use an upward arrow to point to the parent

class Vehicle
A

A car is a vehicle

Car
* Depicts an IS-A relationship

e Text: each box has lots of details —ignore for
this class

Benefits of Inheritance

Inherit methods and attributes from parent
class

Can add new methods and attributes to child
class

Can modify inherited method definitions
inside child class

All to maximize software reusability

How it’s done

e Use areserved word extends to indicate the

relationship
* Template:

public class Child extends Parent
{

// class contents

}

e Example:

public class Car extends Vehicle

{

// class contents

}

14

Examples

e Partial code:

public class Animal { .. }

public class Mammal extends Animal { .. }
public class Reptile extends Animal { .. }
public class Dog extends Mammal { .. }

e List the four IS-A relationships that are defined
by this code

Longer Example

* Client says:

— | want a software program that lets me look up
word definitions easily. After that, | might also
want to extend the program to give me more
complicated entries, like an encyclopedia.

e What classes do we need to model?
* How are they related?

Longer Example (cont.)

e Sample solution:
— A Dictionary is a Book
— A Dictionary has Words

Book
N\

Words | —< Dictionary

A Very Simple Book Class

public class SimpleBook
{

protected int pages;

public SimpleBook(int maxPages)
{

pages = maxPages;

}

public void setPages(int numPages) { pages = numPages; }

public int getPages() { return pages; }

18

A Very Simple Book Class

public class SimpleBook

{
protected)int pages; what’s this?

public SimpleBook(int maxPages)
{

pages = maxPages;

}

public void setPages(int numPages) { pages = numPages; }
public int getPages() { return pages; }

19

A Very Simple Book Class

public class SimpleBook

{
protected)int pages; only visible to
derived classes

public SimpleBook(int maxPages)
{

pages = maxPages;

}

public void setPages(int numPages) { pages = numPages; }
public int getPages() { return pages; }

20

An Initial Dictionary Subclass

public class Dictionary extends SimpleBook

{

private int numDefs;

public Dictionary(int maxPages, int maxEntries)

{
super(maxPages);
numDefs = maxEntries;

}

public void setNumDefs(int newNumDefs)
public int getNumDefs()

{ numDefs = newNumDefs; }
{ return numDefs; }

21

An Initial Dictionary Subclass

public class Dictionary extends SimpleBook

{

private int numDefs;

public Dictionary(int maxPages, int maxEntries)

{

(&%r(maxpagesgp what’s this?
numDefs = maxEntries;
}

public void setNumDefs(int newNumDefs) { numDefs = newNumDefs; }
public int getNumDefs() { return numDefs; }

}

22

An Initial Dictionary Subclass

public class Dictionary extends SimpleBook

{

private int numDefs;

public Dictionary(int maxPages, int maxEntries)

{
%maxpagesgp calls constructor
} numbDefs = maxEntries; method in super class

public void setNumDefs(int newNumDefs) { numDefs = newNumDefs; }
public int getNumDefs() { return numDefs; }

}

23

A Test Class

public class TestDictionary

{

public static void main(String[] args)

{

Dictionary webster = new Dictionary(1234, 50000);
System.out.println("This dictionary has "

+ webster.getPages() + " pages");
System.out.println("This dictionary has
+ webster.getNumDefs() + " definitions");

24

public class TestDictionary

{

A Test Class

public static void main(String[] args)

{

Dictionary webster = new Dictionary(1234, 50000);

System.out.println("This dictionary has

pages");
System.out.println({ "This dictionary has

+ webster.getPages() +

+ webster.getNumDefs() + " definitions");

I

1[;,_5 Problems

@ Javadoc

@> Declaration | El console 23

<terminated> TestDictionary [Java Application] /System/Library/)z

This dictionary has 1234 pages
This dictionary has 50000 definitions

25

What is inherited?

* All attributes from the parent class
— Even private ones
— How to access them? (See Section 9.4)

* All methods from the parent class

— Except: constructors are not inherited
— Why not?

What about Word?

public class Word

{
private String vocab;
private String pronounciation;
private String definition;

public Word(String entry, String sound, String explain)
{

vocab = entry;

pronounciation = sound;

definition = explain;

}

// various accessors and mutators

27

Changing Dictionary Class

How to keep track of Word objects?

How to define a new method for
addEntry ()?

What input parameters should it take?

How to test your new changes in
TestDictionary?

Sample Solution

public class Dictionary extends SimpleBook

{

private int numDefs;
private Word[] entries;
private int currWord;

public Dictionary(int maxPages, int maxEntries)
{

super(maxPages);

numDefs = maxEntries;

entries = new Word[numDefs];

currord = 0;

29

Sample Solution (cont.)

public void addEntry(String entry, String pron, String defn)
{

Word vocab = new Word(entry, pron, defn);
if(currWord < numDefs)

{

entries[currWord] = vocab;
currord++;

}
}

public void addEntry(Word vocab)
{

if(currWord < numDefs)

{

entries[currWord] = vocab;
currord++;

}
}

Sample Solution (cont.)

public int getNumEntries() { return currWord; }
public void setNumDefs(int newNumDefs) { numDefs = newNumDefs; }
public int getNumDefs() { return numDefs; }

31

Sample Solution (cont.)

* Testing:

— Call the methods you created
— Check outputs before and after

public class TestDictionary

{

public static void main(String[] args)

{

Dictionary webster = new Dictionary(1234, 50000);

System.out.println("This has " + webster.getPages() + " pages");
System.out.println("This has " + webster.getNumDefs() + " definitions");
System.out.println("This has + webster.getNumEntries() + " entries");

webster.addEntry("key", "ki", "tool used to unlock something");
System.out.println("This has " + webster.getNumEntries() + entries");

32

Visibility Modifiers Revisited

* Previously, you saw:
— No visibility modifier (called “default”)
— public
— private
e Recall encapsulation rules
— Don’t ever leave anything default
— Unless there’s a reason, classes are public

— All class attributes are private; access and changes must be
done via accessors and mutators

— Only methods that are to be called by other classes should
be public, all other methods (“helpers” within the class)

are private

New: protected

 Allows a child class to access an attribute or
method from the parent class

— Like granting special access to child classes

— Trusted classes can see more of the parent class
— Unrelated classes won’t be able to see the info

* Note: protected info is also visible to any class
in the same package (not part of this course)

The super Reference

Constructors are not inherited
— Even though they have public visibility

Recall purpose of constructors: to set up
attributes

In many cases, we still want to reuse the
parent class’s setup

Solution: call super () asif you were calling
the parent constructor directly

— Pass in the same input as you would

More on super

* Aside from the constructor, you can use super

to call other methods and attributes in the
parent class

 Examples in Dictionary.java:
super.setPages (5000);
super.pages = 2;

* Be careful not to break encapsulation rules!

— Use accessors and mutators when possible

Multiple Inheritance

This means a class is derived from two or more
classes

Example:
PickupTruck extends Truck
PickupTruck extends Car
Problem:

— Collisions — different parents may have the same
attributes and/or method signatures

Java only supports single inheritance; multiple
inheritance is not allowed

Example

* A motorcycle inherits properties from both a

bicycle anc
— Motorcyc

— Motorcyc

d Car
es and Bikes are two-wheeled vehicles

es and Cars have engines, gas, fuel,

similar speeds

* Java does not allow multiple inheritance

* How would you implement Motorcycle as a

child class?

Summary of New Concepts

Inheritance models IS-A relationship
Visibility modifier: protected
Use of super() calls parent’s constructor

A class cannot inherit from more than one
class

Next class: continue on inheritance

