COSC 111: Computer Programming I

Dr. Bowen Hui
University of British Columbia
Okanagan

- Students will be able to ...
 - Develop an appreciation for the complexity in creating computer software

- Students will be able to ...
 - Develop an appreciation for the complexity in creating computer software
 - Build simple programs on your own from scratch

- Students will be able to ...
 - Develop an appreciation for the complexity in creating computer software
 - Build simple programs on your own from scratch
 - Contribute to existing programs given to you

- Students will be able to ...
 - Develop an appreciation for the complexity in creating computer software
 - Build simple programs on your own from scratch
 - Contribute to existing programs given to you
 - Find relevant resources to help trouble shoot programming problems

- Students will be able to ...
 - Develop an appreciation for the complexity in creating computer software
 - Build simple programs on your own from scratch
 - Contribute to existing programs given to you
 - Find relevant resources to help trouble shoot programming problems
 - Work with others to come up with solutions

Reflection on Assignments, Labs, In-class Activities

- Reading code
 - Comparing code with English class designs
- Adding to existing code
 - Changing small pieces
 - Adding your own methods
 - Changing lots of code in the Feed Me/Treasure Hunt games
- Writing your own classes
 - Game with various Math activities
 - Text messaging system
 - Library online catalogue

Recall the Robot Example

 Robot moves around to get tea or pick up newspaper for its master

Recall the Robot Example (cont.)

goes to office to service its master

```
********* Testing Robot ...
loc: library
move: library, south, library
move: library, north, library
move: library, south, library
move: library, west, kitchen
move: kitchen, west, office
>> Please select a command:
>> 1. Pick up the newspaper
>> 2. Make me some tea
>> 3. Return to your own work
1
```

Recall the Robot Example (cont).

picks up newspaper, delivers it to the master move: office, east, kitchen move: kitchen, south, hallway move: hallway, south, hallway move: hallway, east, door pick up newspaper move: door, east, door move: door, south, door move: door, north, door move: door, west, hallway move: hallway, south, hallway move: hallway, east, door move: door, east, door move: door, west, hallway move: hallway, north, kitchen move: kitchen, north, kitchen move: kitchen, north, kitchen move: kitchen, east, library move: library, south, library move: library, south, library move: library, west, kitchen move: kitchen, west, office here's your newspaper

Recall the Robot Example (cont).

goes back to the library (not very efficiently) move: office, east, kitchen move: kitchen, west, office move: office, west, office move: office, west, office move: office, east, kitchen move: kitchen, north, kitchen move: kitchen, south, hallway move: hallway, south, hallway move: hallway, west, hallway move: hallway, west, hallway move: hallway, south, hallway move: hallway, east, door move: door, south, door move: door, north, door move: door, north, door move: door, west, hallway move: hallway, north, kitchen move: kitchen, west, office move: office, north, office move: office, south, office move: office, west, office move: office, east, kitchen move: kitchen, east, library back to cleaning the shelves loc: library

Major Pieces

- Has a map and some locations
- Moves are random directions
- Keeps trying to get to destination until success

Handling Possible Moves

```
private void possibleMoves( int dir )
 if( currLoc == OFFICE && dir == EAST )
                                         // 0, EAST, K
   currLoc = KITCHEN;
 else if( currLoc == KITCHEN )
   if( dir == WEST )
                                                 // K, WEST, 0
     currLoc = OFFICE;
   else if( dir == EAST )
                                                 // K, EAST, L
     currLoc = LIBRARY;
   else if( dir == SOUTH )
                                                 // K, SOUTH, H
     currLoc = HALLWAY;
  else if( currLoc == LIBRARY && dir == WEST ) // L, WEST, K
   currLoc = KITCHEN;
  else if( currLoc == HALLWAY )
   if( dir == NORTH )
                                                 // H, NORTH, K
     currLoc = KITCHEN;
   else if( dir == EAST )
                                                 // H, EAST, D
     currLoc = DOOR;
  else if( currLoc == DOOR && dir == WEST ) // D, WEST, H
   currLoc = HALLWAY;
}
```

Encoding the Map

- Map is defined via:
 - A set of constants that refer to specific directions and locations
 - A set of possible moves

Encoding the Map

- Map is defined via:
 - A set of constants that refer to specific directions and locations
 - A set of possible moves
- Alternatively define map as a 2D array
- Tradeoffs in different representations

Encoding the Map

- Map is defined via:
 - A set of constants that refer to specific directions and locations
 - A set of possible moves
- Alternatively define map as a 2D array
- Tradeoffs in different representations
- Area in AI: knowledge representation
 - How to represent language? Facts? Beliefs? Your beliefs of other people's beliefs?
 - How to operate in a world using a specific representation? Limitations?

- Moves are random
 - Inefficient, not so smart

- Moves are random
 - Inefficient, not so smart
- Always try in order of N, E, S, W
 - Possible infinite loop

- Moves are random
 - Inefficient, not so smart
- Always try in order of N, E, S, W
 - Possible infinite loop
- Smarter solutions:
 - Unrepeated moves
 - Look ahead

- Moves are random
 - Inefficient, not so smart
- Always try in order of N, E, S, W
 - Possible infinite loop
- Smarter solutions:
 - Unrepeated moves
 - Look ahead
- Area in AI: planning and decision making
 - Which path gets me to the destination? In the shortest time? Least cost?
 - What if a path only works sometimes (probabilistic)? Which path is "best" with the highest chance of success?

Other Programs and Programming Languages

- Key concepts apply exactly the same way
- Big picture planning:
 - What does the program do?
 - What might the output look like?
- Detailed planning:
 - What are the steps, and in what particular order?
 - What information needs to be kept track of?
 - Does it need to be broken up into multiple classes?
 - Any libraries that can/should be used?
 (e.g. Random, Scanner)
- Don't worry if you haven't seen it before

Another Game Example

An educational game that helps practice Japanese vocabulary

Your programming skills are very transferrable

Other Languages: Lua

- Syntax is very similar to Java
- A scripting language, has different behaviours than a compiled programming language like Java
 - No compilation step, just runs the code
 - Therefore, no optimization
 - Does not warn you of errors, just crashes!
- Designed for fast prototyping

Initializing an Array

```
animals = \{\}.
animals[ 1] = spider
animals[ 2] = butterfly
animals[ 3] = dragon
animals[4] = frog
animals[5] = hippo
animals[ 6] = monkey
animals[7] = owl
animals[ 8] = reindeer
animals[9] = whale
animals[10] = bear
animals[11] = ant
animals[12] = raccoon
animals[13] = bird
animals[14] = fish
animals[15] = dog
animals[16] = lion
```

Setting Attributes in the Dictionary

```
fish = {}.
fish.english = "Fish"
fish.hira = hiragana["sa"] .. hiragana["ka"] .. hiragana["na"]
fish.image = "fish.png"
fish.audio
           = audio.loadSound( "kitsune.wav" )
dog = {}.
dog.english = "Dog"..
dog.hira = hiragana["i"] .. hiragana["nu"]
dog.image = "dog.png"
dog.audio
           = audio.loadSound( "inu.wav" )
lion = {}.
lion.english = "Lion"
lion.hira = hiragana["si"] .. hiragana["si"].
            = "lion.png"
lion.image
            = audio.loadSound( "kitsune.wav" )
lion.audio
```

Displaying a Question

```
function wrongAnswer()
                                                                 audio.play( wrongSound )
function showQuestion( grouping )
 questionCounter = questionCounter + 1
                                                                 getNextQuestion()
 clearPrevOuestion()
                                                              end
 -- generate 3 non-repeated images
 local len = table.getn( animals )
                                                              function rightAnswer()
 local num1 = math.random( 1, len );
                                                                 audio.play( rightSound )
 local num2 = genN2( num1, len )
 local num3 = genN3( num1, num2, len )
                                                                 qameScore = qameScore + 1
 -- pick a correct answer
                                                                 getNextQuestion()
 local ans = math.random( 1, 3 )
                                                              end
 -- set up correct answer
 local answerText
 if ans == 1 then
   currentAnswer = num1
   print( animals[num1].english )
   answerText = display.newText( animals[num1].hira, ansXpos, ansYpos, ansFont, ansSize )
   audio.play( animals[num1].audio )
   al:addEventListener( "tap", rightAnswer )
   a2:addEventListener( "tap", wrongAnswer )
   a3:addEventListener( "tap", wrongAnswer )
 else
   if ans == 2 then
     currentAnswer = num2
     print( animals[num2].english )
     answerText = display.newText( animals[num2].hira, ansXpos, ansYpos, ansFont, ansSize )
     audio.play( animals[num2].audio )
     a1:addEventListener( "tap", wrongAnswer )
     a2:addEventListener( "tap", rightAnswer )
     a3:addEventListener( "tap", wrongAnswer )
   else
```

Stranded Sloth (Also in Lua)

Other Languages: Scheme

- Everything is an expression
 - Numbers, strings, procedures, etc.
 - Everything is true except #f (which denotes false)
- Simple and consistent syntax
- Belongs to a family of languages called functional programming languages
- Most commonly used programming languages are procedural

```
> 10

10

> (+ 5 5)

10

> (+ 4 4 2)

10

> (+ (+ 1 2) (+ 3 4))

10
```

```
> 10
10
> (+ 5 5)
10
> (+ 4 4 2)
10
> (+ (+ 1 2) (+ 3 4))
10
```

```
> (define pi 3.141592654)
> pi
3.141592654
> (define (sphere-volume r)
     (* (/ 4 3) pi r r r))
> sphere-volume
<<pre><<pre><<pre><<pre>> (sphere-volume 5)
523.598775666665
```

```
> 10
10
> (+ 5 5)
10
> (+ 4 4 2)
10
> (+ (+ 1 2) (+ 3 4))
10
```

```
> (define (triangle-area base height)
    (* 0.5 base height))
> (triangle-area 2 3)
3
```

```
> (define pi 3.141592654)
> pi
3.141592654
> (define (sphere-volume r)
     (* (/ 4 3) pi r r r))
> sphere-volume
<<pre><<pre><<pre><<pre>> (sphere-volume 5)
```

```
> 10
10
> (+ 5 5)
10
> (+ 4 4 2)
10
> (+ (+ 1 2) (+ 3 4))
10
```

```
> (define (triangle-area base height)
    (* 0.5 base height))
> (triangle-area 2 3)
3
```

```
> (define pi 3.141592654)
> pi
3.141592654
> (define (sphere-volume r)
      (* (/ 4 3) pi r r r))
> sphere-volume
<<pre><<pre><<pre>> (sphere-volume 5)
523.598775666665
```

```
> (define (square x)
        (* x x))
> (define (sum-of-squares sq x y)
        (+ (sq x) (sq y)))
> (square 2)
4
> (sum-of-squares square 2 3)
13
;; same as (+ (square 2) (square 3))
```

Who Uses Scheme?

- Mostly in university courses
- Variants like Lisp is used in many areas:
 - Original version of part of the Yahoo! store
 - Language processing
 - Market analysis and stock trading
 - Aircraft analysis
 - Music composition, analysis, notation
- For more, see http://www.lispworks.com/ success-stories/index.html

Other Languages: Matlab

- (Almost) everything is a matrix!
 - And you can have strings (sequence of chars)
 - Matlab programmers avoid strings for efficiency reasons
- Mostly used for mathematical modeling, data and image processing, simulations and graphs
- Actually code resembles mathematical notation
- Lots of built in math functions
- Also categorized as a procedural language

```
function m = 12norm(x)
% function m = l2norm( x )
% compute the L2 squared norm of a vector
m = sum(x(:).^2):
function rvec = reversevec( vec )
% function rvec = reversevec( vec )
rvec = vec(end:-1:1);
% len = length(vec);
% i = 1;
% while 1,
  if len > 0
  rvec(i) = vec(len);
  len = len - 1;
   i = i + 1;
% else
      break:
  end:
% end;
```

```
> x = [1 2 3 4]
x = [1 2 3 4]
> x = [1 2 3 4];
> 12norm(x)
30
> y = reversevec(x)
y = [4 3 2 1]
>
```

```
a = [100]
     100
     0 1 0 1
b = [0 1 0]
     0 0 1
     100]
R = [204.5]
beta = 0.9
n = 3
                     % number of states
K = 2
                     % number of actions
A = zeros(n,n,K) % set of actions
A(:,:,1) = a
A(:,:,2) = b
inf = 100
V = []:
                      % set up value iteration table
V = zeros(n,inf);
V(:,1) = R(s);
% for s = 1:n
% for j = 1:inf
% if j == 1
   V(s,j) = R(s);
% end
% end
% end
```

```
for iter = 1:inf,
 for s = 1:n,
    if iter > 1,
        ev = []:
        for actk = 1:K,
            val = A(s,:,actk)*V(:,iter-1);
            ev = [ ev, val ];
        end;
        % if iter == inf, ev, end;
        V(s,iter) = R(s) + beta*max(ev);
    end
    if iter == inf,
        % ev,
        [high, best] = max(ev);
        if( best == 1 )
            p = ' a';
        elseif( best == 2 )
            p = ' b':
        end
        temp = V(s,iter);
        tmp2 = strcat( num2str( temp ), p )
    end
  end
end
```

Next Class

Matt

- Undergraduate Research Award (URA)
- Intelligent tutor for Physics
- Java implementation of a model of student behaviour and statistical algorithm to estimate how well student knows Physics

Ethan/Matt

- Project from my "Intelligent User Interfaces" class
- Work-Smart monitoring using Kinect camera (live demo!)
- Java implementation of website analysis and statistical model, C code for Kinect, Java code to control Web browser