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The ideas of duality and transforms are ubiq-
uitous in mathematics, the most classical ex-
ample being the Fourier transform in Harmonic
Analysis. Convex Analysis, an area founded by
W. Fenchel, J.-J. Moreau, and R.T. Rockfellar
in the mid-20th century, concerns convex con-
vex sets, convex functions, and their applications
to optimization. The counterpart of the Fourier
transform in Convex Analysis is the Fenchel con-
jugate. Suppose we have a real Hilbert space
X and a function f : X → ]−∞,+∞]. We
shall assume that f is proper, i.e., dom f =
{

x ∈ X
∣

∣ f(x) ∈ R
}

6= ∅. Then the Fenchel con-
jugate f∗ at u ∈ X is

f∗(u) = sup
x∈X

(

〈x, u〉 − f(x)
)

.

An immediate consequence of the definition is the
Fenchel-Young inequality

f(x) + f∗(u) ≥ 〈x, u〉 .
We also note that f∗ is convex and lower semicon-
tinuous because it is the supremum of the family
of affine continuous functions (〈x, ·〉 − f(x))x∈X .
One has the beautiful duality

f(x) = f∗∗(x) ⇔
{

f is convex and

lower semicontinuous,

which shows that such a function f can be rep-
resented as a supremum of affine functions x 7→
〈u, x〉 − f∗(u), where f∗(u) determines the con-
stant term of the affine function with slope u.

Given a subset C of X, its indicator function
ιC is defined by ιC(x) = 0, if x ∈ C; +∞, oth-
erwise. As a first example, we compute that if
f(x) = 〈x, a〉, where a ∈ X, then f∗ = ι{a}.
Thus, +∞ is unavoidable and to be embraced
in Convex Analysis. If f is convex and differ-
entiable, then the supremum in the definition of
f∗(u) can be found by calculus and we obtain

f∗
(

∇f(x)
)

= 〈x,∇f(x)〉 − f(x).

This formula explains not only why the Fenchel
conjugate is also known as the Fenchel-Legendre

transform but it also shows that the energy is
self-dual; in fact,

f = f∗ ⇔ f = 1
2‖ · ‖

2.

Given α > 0, one also computes that α exp and
the following (scaled) negative entropy are con-
jugates of each other:

(α exp)∗(u) =











+∞, if u < 0;

0, if u = 0;

u ln(u/α)− u, if u > 0.

By associating each α ∈ ]0, 1] with a colour, we
are able to display an entire family of conjugates.
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The family (α exp)α∈]0,1].
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The associated family of conjugates.
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Many more interesting pairs can be computed
(in closed form, or at least numerically). For in-
stance, if 1 < p < +∞, then

(

1
p | · |

p
)∗

= 1
q | · |

q, where 1
p + 1

q = 1

which, along with the Fenchel-Young inequality,
leads to an elegant proof of Hölder’s inequality.

The natural domain for Fenchel conjugation
is ΓX , the cone of functions that are convex,
lower semicontinuous, and proper on X. One
now wishes to obtain calculus rules for Fenchel
conjugation. In Harmonic Analysis, one is led
to discover convolution as crucial in describing
the Fourier transform of a product. The counter-
part in Convex Analysis is the infimal convolution
f�g, defined by

(f�g)(x) = inf
y∈X

(

f(y) + g(x− y)
)

.

Under appropriate hypotheses, one has

(f�g)∗ = f∗ + g∗ and (f + g)∗ = f∗
�g∗.

Moreover, (αf)∗(u) = αf∗(u/α) where α > 0.
Closely tied to the Fenchel conjugate of f ∈ ΓX

is the subdifferential operator ∂f . This is a set-
valued mapping on X, i.e., it maps from X to the
power set of X, and it is defined by

u ∈ ∂f(x) ⇔ (∀h ∈ X) f(x)+ 〈h, u〉 ≤ f(x+h).

Now equality in the Fenchel-Young inequality
characterizes subgradients, i.e., elements in the
subdifferential, in the sense that

f(x) + f∗(u) = 〈x, u〉 ⇔ u ∈ ∂f(x)

⇔ x ∈ ∂f∗(u).

When f is continuous at x, then differentiability
of f at x is the same as requiring ∂f(x) to be a
singleton, in which case ∂f(x) = {∇f(x)}. When
dom f = X = R, then the left (f ′

−) and right (f ′
+)

derivatives exists at every x and

∂f(x) =
[

f ′
−(x), f

′
+(x)

]

.

Thus, the subdifferential operator is a powerful
generalized derivative. It also has a property crit-
ical for Optimization:

0 ∈ ∂f(x) ⇔ x is a global minimizer of f .

Suppose that Y is another real Hilbert space,
A : X → Y is continuous and linear, and g ∈ ΓY ,
The most important theorem concerns Fenchel-
Rockafellar duality, which involves the primal
problem

(P ) minimize
x∈X

f(x) + g(Ax),

and the associated dual problem

(D) minimize
y∈Y

f∗(−A∗y) + g∗(y).

Set µ = inf
{

f(x) + g(Ax)
∣

∣ x ∈ X
}

and µ∗ =

inf
{

f∗(−A∗y) + g∗(y)
∣

∣ y ∈ Y
}

. Then µ ≥ −µ∗.
The key result asserts that in the presence of a
so-called (primal) constraint qualification such as
0 ∈ int

(

dom g−Adom f
)

, one has µ = −µ∗ and
the dual problem possesses at least one solution.
Let y be an arbitrary dual solution. Then the
entire set of primal solutions is obtained as

∂f∗(−A∗y) ∩A−1∂g∗(y).

As an example, one may formally derive the well
known Linear Programming (LP) Duality, which
concerns

inf
{

〈c, x〉
∣

∣ x ≥ 0, Ax = b
}

,

and
sup

{

〈b, y〉
∣

∣ y ∈ R
m, A∗y ≤ c

}

,

where c ∈ X = R
n, A ∈ R

m×n, b ∈ Y = R
m, and

vector inequalities are interpreted entry-wise, by
setting f = 〈·, c〉+ ιRn

+
and g = ι{b}.

Let f ∈ ΓX . Then the operator ∂f + Id
is surjective; here Id denotes the identity map-
ping. The inverse operator (∂f + Id)−1 is actu-
ally single-valued and called the proximal map-
ping Proxf . In view of

x = Proxf x ⇔ x is a global minimizer of f

and, for all x and y in X,

‖Proxf x− Proxf y‖2 ≤ ‖x− y‖2

− ‖(Id− Proxf )x− (Id− Proxf )y‖2,
Proxf is Lipschitz continuous with constant 1 and
thus enables fixed-point algorithmic approaches
to optimization problems.

Turning to further applications, let

q = 1
2‖ · ‖

2.

Strict-smooth duality : When X = R
n and

dom f = dom f∗ = X, then f is strictly convex if
and only if f∗ is differentiable.

Moreau envelope and Moreau decomposition:
The beautiful identity

(f�q) + (f∗
�q) = q

becomes
Proxf +Proxf∗ = Id

after taking the derivative. Let PY denote the
projector onto the closed subspace Y of X. Then
this last decomposition turns into the well known
orthogonal subspace decomposition

PY + PY ⊥ = Id
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since ι∗Y = ιY ⊥ and ProxιY = PY .
The material thus far has been classical, al-

though significant refinements continue to be
made. We conclude with a recent development.

Proximal average: Let f0 and f1 be in ΓX .
Then the proximal average fλ for 0 < λ < 1 is
defined by

(

(1− λ)(f0 + q)∗ + λ(f1 + q)∗
)∗ − q.

We have (fλ)
∗ = (f∗)λ, i.e., taking the Fenchel

conjugate and the proximal average commute,
and

Proxfλ = (1− λ) Proxf0 +λProxf1 .

The proximal average provides a homotopy be-
tween f0 and f1, even when dom f0∩dom f1 = ∅

and it is useful for the construction of antideriva-
tives and maximally monotone operators. By as-
sociating each λ ∈ [0, 1] with a colour, we are able
to display the full family of proximal averages;
here is a graph of the family of proximal averages
(fλ)λ∈[0,1] of f0(x) = −

√
−x + ι[−3/2,0](x) and

f1 = f0 ◦ (−Id).
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The following reading list is a starting point to ex-
plore the theory, history, applications, and (sym-
bolic and numerical) computation of Fenchel con-
jugates.
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