COSC 111:
Computer Programming |

Dr. Bowen Hui

University of British Columbia
Okanagan

First half of course

Software examples

From English to Java

Template for building small programs
Exposure to Java programs

Fundamental concepts in a programming
language

Key programming concepts

Classes — “blueprint”

Objects — instances of a class, has their own attributes
and methods

Attributes — “traits” of an object

Variables — models info to be stored, data types,
primitives, object variables

Methods — models “abilities” of an object, IPO model,
input parameters, return type, header, method calls,
variable substitution

Statements — “command” in the program, ends in ;,
statement block { }, assignments, arithmetic operations

Key programming concepts

Classes — “blueprint”

Objects — instances of a class, has their own attributes
and methods

Attributes — “traits” of an object

Variables — models info to be stored, data types,
primitives, object variables

Methods — models “abilities” of an object, IPO model,
input parameters, return type, header, method calls,
variable substitution

Statements — “command” in the program, ends in ;,
statement block { }, assignments, arithmetic operations

Hardest concepts:
1. Class and objects
2. Method calls and variable substitutions

Pre-build Java classes

String — used to compare and change phrases

Math — used to carry out more complicated
math operations

Random — used to generate random numbers
(of various data types)

Scanner — used to get input from user

Second half of course

* Java nuances
— Scope
— Pass by value vs. pass by reference
— Static
— Overloading
* Techniques for building more interesting
programs
— Modeling decisions (if statements)
— Modeling repetitions (for loop, while loop)
— Modeling collections of data (arrays)
— If time: graphical user interfaces

Part 1: Scope

* Scope defines the area in a program where a
label (variable or method) can be referred to

* E.g.,youwrote “int var = 10;” inthe
constructor of the Dog class.
Can we use var ...

— Anywhere in the same method?
— In other methods within the same class?
— In other classes?

Lifetime of a variable

e Scope of a variable defines where that variable is
available in the program

* For avariable:
— Check where it is declared
— Look for closest enclosing braces

— That variable is available anywhere within those
braces
* Once we are outside those braces, the variable is
destroyed; the variable is only “alive” inside
those braces

Example: class attributes

blic class Dog

String name;
int stomach;
public Dog(String n)
{
name =n;
stomach =0; //empty stomach

}

public void eatSnacks(int num) { ... }

&)

scope

Example: class attributes

blic class Dog

String name;

int stomach;

public Dog(String n)

{ name and stomach are available
name =n; anywhere in this class
stomach =0; //empty stomach

}

public void eatSnacks(int num) { ... }

&)

scope
P 10

Example: variables inside methods

public class Dog
{

String name;
int stomach;
public Dog(Stringn) { ... }
ublic void eatSnacks(int num)

int half = num/2;
stomach = stomach + half;

} scope

Example: variables inside methods

public class Dog
{

String name;
int stomach;
public Dog(Stringn) { ... }
ublic void eatSnacks(int num)

int half = num/2; half is available inside
stomach = stomach + half; this method only

} scope

12

Example: input parameter to method

public class Dog
{

String name;
int stomach;
public Dog(Stringn) { ... }
ublic void eatSnacks(int num)

int half = num/2;
stomach = stomach + half;

} scope

Example: input parameter to method

public class Dog
{

String name;
int stomach;
public Dog(Stringn) { ... }
ublic void eatSnacks(int num)

int half = num/2; num is available inside
stomach = stomach + half; this method only

} scope

14

Where methods can be seen

e Scope of a method defines where that method is
available and dictates how the method should be
called

* How you call a method:
— Check which class it is defined in
— Check which class you want to call that method from

— If it’s the same class, then just call it
* E.g., eatSnacks(8);

— If it’s a different class, then you can only call it via an
object of that class

 E.g., casper.eatSnacks(8);

Example: within same class

public class Dog
{
String name;
int stomach;
public Dog(Stringn) {... }
public void eatSnacks(int num)

{
int half = num/2;
stomach = stomach + half;

} @Snac@lf);

private void hideSnacks(int remaining) { ... }

Example: within same class

public class Dog
{
String name;
int stomach;
public Dog(Stringn) {... }
public void eatSnacks(int num)

{
int half = num/2;
stomach = stomach + half;

@Snac@lf); Called in the same class
} as where it is defined

private void hideSnacks(int remaining) { ... }

17

Example: in different classes

public class TestDog

{
public static void main(String[] args)

{

Dog casper = new Dog(“Casper”);

casp@tSnacks()D
}

}

18

Example: in different classes

public class TestDog

{
public static void main(String[] args)

{

Dog casper = new Dog(“Casper”);

casp@tSnacksD
}

Called in a different class
from where it is defined

19

Part 2: modeling decisions

 Sometimes, we want to express:
“do X if situation A occurs, do Y if situation B
occurs, do Z if any other situation occurs”

* Examples:

— Asks if user wants to play again: if yes, start another
round of the game, if no, end game

— Asks user to guess a number: if correct, user wins, if
incorrect, user loses

— Checking high scores: if new score is higher than

current high score, update the high score, otherwise,
no changes needed

If statement

* |nJava, we use an if-statement also called
conditional statement

 Templates:

if(condition) if(condition)

statement statement
else

statement

where a condition is a boolean expression
and a statement can be replaced by a statement
block (more than one statements)

21

High Score example

public class Player

{

int hiScore;

public void updateScore(int newScore)

{
if(newScore > hiScore)
hiScore = newScore;
else
hiScore = hiScore; // equals itself — redundant
}

High Score example

public class Player

{

int hiScore;

public void updateScore(int newScore)

{ Equivalent:
if(newScore > hiScore) If(newScore > hiScore)
hiScore = newScore; hiScore = newScore;
else

hiScore = hiScore;

23

High Score example

public class Player

{

int hiScore;

public void updateScore(int newScore)

{ Equivalent:
if(newScore > hiScore) If(newScore > hiScore)
hiScore = newScore; hiScore = newScore;
else
hiScore = hiScore; Equivalent:
} If(hiScore < newScore)

} hiScore = newScore;

24

Set Answer example

public class Question

{

String questionWords;
String option1, option2;
int correctAnswer;

public void setAnswer(int i)

{

correctAnswer = i;

Previously:

Sets the correct answer as the
i"th option in a multiple choice
question

e.g. in test class:

Question gl =..;
gl.setAnswer(2);

25

Set Answer example

public class Question

{
String questionWords;

String optionl, option2;
int correctAnswer;

public void setAnswer(inti)

{
if(i >0&&i<3) // ensure i is within range
correctAnswer =i;
else
System.out.printIn(“error: i is out of range”);
}

What goes in the conditions?

* Boolean expression is an expression that
evaluates to true or false
— An expression is a piece of code that has a value
e e.g., avariable, a method call, applying an operator (5 + 2)
« Common use of conditions is to check for
equality or relation
— E.g., is varl equal to var2?
— E.g., is varl greater than 0?
— E.g., isvarl between 0 and 5?

Equality and relational operators

Operator Meaning Example

= = Ltpaal A o0 == %
i Mok @prad Ao all= b
< \esn Ahan a < b
> 8% ., a > b
<= l3g o o expaal e o_<> Jo
2> Arerfm Fhoan o 2peal o A 22 b

for primitive types only
not for objects!

28

Examples

* Lets say we have variables sum, delta, MAX

* if(sum < MAX)
delta = sum — MAX;

Examples

Lets say we have variables sum, delta, MAX

if(sum < MAX)

delta = sum — MAX;
if(sum != MAX)

delta = sum — MAX;

else
delta = sum;

Examples

Lets say we have variables sum, delta, MAX

if(sum < MAX)

delta = sum — MAX;
if(sum != MAX)

delta = sum — MAX;

else

delta = sum;
if(sum > MAX)
{

delta = sum — MAX;
sum =sum—1;

Examples

Lets say we have variables sum, delta, MAX
if(sum < MAX)
delta = sum — MAX;

if(sum != MAX)
delta = sum — MAX;

else
delta = sum;
if(sum > MAX)
{
delta = sum — MAX;
sum =sum—1;
}
if(sum >= MAX)
delta = MAX;
else
{
delta = sum;

sum = sum + MAX;

Building more elaborate conditions

* Use logical operators to combine boolean
expressions

* Logical NOT | takes 1 operanc
* Logical AND && takes 2 operands

* Logical OR | | takes 2 operands

Logical NOT

* A unary operator
 Meaning negation (also called complement)
* Possible values represented as a truth table

NoT: Q3 o |
4rwe Lhse
Lal)se e

Using NOT

* E.g.:
boolean found = true;
if(found)
System.out.printin(“book was found”);

else
System.out.printin(“book was not found”);

// the else part is equivalent to the following
if(Ifound)
System.out.printin(“book was not found”);

Logical AND and OR

* Binary operators
* AND: means when both operands are true
* OR: means at least one operand is true

AND od OR [& v A 3% b a [) b
rue true 4rue Frue
Lol se Lalse +rue
-?-d‘;(_ +rue -(:n\s(+rua
\, -c'v\u_ "F'LBO_ -S:'Jsl 1
e e et L =
atlFerpote 4= / ;- \4(: Lﬂl« ‘Puhe Then
e+ all combes : cl]ﬁf-
a,‘c bot. +rue thaa oz frue

ku.’
o L 5e apu.lsg 36

Examples

intx=5;

inty =2;

boolean found = true;

int total = x +;

int max = 10;

if((total < (max+5)) && Ifound)
max = 1;

else
max = 2;

if(total >max || x<=vy)
max++;

else
max = 0;

Examples

intx=5;

inty =2;

boolean found = true;
int total =x +v;

int max = 10;
if((total < (max+5)) && !found) becomes:
max = 1; becomes:
else becomes:
max = 2; evaluate:
if(total >max || x<=vy)
max++;
else

max = 0;

(7 < (10+5)) && !true

true && false
false
max = 2;

38

Examples

intx=5;

inty =2;

boolean found = true;
int total =x +v;

int max = 10;
if((total < (max+5)) && Ifound)
max = 1;
else
max = 2;
if(total >max || x<=vy) becomes:
max++; becomes:
else becomes:
evaluate:

max = 0;

(7>2]] 5<=2)
true && false
true

Mmax++,

39

Changes in control flow

* Previously:
1. Startinside the main() method
2. Evaluate top-down

3. If method call, then go to that method definition and
evaluate its statements top-down, come back

4. Continue (repeat 3 if necessary)

Changes in control flow

* Previously:
1. Startinside the main() method
2. Evaluate top-down

3. If method call, then go to that method definition and
evaluate its statements top-down, come back

4. Continue (repeat 3 if necessary)

e With if statements:
1. Evaluate condition
2. If true — evaluate then-statement(s), ignore else part
3. If false — evaluate else-statement(s), ignore then part

* Also called branching, when the control flow branches
out to different parts of the code

Using statement blocks

* if you want to include multiple statements in either the
then or else part, use a statement block

e E.g.:
if(total > max)
{ X++;
y =x/2;
}
else
{
X-;
Y=X

}

Handling multiple conditions

* Recall the syntax is:
if(condition)
statement
else
statement
 That means you can put another if statement
inside the then or else part

Examples

// do something to x depending on how
// total compares to max

if(total > max)
X = X+1;

else if(total == max)
X=Y;

else
X--;

* Only one if-statement

* Only one branch of statements will be evaluated,
depending on which condition is true

Nested if-statement

if(total > max)

{

if(total > (max*2))
X = X*X;
else
X = X+1;
}
else if(total == max)
X=Y,
else
X-;
* Only one if-statement
* Only one branch of statements will be evaluated

Activity: find smallest among 3
numbers

Say you have integers numl, num2, num3
Say you have integer min

Write an if-statement that compares these
three numbers (there are several
combinations, so you will have several
conditions)

Assign min to either num1, or num2, or numa3,
depending on which condition is true

Solution 1

."C(huwi (nAAm A)
i
l'€(numd < nuw3)
Em.n = AUMﬂ-')
else
Min T hum 35

else

5 Cham2 £ pumd)
kin = huma’,

else
Mmin > Num 37

N

Solution 2

H vamt € num2) R (viuml € mum 3))

Min Y\\Am\’)

else L ((pum) < 0w 2% (huml = pum3))
Mmin = NUm?),

else i?((hkm\ 7= nmeS P4 (mmz < h.w-«’>>)
nin = Num?,

e f@((hum\ 22 nuw\l) X'Ya(NUmA D= huw\lﬁ
P = nuM3;

/(

last “else’ is ompted
do Hnig ov\ly 'qe your're Suk you've Loyeral .;_\} Lowlses

48

