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Abstract—In this paper, we report a novel heuristic for requan-
tizing JPEG images. The resulting images are generally smaller
and often have improved perceptual image quality over a “blind”
requantization approach, that is, one that does not consider the
properties of the quantization matrices. The heuristic is supported
by a detailed mathematical treatment which incorporates the well-
known Laplacian distribution of the AC discrete cosine transform
(DCT) coefficients with an analysis of the error introduced by re-
quantization. We note that the technique is applicable to any image
compression method which employs discrete cosine transforms and
quantization.

Index Terms—Compression, JPEG image format, quantization,
recompression, requantization.

I. INTRODUCTION

T HE JPEG image compression standard [1]–[5] is em-
ployed in a large number of image-intensive applications.

In some of these applications, requantization is required when
the amount of compression needed is unknown in advance.
The Internet provides a good example: with the proliferation of
different clients and connection speeds, it is often not possible
to knowa priori what a suitable compression level is. (This has
led to the invention of, for example, transformational proxies,
which transform web images on the fly based on real-time
measurements of client properties and connection speed.)
Ideally, one would like to always work from the original image
when requantizing since JPEG compression is lossy. However,
the original image is not always available: it may no longer
exist or it may be too difficult to retrieve in real time.

Requantizing an already quantized image can lead to seem-
ingly unpredictable behavior and unwanted artifacts. The fol-
lowing experiment can be reproduced using any photo-realistic
image: consider the JPEG image shown in Fig. 1 which was ob-
tained by compressing the test image Lena to quality level Q75,
where Q denotes the th quality setting suggested by the In-
dependent JPEG Group (IJG) [5]. Requantizing the Q75 image
to Q50, in other words not employing the original, gives the re-
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Fig. 1. JPEG Q75 imageLena� 75.

Fig. 2. JPEG imageLena� 75� 50, requantized fromLena� 75 to Q50.

sulting image in Fig. 2, which is 19% smaller, but has consider-
able visual artifacts: the Q50 version looks “grainier” than the
Q75 image. Contrary to intuition, if the Q75 image is requan-
tized to Q48, the grainy artifacts disappear, as seen in Fig. 3.

1057-7149/03$17.00 © 2003 IEEE



844 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 7, JULY 2003

Fig. 3. JPEG imageLena� 75� 48, requantized fromLena� 75 to Q48.

The Q48 image is perceptually much closer to the Q75 image
than the Q50, yet is 37% smaller. In other words, this experi-
ment shows that the IJG quality rating scale is not perceptually
monotone. Similar phenomena were observed and discussed by
Chan in [6] and [7].

In this paper we present a new heuristic algorithm that requan-
tizes any JPEG image to one whose quantization matrices ap-
proximate fixed, user-specified quantization matrices so that the
artifacts observed in the previous example are avoided. Our ap-
proach has application not only to the JPEG image compression
standard, but to any method which employs a DCT-based trans-
form step, such as the popular MPEG 1, MPEG 2 and MPEG 4
video coding algorithms [8, Sections 6.1, 6.4, 6.5].

The paper is organized as follows. The Laplacian distribu-
tion of the AC DCT coefficients is discussed in Section II. In
Section III, the effect of requantizing an integer in two steps is
studied. The error introduced by dequantizing a Laplacian dis-
tribution twice is analyzed in Section IV and applied to JPEG
images in Section V. Section VI contains a detailed description
of our new heuristic algorithm.

II. DISTRIBUTION OF JPEG DCT COEFFICIENTS

A. Main Steps of JPEG Image Compression

1) The image is separated into three color components.
2) Each component is partitioned into nonoverlapping 88

blocks.
3) Each block is transformed using the two-dimensional

Discrete Cosine Transform (DCT).
4) Each transformed block is quantized with respect to an

8 8 quantization matrix, which can be chosen indepen-
dently for all three color channels.

5) The resulting data is compressed, using Huffman or arith-
metic coding.

B. Continuous Laplacian Distribution

We collect the transformed coefficients (from Step 3 of Sec-
tion II-A) for each color component by frequency. There are 64
frequencies, and it is known ([9]–[12]) that the histogram of co-
efficients corresponding to any one of the 63 AC frequencies
resembles aLaplacian distribution.

Recall that the probability density function
of a Laplacian with zero mean and parameter is

, and that the corresponding
cumulative distribution function is given explicitly by

if ;
if .

Let be a continuous random variable with probability func-
tion . Then the expected value of is , and the
variance of is known to be [11], [12].

Comparing the distribution of the DCT coefficients to a
Laplacian distribution requires care — the former is discrete,
while the latter is continuous.

C. Discrete, Dequantized Laplacian Distribution

We now focus on the distribution of the dequantized DCT
coefficients. For a fixed AC frequency and a fixed color compo-
nent, let be the correspondingquantizer
(i.e., the quantization matrix entry associated with the fixed fre-
quency) and

be thedequantizedDCT coefficients,i.e.: the original image is
partitioned into 8 8 blocks, and thequantizedDCT coeffi-
cients are . We view

as a random sample of sizetaken by the dis-
crete random variable

round

Proposition 1 ([13], [14]): Let be the probability density
function associated with the discrete random variable. Then

if ;

if .

Moreover, and
.

D. Maximum Likelihood Estimation of the Laplacian
Parameter

Our method of choice for estimating the Laplacian param-
eter from the observed dequantized DCT coefficients

(see Section II-C) is the fol-
lowing result of Price and Rabbani, whose original formulation
considered the quantized coefficients.
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TABLE I
STATISTICS OF THEML ESTIMATES OF�

Proposition 2 (Method of Maximum Likelihood) [13],
[14]: Let be the number of indices with

, , and . Then

is theMaximum Likelihood estimatorfor . (If , then
becomes .)

We considered eight standard images
( , and

, taken from [15]), and compressed each to quality
Q100, Q90, Q80, Q70, Q60, and Q50, yielding a total of 48
test images. Using Proposition 2, we estimated the Laplacian
parameter by the Method of Maximum Likelihood1 for each
DCT AC coefficient. The statistics, summarized in Table I,
forms the basis for the numerical experiments in Section IV.

III. D EQUANTIZATION: DIRECT VERSUSDETOUR

We now consider the problem of dequantizing twice, which
occurs implicitly in the process of recompressing JPEG images
by requantization.

Suppose and belong to with . Let be
in . Compare thedirect dequantizationof with respect to

, i.e., round , to thetwo-step dequantization
of with respect to , preceding a“detour” via

round round . We think here of and as
entries of the quantization tables of the old and new requantized
images, respectively, with both quantizing the same AC entry.
Numerical experiments suggest that the difference between the
two dequantizations cannot be described more easily except for
special cases. Some basic properties are summarized in the next
result.

Proposition 3 (Direct versus Detour) ([14]):Let
round , round , and

round . Let lcm , the least common
multiple of and . Then:

i) .
ii) If , then and .
iii) If is odd and , then .

1The Kolmogorov-Smirnov test shows that the Maximum Likelihood esti-
mator is superior to estimators that are based on the Method of Moments; see
[14] for details.

iv) even multiples over estimate: let be even,
, and . Then either if

or , otherwise.
v) Let be even, , and .

Then , if ; and , if

The error for larger is more complicated.
Theoverestimationin Proposition 3.(iv) comes from the fact

that the “round” function rounds positive half-integersup. For
general , the problem of concisely and usefully deter-
mining the difference — without actually computing it
— is quite difficult. Therefore, we will discuss numerical ap-
proaches to this problem in Section IV.

IV. DEQUANTIZATION: ERROR AND ENTROPY

FOR THELAPLACIAN

Since the distribution of each DCT AC coefficient is well
approximated by a Laplacian (Section II-C), recompressing
a JPEG image by requantization leads to questions about the
behavior of the error resulting from dequantizing a Laplacian
twice. In this section, the problem of determining the error is
made mathematically precise and tackled numerically. We also
consider the entropy of the twicely dequantized Laplacian.

A. Mathematical Description

Fix a Laplacian parameter , and , . The error
made by dequantizing in two steps is given by

round
round

Since the dequantization convention in JPEG [5] is defined in
terms of nonnegative values, it suffices to consider the case
when . Employing Proposition 1 (with ) and its
notation, we see that the(weighted absolute) errormade by de-
quantizing the given Laplacian in two steps is

Our definition of is simpler than that of Chan [6], which
compares the outcome of dequantizing twice to the result of de-
quantizing directly; we believe our approach more closely re-
sembles the actual requantization environment, as one typically
wants to be close to the original. However, we employ her key
idea of breaking up the error into two components: we write our
error as , where and are both nonnegative
and measureincreaseanddecreasein amplitude, respectively.
The components are given by

and

Note that , , all depend implicitly on , , . With these
definitions, we can now interpret the two-stage dequantization
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of the Laplacian within the context of JPEG images:If the com-
ponent (resp. ) dominates, then the amplitude increases
(resp. decreases) and we thus expect the image dequantized in
two steps to be grainier/sharper (resp. blockier/smoother) than
the original.

Keeping and fixed, one would expect that these errors
are increasing functions of . Surprisingly, this is not the case;
hence we ideally aim to findlocal minimizers, and in this way
the problem of requantizing thus amounts to finding
such that is a local minimum of these error measures. As this
appears to be intractable analytically, we will reason numeri-
cally.

It will be illuminating to track the entropy of the doubly de-
quantized Laplacian.2 Let be as in Section I, and define dis-
crete random variables

round and round

Proposition 1 (with ) provides an explicit formula for
the probability density function corresponding to. While the
probability density function corresponding to, which we de-
note by , admits no closed form, it can easily be computed nu-
merically. Theentropyof the corresponding doubly dequantized
Laplacian is now defined by

where by convention. Note that depends implic-
itly on , , . Analogously to the preceding discussion of the
error, we are interested in the behavior of— where and
are fixed but varies—as a measure of compressability.

B. Numerical Experiments: Approach and Results

To study numerically , , , and as functions of ,
we require a sensible range for the Laplacian parameter, and
a suitable point of truncation. In view of Table I, we choose
the range of to be [0.01, 2], while the point of truncation
is selected to conform with the following fact that the JPEG
image format implicitly constrains the range of DCT coefficient
values:

Proposition 4 [14]: Suppose is an 8 8 integer matrix
with values in , and let be the two-dimen-
sional DCT of . Then the magnitude of every AC DCT coef-
ficient is never larger than 1020.

Therefore, we considered various values of ; for
the corresponding Laplacian distribution with frequency
(see Proposition 1 with ), we truncated the distribution at
1020 and renormalized.

We computed the errors of Section IV-A numerically, for all
, in with , corresponding to the

JPEG baseline standard. We then collected the errors in an upper
triangular 255 255 matrix, where the ( , ) entry is the
error corresponding to the fixed. The resulting matrices of er-
rors , , , respectively, are visualized in Fig. 4–6, respec-
tively, for (first quartile), chosen because the im-
portant features are more pronounced and hence easier to spot.3

2We are grateful to an anonymous referee for making this pertinent sugges-
tion.

Fig. 4. � = 0:0710 (first quartile), errore , maximum entry 11.8.

Fig. 5. � = 0:0710 (first quartile), errore , maximum entry 14.1.

When these error matrices are calculated using a different dis-
tribution, quite different behavior is observed, which underlines
the crucial importance of the Laplacian distribution to this phe-
nomenon. These images—along with qualitatively similar error
images corresponding to other values of, which we omit for
brevity — give rise to the following observations:

3The matrices were created withGNU Octave [16]. We used the color map
jet, with range: darkblue (minimum)! blue! cyan! green! yellow!
red! dark red (maximum). To bring out the features fore and e more
clearly, we displayed the element-wise square root of these error matrices.
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Fig. 6. � = 0:0710 (first quartile), errore = e + e , maximum entry 18.2.

• the error images exhibit ridges whenis approximately
an even multiple of (see Fig. 6);

• the (resp. ) error images exhibit the same ridges (see
Fig. 4 resp. Fig. 5);

• this behavior is gradual as increases, with the ridges
disappearing more quickly.

Figs. 4– 6 give us a good view of the overall behavior. It is
instructive to inspect a fixedrow of the error matrices, i.e., the
error curves for fixed , and varying , and to observe the
striking split of into the components and . See Fig. 7,
where (mean) and . We point out that the
characteristics of fixedrowsand also fixedcolumnsof the error
matrices can be used to explain requantization phenomena re-
ported by Chan [6] for quotients close to 2, 3, or 4.

Handling the entropy analogously, we conclude that

• the entropy decreases to 0, with marked drops when
is an even multiple of .

See Fig. 8, where (mean) and (which are
the same parameters as those used in the generation of Fig. 7).

V. REQUANTIZATION ERROR FORJPEG IMAGES

A. Key Observations

The numerical results of Section IV-B lead us to postulate the
following.

Observation 5: Suppose and are fixed, and denote the
set of positive even integers by . Then , , , , viewed
as functions of , satisfy the following.

i) The total error is monotone increasing, with the excep-
tion of “dippers” around points , where

.
ii) The (amplitude-intensifying) error is overall de-

creasing to 0. More importantly, it is increasing on

Fig. 7. � = 0:1788 (mean),q = 5. Red (e), Green (e ), Blue (e ).

Fig. 8. � = 0:1788 (mean),q = 5, entropyh.

intervals , and there is a sharp drop
between and , where .

iii) The (amplitude-reducing) error is overall increasing
and approaching. More significantly, it is nearly con-
stant on intervals , with a sharp rise
between and , where .

iv) The entropy (a measure of compressability) is de-
creasing to 0, with a particularly sharp drops between

and , where .

Note that the sharp changes of (resp. ) in (ii) (resp. (iii))
of Observation 5 parallel the errors of two-step versus direct re-
quantization in item (iv) (resp. item (v)) of Proposition 3. Ob-
servation 5 has the following consequences for recompressing
JPEG images by requantization.

Observation 6 (consequences for Recompression): The quo-
tient is crucial:

• there is a sharp divide in the type of error and in the rate
of compression for values of in the vicinity of an even
multiple of , say , where is even;

• recompressing with or less is amplitude inten-
sifying and thus sharper/grainier images are obtained;

• recompressing with or more is amplitude
reducing and so smoother/blockier images are received;
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• recompression with or more yields signif-
icantly better compression rates than recompression with

or less.

B. An Example: The Introductory Images Revisited

Recall that the image given in Fig. 1 is of quality Q75. By
Observation 6, the crucial quantity is the element-wise quotient
of the new quantization matrix divided by Q75. It turns out that
all entries of these element-wise quotient matrices Q50./Q75
and of Q48./Q75 are very close to 2: specifically, 55.6% and
12.7% of Q50./Q75 and of Q48./Q75, respectively, are equal to
2, with 44.4% of Q50./Q75 slightly less than 2 and 84.1% of
Q48./Q75 slightly greater than 2.

In view of Observation 6, and compared to the given image
shown in Fig. 1, we thus predict the image shown in Fig. 2,
corresponding to Q50, to be much sharper/grainier, and the
image shown in Fig. 3, corresponding to Q48, to be much
smoother/blockier. This is precisely the case; in fact, we per-
ceive the Q48 version as smooth, and the Q50 version as grainy.
Most importantly, the Q48 version appears to be perceptually
closer to the original than the Q50 version. Moreover, as
predicted and already pointed out in the Introduction, the Q48
version is substantially smaller in file size than the Q50 version.

VI. CONSEQUENCES FORRECOMPRESSION

We now present a heuristic algorithm for recompressing
JPEG images that avoids the aforementioned “grainy” artifacts
and seeks “smooth” artifacts instead. Proposition 3 and Sec-
tion IV-B show that the situation where the new quantizer
is (close to) an integer multiple of the old quantizer, say

for some , is special: in fact, if is odd,
then the “detour” via does not affect the resulting image
(Proposition 3.(iii)). However, if is even, then recompres-
sion is very sensitive, with strong amplitude increase (resp.
decrease) for (resp. ).

Now suppose we need to recompress a given (already com-
pressed) JPEG image. Assume(resp. ) is the original
(resp. target) quantization matrix, respectively. Using these two
matrices, we wish to find a new quantization matrix, in the
vicinity of , in order to requantize the given image. For
a fixed frequency, denote the corresponding quantizers by,

, and , respectively.

A. Heuristic Algorithm (Preliminary Version)

The new is constructed as follows: Let .
Then define

if ;
if is odd;
if and is even.

We do this for each of the 64 frequencies to obtain a new quan-
tization matrix , which is then used to recompress the given
image. The new quantization matrix picks up the little “dips” of

for every frequency, which are also local minima for.
By the very nature of its construction, this algorithm is good

at avoiding “grainy” recompression artifacts, but it is unclear
how it could achieve predetermined compression rates exactly.

An interesting topic for further research is the design of an al-
gorithm that would not only possess the perceptual qualities of
the present algorithm but that would also allow to specify the
desired compression rate in advance.

B. Heuristic Algorithm (Implemented and Experimentally
Validated Version)

In Section VI-A, we had to consider separate cases (odd and
even) to avoid the increase in amplitude. However, it is pos-

sible to unify these cases by modifying the rounding convention
used in the requantization, resulting in the following heuristic
algorithm:

First compute as in Section VI-A: . Sec-
ondly, define by

if ;
if .

Thirdly, by treating all frequencies, assemble a new quantiza-
tion matrix . Finally, requantize the given image with re-
spect to but observe amodified rounding convention, which
rounds genuine positive half-integers ( ) down (to-
ward zero).

We performed subjective tests to validate our predicted
results: we asked nine subjects to compare the implemented
heuristic algorithm of Section VI-B to a blind requantization
using theMean Opinion Scorerating from [17]. For all subjects,
the heuristic algorithm performed at least as well as a blind
requantization over most images, but noticeable improvements
in the subject’s ratings were observed for images in which the
aforementioned nonmonotonicity in the IJG quality rating scale
had been observed, thus confirming our predicted results. A
detailed discussion of our experiments can be found in [14].

VII. CONCLUSION

In this paper, we consider the problem of requantizing JPEG
images. We formulate and study this problem by utilizing
the Laplacian distribution of the DCT AC coefficients and
by splitting the error made during requantization into ampli-
tude-increasing and amplitude-decreasing components. Our
analysis explains the surprising perceptual nonmonotonicity of
the IJG quality scale and also the apparent content indepen-
dence of some requantization phenomena reported by Chan
[6]. Moreover, it leads to an experimentally validated algorithm
for finding new quantization matrices for recompression.

ACKNOWLEDGMENT

The authors wish to thank the referees and the associated ed-
itor for their helpful comments and suggestions.

REFERENCES

[1] “Various Documents and Links,” Joint Photographic Experts Group,
http://www.jpeg.org.

[2] W. B. Pennebaker and J. L. Mitchell, “JPEG Still Image Data Compres-
sion Standard,” Van Nostrand Reinhold, New York, 1993.

[3] J. Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM,
BMP. New York: ACM Press, 1999.

[4] D. Hankerson, G. A. Harris, and P. D. Johnson Jr.,Introduction to Infor-
mation Theory and Data Compression. Boca Raton, FL: CRC, 1997.

[5] “Various Documents,” Independent JPEG Group, http://www.ijg.org.



BAUSCHKE et al.: RECOMPRESSION OF JPEG IMAGES BY REQUANTIZATION 849

[6] S. Chan, “Recompression of Still Images,” University of Kent, Canter-
bury, U.K., Tech. Rep. 2-92*, 1992.

[7] , “The Use of the JPEG Image Compression Standard and the
Problem of Recompression,” Ph.D. dissertation, University of Kent,
Canterbury, U.K., 1992.

[8] A. Bovik, Handbook of Image and Video Processing, A. Bovik,
Ed. New York: Academic, 2000.

[9] R. C. Reininger and J. D. Gibson, “Distributions of the two-dimensional
DCT coefficients for images,”IEEE Trans. Commun., vol. COM-31, pp.
835–839, June 1983.

[10] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the DCT co-
efficient distributions for images,”IEEE Trans. Image Processing, vol.
9, pp. 1661–1666, Oct. 2000.

[11] S. R. Smoot and L. A. Rowe, “Laplacian model for AC DCT terms in
image and video coding,”Proc. 9th IEEE Image and Multidimension
Digital Signal Processing Workshop, 1996.

[12] , “Study of DCT coefficient distribution,” in Human Vi-
sion and Electronic Imaging, B. E. Rogowitz and T. N. Pappas,
Eds. Bellingham, WA: SPIE, 1996, vol. 2657.

[13] J. R. Price and M. Rabbani, “Biased reconstruction for JPEG decoding,”
IEEE Signal Processing Lett., vol. 6, pp. 297–299, Dec. 1999.

[14] M. S. Macklem, “Multidimensional Modeling of Image Fidelity
Measures,” M.Sc. thesis, Dept. Mathematics, Simon Fraser University,
Burnaby, BC, Canada, 2002.

[15] Standard Test Images, http://links.uwaterloo.ca/bragzone.base.html.
[16] J. W. Eatonet al., “GNU Octave,”, http://www.octave.org.
[17] J. Allnatt,Transmitted-Picture Assessment. New York: Wiley, 1983.

Heinz H. Bauschke (M’00) received the
“Diplom-Mathematiker (mit Auszeichnung)”
degree in 1990 from Goethe University, Frankfurt,
Germany, and the Ph.D. degree in mathematics in
1996 from Simon Fraser University, Burnaby, BC,
Canada, where he graduated with the Governor
General’s Gold Medal for achieving the highest
academic standing at the graduate level.

From 1996 to 1998, he was an NSERC Postdoc-
toral Fellow at University of Waterloo, University of
Santa Barbara, and Pennsylvania State University. He

then spent 3 years in Kelowna, BC, teaching at Okanagan University College
and researching for Packeteer Canada, where most of this work was completed.
He is now Assistant Professor at the University of Guelph, Ontario, in the De-
partment of Mathematics and Statistics. His current research interests include
optimization, image processing, and compression.

Christopher H. Hamilton (S’02) received the
B.Sc. degree in mathematics and physics in 2001
at Okanagan University College in Kelowna, BC,
Canada. He is currently pursuing the M.S. degree
at Simon Fraser University, Burnaby, BC, under the
supervision of Dr. Jonathan Borwein.

He is also a Research Associate at Packeteer
Canada, where he works on data/image compression
and image processing related problems.

Mason S. Macklem(S’01) received the B.A. degree
in mathematics in 2000 from Okanagan University
College, and the M.S. degree at Simon Fraser Uni-
versity (SFU), Burnaby, BC, Canada. He is currently
pursuing the Ph.D. degree at SFU, where he is in-
volved with the Centre for Experimental and Con-
structive Mathematics (CECM).

From April 2000 to August 2002, he was a
Research Assistant at Packeteer Canada, focusing
on perceptual image quality assessment. He is also
a Research Assistant with the CoLab collaborative

environment at SFU, working on developing interfaces for derivative-free op-
timization algorithms. His research interests include nonsmooth optimization,
image compression, vector quantization, pattern recognition, and human vision
modeling.

Mr. Macklem is a student member of the Society of Photonics and Interface
Engineers.

Justin S. McMichael received the B.Sc. degree in physics in 2000 from
Okanagan University College. He plans to complete an advanced degree in
physics.

He has worked as a Research Associate and Engineer for Workfire, which was
acquired subsequently by Packeteer. He is now working as director of advanced
technology for Itiva, Inc. His responsibilities include building tools to perform
the visualization, data acquisition, and basic analysis of images for this research
topic.

Nicholas R. Swartreceived the Ph.D. degree in electrical engineering from the
University of Waterloo, Waterloo, ON, in 1995.

After graduating, he spend two years as a Researcher at the National Optics
Institute, Sainte-Foy, QC, Canada, working on design and numerical modeling
of micromachined optical sensors and actuators. He subsequently spent three
years at Analog Devices, Cambridge, MA, where he worked as a CAD Man-
ager and microsystem design engineer. In addition, he managed a large soft-
ware research project in the area of sensor modeling, design and optimization,
which was funded with a multimillion dollar grant from DARPA. More recently,
he was Vice-President of Advanced Technology of Workfire Technologies Inc.,
a company which developed networking software, and which was acquired in
September of 2000 by Packeteer, Inc., leading to his position as Director of Ad-
vanced Technology. He is now with Analog Devices as a Senior CAD Engineer.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


