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The proximal gradient and its variants is one of the most attractive first-order algorithm for minimizing
the sum of two convex functions, with one being nonsmooth. However, it requires the differentiable part of
the objective to have a Lipschitz continuous gradient, thus precluding its use in many applications. In this
paper we introduce a framework which allows to circumvent the intricate question of Lipschitz continuity
of gradients by using an elegant and easy to check convexity condition which captures the geometry of the
constraints. This condition translates into a new descent Lemma which in turn leads to a natural derivation of
the proximal-gradient scheme with Bregman distances. We then identify a new notion of asymmetry measure
for Bregman distances, which is central in determining the relevant step-size. These novelties allow to prove
a global sublinear rate of convergence, and as a by-product, global pointwise convergence is obtained. This
provides a new path to a broad spectrum of problems arising in key applications which were, until now,
considered as out of reach via proximal gradient methods. We illustrate this potential by showing how our
results can be applied to build new and simple schemes for Poisson inverse problems.
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1. Introduction First-order methods have occupied the forefront of research in continuous
optimization for more than a decade. This is due to their wide applicability in a huge spectrum of
fundamental and disparate applications such as signal processing, image sciences, machine learn-
ing, communication systems, and astronomy to mention just a few, but also to their computational
simplicity which makes them ideal methods for solving big data problems within medium accuracy
levels. Recent research activities in this field are still conducted at a furious path in all the afore-
mentioned applications (and much more), as testified by the large volume of literature; see e.g.,
[29, 34] and references therein for an appetizer.

A fundamental generic optimization model that encompasses various classes of smooth/nonsmooth
convex models arising in the alluded applications is the well known composite minimization prob-
lem which consists in minimizing the sum of a possibly nonsmooth extended valued function with
a differentiable one over a real Euclidean space X (see more precise description in §2):

(P) inf{f(x) + g(x) : x∈X}.
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Despite its striking simplicity, this model is very rich and has led to the development of fundamental
and well known algorithms. A mother scheme is the so-called forward-backward splitting method,
which goes back at least to Passty [30] and Bruck [12] and which was developed in the more general
setting of maximal monotone operators. When specialized to the convex problem (P), this method
is often called the proximal gradient method (PGM), a terminology we adopt in this article. One of
the earliest work describing and analyzing the PGM includes for example the work of Fukushima
and Milne [21]. The more recent work by Combettes and Wajs [17] provides important foundational
insights and has popularized the method for a wide audience. More recently, the introduction of
fast versions of the PGM such as FISTA by Beck-Teboulle [5] – which extends the seminal and
fundamental work on the optimal gradient methods of Nesterov [27]– has resulted in a burst of
research activities.

A central property required in the analysis of gradient methods, like the PGM, is that of the
Lipschitz continuity of the gradient of the smooth part. Such a property implies (for a convex
function is equivalent to) the so-called descent Lemma, e.g., [9], which provides a quadratic upper
approximation to the smooth part. This simple process is at the root of the proximal gradient
method, as well as many other methods. However, in many applications the differentiable function
does not have such a property, e.g., in the broad class of Poisson inverse problems, (see e.g. the
recent review paper [8] which also includes over 130 references), thus precluding therefore the use of
the PGM methodology. When both f and g have an easily computable proximal operator, one could
also consider tackling the composite model (P) by applying the alternating direction of multipliers
ADM scheme [23]. For many problems, these schemes are known to be quite efficient. However,
note that even in simple cases, one faces several serious difficulties that we now briefly recall. First,
being a primal-dual splitting method, the ADM scheme may considerably increase the dimension
of the problem (by the introduction of auxiliary splitting variables). Secondly, the method depends
on one (or more) unknown penalty parameter that needs to be heuristically chosen. Finally, to
our knowledge, the convergence rate results of ADM based schemes are weaker, holding only for
primal-dual gap in terms of ergodic sequences, see [14, 25, 33] and references therein. Moreover,
the complexity bound constant not only depends on the unknown penalty parameter, but also on
the norm of the matrix defining the splitting, which in many applications can be huge.

The main goal of this paper is to rectify this situation. We introduce a framework which allows to
derive a class of proximal gradient based algorithms which are proven to share most of the conver-
gence properties and complexity of the classical proximal-gradient, yet where the usual restrictive
condition of Lipschitz continuity of the gradient of the differentiable part of problem (P) is not
required. It is instead traded with a more general and flexible convexity condition which involves
the problem’s data and can be specified by the user for each given problem. This is a new path
to a broad spectrum of optimization models arising in key applications which were not accessible
before. Surprisingly, the derivation and the development of our results starts from a very simple
fact (which appears to have been overlooked) which underlines that the main ingredient in the
success of PGM is to have an appropriate descent Lemma, i.e., an adequate upper approximation
of the objective function.

Contribution and Outline The methodology underlying our approach and leading to a
proximal-based algorithm freed from Lipschitz gradient continuity is developed in Section 2. A key
player is a new simple, yet useful descent Lemma which allows to trade Lipschitz continuity of
the gradient with an elementary convexity property. We further clarify these results by deriving
several properties and examples and highlighting the key differences with the traditional proximal
gradient method. In particular, an important notion of asymmetry coefficient is introduced and
shown to play a central role in determining the relevant step size of the proposed scheme. The
method is presented in Section 3 and its analysis is developed in Section 4, where a sublinear
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O(1/k) rate of convergence is established without the traditional Lipschitz gradient continuity of
the smooth function. As a by-product, pointwise convergence of the method is also established.
To demonstrate the benefits and potential of our new approach, we illustrate in Section 5 how
it can be successfully applied to a broad class of Poisson linear inverse problems, leading to new
proximal-based algorithms for these problems.

Notation Throughout the paper, the notation we employ is standard and as in [32] or [4]. We
recall that for any set C, iC(·) stands for the usual indicator function, which is equal to 0 if x∈C
and ∞ otherwise, and C denotes the closure of C. We set R++ = (0,+∞).

2. A New Look at The Proximal Gradient Method We start by recalling the basic
elements underlying the proximal gradient method and its analysis which motivates the forthcoming
developments.

Let X = Rd be a real Euclidean space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Given a
closed convex set C with nonempty interior consider the convex problem

inf{Φ(x) := f(x) + g(x) : x∈C}

where f, g are proper, convex and lower semicontinuous (lsc), with g continuously differentiable on
intdomg 6= ∅, (see later on below for a precise description).

First consider the case when C = Rd. For any fixed given point x ∈ X and any λ > 0, the
main step of the proximal gradient method consists in minimizing an upper approximation of the
objective obtained by summing a quadratic majorant of the differentiable part g and f , leaving
thus untouched the nonsmooth part f of Φ:

x+ = arg min{g(x) + 〈∇g(x), u−x〉+ 1

2λ
‖u−x‖2 + f(u) : u∈Rd}.

This is the proximal gradient algorithm, see e.g. [6]. Clearly, the minimizer x+ exists and is unique,
and ignoring the constant terms in x reduces to

x+ = arg min
u
{f(u) +

1

2λ
‖u− (x−λ∇g(x))‖2} ≡ proxλf (x−λ∇g(x)) , (1)

where proxϕ(·) stands for the so called Moreau’s proximal map [26] of a proper lsc convex function
ϕ. Thus, the PG scheme consists of the composition of a proximal (implicit/backward) step on f
with a gradient (explicit/forward) step of g.1

A key assumption needed in the very construction and in the analysis of PG scheme is that
g admits a Lipschitz continuous gradient Lg. As a simple consequence of this assumption (for a
convex function g, this is an equivalence), we obtain the so-called descent Lemma, see e.g., [9] ,
namely for any L≥Lg,

g(x)≤ g(y) + 〈x− y,∇g(y)〉+ L

2
‖x− y‖2, ∀x, y ∈Rd. (2)

This inequality not only naturally provides a upper quadratic approximation of g, but is also a
crucial pillar in the analysis of any PG based method.

This leads us to the following simple observation:

1 This also can be seen by convex calculus which gives 0 ∈ λ(∂f(x+) + ∇g(x) + x+ − x), which is equivalent to
x+ = (Id+λ∂f)−1 ◦ (Id−λ∇g)(x)≡ proxλf (x−λ∇g(x)) .
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Main Observation Developing the squared norm in (2), simple algebra shows that it can be
equivalently written as:(

L

2
‖x‖2− g(x)

)
−
(
L

2
‖y‖2− g(y)

)
≥ 〈Ly−∇g(y), x− y〉 ∀x, y ∈Rd,

which in turn is nothing else but the gradient inequality for the convex function L
2
‖x‖2 − g(x).

Thus, for a given smooth convex function g on Rd, the descent Lemma is equivalent to say that
L
2
‖x‖2− g(x) is convex on Rd.
This elementary and known fact, (see, e.g., [4, Theorem 18.15(vi)]) seems to have been overlooked.

It naturally suggests to consider, instead of the squared norm used for the unconstrained case
C = Rd, a more general convex function that captures the geometry of the constraint C. This
provides the motivation for the forthcoming proximal gradient based algorithm and its analysis for
the constrained composite problem (P).

2.1. The Constrained Composite Problem Our strategy to handle the constraint set C
is standard: a Legendre function on C is chosen and its associated Bregman distance is used as a
proximity measure. Let us first recall the definition of a Legendre function.
Definition 1 (Legendre functions). [32, Chapter 26] Let h :X→ (−∞,∞] be a lsc proper

convex function. It is called:
(i) essentially smooth, if h is differentiable on intdomh, with moreover ‖∇h(xk)‖→∞ for every
sequence {xk}k∈N ⊂ intdomh converging to a boundary point of domh as k→+∞;
(ii) of Legendre type if h is essentially smooth and strictly convex on intdomh.

Also, let us recall the useful fact that h is of Legendre type if and only if its conjugate h∗ is of
Legendre type. Moreover, the gradient of a Legendre function h is a bijection from int domh to
intdomh∗ and its inverse is the gradient of the conjugate ([32, Thm 26.5], that is we have,

(∇h)−1 =∇h∗ and h∗(∇h(x)) = 〈x,∇h(x)〉−h(x). (3)

Recall also that

dom∂h= intdom h with ∂h(x) = {∇h(x)}, ∀x∈ intdom h. (4)

The Problem and Blanket Assumptions Our aim is thus to solve

v(P) = inf{Φ(x) := f(x) + g(x) |x∈ domh},

where domh=C denotes the closure of domh.
The following assumptions on the problem’s data are made throughout the paper (and referred

to as the blanket assumptions).

Assumption A
(i) f :X→ (−∞,∞] is proper lower semicontinuous (lsc) convex,
(ii) h :X→ (−∞,∞] is of Legendre type,
(iii) g : X → (−∞,∞] is proper lsc convex with domg ⊃ domh, which is differentiable on

intdomh,
(iv) domf ∩ intdomh 6= ∅,
(v) −∞< v(P) = inf{Φ(x) : x∈ domh}= inf{Φ(x) : x∈ domh}.
Note that the second equality in (v) follows e.g. from [4, Proposition 11.1(iv)] and (iv) because

dom(f + g)∩ intdom h= domf ∩ intdom h 6=∅.
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2.2. A New Descent Lemma Beyond Lipschitz Continuity Following our basic obser-
vation on the classical proximal gradient, we introduce a condition on the couple (g,h) which
replaces the usual Lipschitz continuity property required on the gradient of g, by a convexity
assumption capturing in a very simple manner the geometry of the constraints.

A Lipschitz-like/Convexity Condition

(LC) ∃L> 0 with Lh− g convex on intdomh,

where we recall that h : X → (−∞,∞] is a Legendre function, and g : X → (−∞,∞] is a convex
function with domg⊃ domh, and g is continuously differentiable on intdomh.

Note that if L′ ≥L the same property holds with L′.
Clearly, as seen above, when h(x) = 1

2
‖x‖2 one recovers the property that ∇g is Lipschitz con-

tinuous with constant L.
We shall see soon that the mere translation of condition (LC) into its first-order characterization

immediately yields the new descent Lemma we seek for (see Lemma 1 below).
Beforehand, we introduce the fundamental proximity measure associated to any given Legendre

function h; it is called the Bregman distance [11]

Dh(x, y) = h(x)−h(y)−〈∇h(y), x− y〉, ∀x∈ domh, y ∈ intdomh. (5)

The use of Bregman distances in optimization within various contexts is well spread and cannot
be reviewed here. For initial works on proximal Bregman based methods we refer the reader to
[13, 35, 15, 19]. Many interesting results connecting for example Bregman proximal distance with
dynamical systems can be found in [10] and references therein, and much more properties and
applications can be found in the fundamental and comprehensive work [2].

Clearly, Dh is strictly convex with respect to its first argument. Moreover, Dh(x, y)≥ 0 for all
(x, y) ∈ domh × intdomh, and it is equal to zero if and only if x = y. Hence Dh provides, as
announced, a natural proximity measure between points in the domain of h. Observe however that
Dh is in general asymmetric, (see more below in §2.3).

We are ready to establish, the simple but key extended descent lemma.

Lemma 1 (Descent lemma without Lipschitz Gradient Continuity). Let h :X→ (−∞,∞]
be a Legendre function, and let g :X→ (−∞,∞] be a convex function with domg⊃ domh which is
continuously differentiable on intdomh. Then, the condition (LC) for the pair of functions (h, g)
is equivalent to(

∀(x, y)∈ intdom h× intdom h
)

g(x)≤ g(y) + 〈∇g(y), x− y〉+LDh(x, y). (6)

Proof. For any y ∈ intdomh, the function Lh− g is convex on intdom h if and only if the gradient
inequality holds, i.e.,(

∀x∈ intdom h
)

(Lh(x)− g(x))− (Lh(y)− g(y))≥ 〈L∇h(y)−∇g(y), x− y〉.

Rearranging the above inequality gives

g(x) ≤ g(y) + 〈∇g(y), x− y〉+L (h(x)−h(y)−〈∇h(y), x− y〉)
= g(y) + 〈∇g(y), x− y〉+LDh(x, y),

where the equality follows from the definition of Dh given in (5). �
It is easy to see that the condition (LC) admits various alternative reformulations which can

facilitate its checking, and which we conveniently collect in the following.
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Proposition 1. Consider the pair of functions (g,h) and assume that the above regularity
conditions on h and g holds. Take L> 0. The following statements are equivalent

(i) Lh− g is convex on intdom h, i.e. (LC) holds,
(ii) Dg(x, y)≤LDh(x, y) for all x, y ∈ intdom h,
(iii) DLh−g ≥ 0 on intdom h,
(iv) 〈∇g(x)−∇g(y), x− y〉 ≤L (Dh(x, y) +Dh(y,x)), for all x, y ∈ intdomh.

Moreover, when both g,h are assumed C2 on the interior of their domain, then the above are
equivalent to

(v) ∃L> 0, L∇2h(x)−∇2g(x)� 0, for all x∈ intdomh.

Proof. The proof easily follows from the definition of the Bregman distance and the usual convexity
properties. Indeed, first note that elementary algebra yields LDh −Dg = DLh−g, which, in view
of Lemma 1, immediately proves the equivalence between items (i), (ii) and (iii). Likewise, the
convexity of Lh − g is equivalent to the monotonicity of its gradient, which together with the
definition of Dh yields

〈∇g(x)−∇g(y), x− y〉 ≤L〈∇h(x)−∇h(y), x− y〉=L (Dh(x, y) +Dh(y,x)) ,

proving the equivalence of (LC)-(iv). Finally, with g and h being C2, we have the equivalence
(LC)-(iv). �

Remark 1. Note that if we assume,

(D-Lip) ‖∇g(x)−∇g(y)‖ ≤L Dh(x, y) +Dh(y,x)

‖x− y‖
, for all x 6= y ∈ intdomh,

then by Cauchy-Schwarz inequality we immediately obtain

〈∇g(x)−∇g(y), x− y〉 ≤L (Dh(x, y) +Dh(y,x)) , for all x 6= y ∈ intdomh,

which shows that (iv) holds, and hence so does (i), i.e., (LC). Thus, (D-Lip) provides a sort of
Lipschitz-like gradient property of g with respect to Dh. Clearly, when h= 1

2
‖ · ‖2, (D-Lip) reduces

to the Lipschitz gradient continuity of g with constant L.
One may construct various examples where (LC) holds. For simplicity, we focus on the case

when X =R, which can be utilized to obtain higher-dimensional Bregman distances with separable
structure, i.e., with h(x) =

∑d

j=1 hj(xj) and hj defined on R (with possibly real-extended values),
and which are the most fundamental class (in most cases, all the hi are also identical). A more
involved and interesting example is given in Section 5.
Example 1. We first list some of the most popular choices for h which are well documented in

the literature, see e.g., [11, 35, 19, 2], and where more examples are given. Each example is a one
dimensional h which is Legendre. To obtain the corresponding Legendre function h̃ and Bregman
distance in Rd simply use the formulae h̃(x) =

∑n

j=1 h(xj) and Dh̃(x, y) =
∑n

j=1Dh(xj, yj).
• Energy h(x) = 1

2
x2,domh=R and coincides with h∗.

• Boltzmann-Shannon entropy h(x) = x logx, domh = [0,∞], (0 log 0 = 0). Then, h∗(y) =
expy− 1 with domh∗ =R.
• Burg’s entropy h(x) =− logx, domh= (0,∞). Then, h∗(y) =− log(−y)−1, with domh∗ =

(−∞,0).
• Fermi-Dirac entropy h(x) = x logx+(1−x) log(1−x), domh= [0,1]. Then, h∗(y) = log(1+

expy), with domh∗ =R.
• Hellinger h(x) =−

√
1−x2, domh= [−1,1]. Then, h∗(y) =

√
1 + y2, with domh∗ =R.

• Fractional Power h(x) = (px − xp)/(1 − p), p ∈ (0,1), domh = [0,∞), [35]. Then, h∗(y) =
(1 + y/q)q,withdomh∗ = (−∞,−q],and where p+ q= pq.
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For all these examples, h is twice differentiable with h′′ > 0 on intdomh. Thus, (LC) is equivalent
to

sup
x∈intdom h

g′′(x)

h′′(x)
<+∞. (7)

Let us give two examples where g is C2 and does not have a classical Lipschitz continuous gradient,
yet where (7) holds.
• Let h be the Fermi-Dirac entropy. Then, (7) turns into sup0<x<1 x(1− x)g′′(x)<+∞, which

clearly holds when [0,1] ⊆ intdom g. For instance, this holds with g(x) = x logx which does not
have a Lipschitz gradient.
• Let h be the Burg’s entropy, and g(x) = − logx which does not have a Lipschitz gradient.

Then, (7) trivially holds.

2.3. A Symmetry Measure for Dh It is well known that Bregman distances are in general
not symmetric, except when h is the energy function because then Dh(x, y) = 1

2
‖x− y‖2. In fact as

pointed out by Iusem, (see [3]), Dh is symmetric if and only if h is a nondegenerate convex quadratic
form (with domh=Rd).2 It is thus natural to introduce a measure for the lack of symmetry in Dh.

Definition 2 (Symmetry coefficient). Given a Legendre function h : X → (−∞,∞], its
symmetry coefficient is defined by

α(h) := inf
{
Dh(x, y)/Dh(y,x)

∣∣ (x, y)∈ intdom h× intdom h, x 6= y
}
∈ [0,1]. (8)

Remark 2. (a) The fact that α(h)≤ 1 follows from this simple observation: given any distinct
points x, y in int domh, either D(x, y)/D(y,x) or D(y,x)/D(x, y) is less than or equal to 1.
(b) Note that by definition of Dh, and with h Legendre, using (3) we immediately obtain Dh(x, y) =

Dh∗(∇h(y),∇h(x)) for all (x, y)∈
(

intdomh
)2

and hence it follows that

α(h) = α(h∗).

(c) As we shall see in the next section the symmetry coefficient happens to play a fundamental role
as a safeguard for descent properties of the proposed proximal gradient based method. The biggest
stepsize that can be chosen in our method is indeed strictly upper bounded by the quantity

1 +α(h)

L
(9)

where L> 0 stands in place of the usual Lipschitz constant of ∇g from (LC).

By definition

(∀x∈ intdom h)(∀y ∈ intdom h) α(h)Dh(x, y)≤Dh(y,x)≤ α(h)−1Dh(x, y), (10)

where we have adopted the convention that 0−1 = +∞ and +∞× r= +∞ for all r≥ 0.
Clearly, the closer is α(h) to 1 the more symmetric Dh is, with perfect symmetry when α(h) = 1

i.e., when h is strictly convex and quadratic.
A total lack of symmetry may occur for functions that do not have full domain. For the two

key examples h(x) = x logx and h(x) =− logx namely the Boltzmann-Shannon and Burg entropy
kernels which often arise in applications one can indeed verify that α(h) = 0.

In fact, for the first example this is a consequence of the following result.

2 Explicitly: 1
2
〈x,Ax〉+ 〈b, x〉+ c, ∀x∈X, where A is positive definite, b∈X, and c∈R.
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Proposition 2 (Absence of symmetry). Suppose that h : X → (−∞,∞] is a Legendre
function and that domh is not open. Then α(h) = 0.

Proof. Fix x ∈ intdom h and let z ∈ domhr intdom h. Let {εk}k∈N be in (0,1) such that εk→ 0
and set for all integer k, xk = (1 − εk)z + εkx. Then xk → z and {xk}k∈N lies in intdom h. On
the one hand, [2, Theorem 3.7] implies that D(xk, x)→ D(z,x) ∈ R++. On the other hand, [2,
Theorem 3.8.(i)] yields D(x,xk)→+∞. Altogether,

D(xk, x)

D(x,xk)
→ 0,

which implies α(h) = 0. �
Hence if α(h) > 0, then domh is open, (and the same holds true for domh∗). This necessary

condition is however not sufficient. Indeed, for the second example with h being the Burg’s entropy,
with open domain (0,∞), one computes

D(1, x)

D(x,1)
=

x logx−x+ 1

x2−x−x logx
→ 0 as x→+∞,

and we deduce that α(h) = 0. On the positive side, with h(x) = x4, using calculus, one can verify
by a direct computation that α(h) = 2−

√
3> 0.

3. The Proximal Gradient Algorithm without a Lipschitz Continuous Gradient
Equipped with the generalized descent Lemma we can now develop the necessary tools to build and
analyze the proximal gradient method without the usual Lipschitz gradient continuity assumption.
For ease of reference the algorithm is called NoLips.

It should be noted that the proximal gradient method which uses Bregman distances is not by
itself a new algorithm. Indeed, it was already investigated through various works/contexts, see for
instance, [1, 7, 36], for more details and references therein.

The novel aspect of our approach resides in several facts:
– we circumvent the intricate question of Lipschitz continuity of gradients by using a simple,

elegant and easy to check condition on the geometry of g. Besides, this condition can immediately
be translated into a descent Lemma, a type of inequality which is at the heart of most works on
the complexity of first-order methods;

– our notion of asymmetry for Dh is identified as a sharp measure of the step-sizes allowed in
the proximal gradient method;

– when put together the above novelties allow for a transparent derivation and analysis of the
(Bregman) proximal gradient method and they open many possibilities for problems which were,
until now, considered as out of reach via proximal gradient methods.

Given a Legendre function h, for all x∈ intdomh and any step-size λ> 0, we define formally

Tλ(x) := arg min

{
f(u) + g(x) + 〈∇g(x), u−x〉+ 1

λ
Dh(u,x) : u∈X

}
. (11)

Again, note that when h is the energy, the above boils down to the classical proximal gradient
operator, the principle behind being called forward-backward splitting, [12, 30].

In the remainder, we shall systematically assume that the proximal gradient operator Tλ is well
defined on intdomh, meaning:

Tλ is nonempty, single-valued and maps intdom h in int dom h.
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Giving a universally relevant set of conditions for this well-posedness aspect is quite involved,
technical and somehow useless. Indeed this does not impact any other compartment of the subse-
quent analysis and practical examples show that the method is generally well defined.

We provide however with two natural assumptions very often met in practice. We recall
beforehand that for any given F : Rd → (−∞,∞], we say that F is supercoercive if
lim inf‖x‖→∞F (x)/‖x‖=∞, see e.g., [4, p.158] for further details.

Lemma 2 (Well-posedness of the method). Under the assumption A, if one of the follow-
ing assumptions holds:

(i) arg min
{

Φ(x) : x∈ domh
}

is compact
(ii) (∀λ> 0) h+λf is supercoercive,

then the map Tλ defined in (11) is nonempty and single-valued from intdom h to intdom h.

Proof. Fix x ∈ intdomh. Since h is strictly convex the objective in (11) may have at most one
minimizer. Assuming (i), we obtain that Φ + idomh is coercive, since Bregman distances are non-
negative, the objective within Tλ is also coercive and thus Tλ is nonempty. When assuming (ii),
the argument follows by the supercoercivity properties of the same objective, see [4]. The property
Tλ(x) is contained in int dom h is a general fact. It can be seen through the optimality condition
for Tλ(x) which implies that ∂h(Tλ(x)) must be nonempty. This forces Tλ(x) to belong to intdom h
by the Legendre property (4). �

3.1. The NoLips Algorithm We are now ready to describe our algorithm for solving

(P) inf{Φ(x) := f(x) + g(x) : x∈C},

where C is closed convex set with nonempty interior.

NoLips Algorithm
0. Input. Choose a Legendre function h with C = domh such that there exists L > 0 with

Lh− g convex on intdomh.
1. Initialization. Start with any x0 ∈ intdomh.
2. Recursion. For each k= 1, . . . with λk > 0, generate a sequence

{
xk
}
k∈N in int domh via

xk = Tλk(xk−1) = arg min
x∈X

{
f(x) +

〈
∇g(xk−1), x−xk−1

〉
+

1

λk
Dh(x,xk−1)

}
. (12)

Recalling our standing assumption on the non vacuity of Tλ the algorithm is well defined.

Splitting mechanism It is interesting to observe that Tλ shares the same structural decomposition
principle as the usual proximal gradient. Under very mild assumptions the above recursion can
indeed actually be split for computational purpose into “elementary” steps. Writing the optimality
condition for x+ = Tλ(x), we obtain

0∈ λ
(
∂f(x+) +∇g(x)

)
+∇h(x+)−∇h(x).

When ∇h(x)−λ∇g(x)∈ dom∇h∗ one can define

pλ(x) =∇h∗(∇h(x)−λ∇g(x)), (13)

then recalling that ∇h ◦∇h∗ = I (cf. (3)), the optimality condition reduces to

0∈ λ∂f(x+) +∇h(x+)−∇h(pλ(x)),
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which is nothing else but the optimality condition which characterizes x+ via the Bregman proximal
step

x+ = arg min

{
f(u) +

1

λ
Dh(u,pλ(x)) : u∈X

}
. (14)

Note that the formula (13) which defines pλ(·) is nothing but an interior Bregman gradient step
(see [1] and references therein), i.e.,

pλ(x) = arg min

{
〈∇g(x), u〉+ 1

λ
Dh(u,x) : u∈X

}
, (15)

which clearly reduces to the usual explicit gradient step when h= 1
2
‖ · ‖2. Finally observe that a

formal introduction of the proximal Bregman operator, see e.g., [35]

Proxhλf (y) = arg min{λf(u) +Dh(u, y) : u∈X} , y ∈ intdomh

allows to rewrite the NoLips algorithm simply as the composition of a Bregman proximal step with
an interior Bregman gradient step:

xk = Proxhλf (pλ(xk−1)). (16)

Remark 3. It should be carefully noted that the above decomposition necessitates that the
subproblems (14) (the prox/implicit step) and (15) (the gradient/explicit step) are well defined.
As previously pointed out, well-definedness is not in general an issue but formal guarantees depend
strongly on the geometry of the problem (see, e.g., Lemma 2).

Computing the mappings pλ(·), and Proxhλf (·).

As explained above, the algorithm NoLips requires to compute two specific objects:
• An (interior) Bregman projected-gradient step: pλ(·) as defined in (15).
• A prox-like step based on a Bregman distance: Proxhλf (pλ(·)), as defined in (14).

Bregman-like gradients: computing pλ(·). In the classical Euclidean proximal gradient method, the
first computation above reduces to a standard gradient step, i.e., pλ(x) = x−λ∇g(x). We now give
some examples for NoLips.

For convenience, for any given λ > 0 and for any x ∈ intdomh, define v(x) :=∇h(x)− λ∇g(x).
Then, as shown in (13), we have

pλ(x) =∇h∗(v(x)), v(x)∈ dom∇h∗. (17)

Therefore, once we know h∗, the computation of pλ is straightforward. This is the case for the six
examples listed in Example 1. Below, we further illustrate with some relevant examples where it
is easy to evaluate pλ.

Example 2. (i) Regularized Burg’s Entropy. Let h(x) = σ
2
x2 − µ logx with domh= (0,∞),

where (σ,µ> 0). Then one computes h∗(s) = σ
2
t2(s) +µ log t(s)−µ, where

t(s) :=
s+
√
s2 + 4µσ

2σ
> 0, anddomh∗ =R.

Some algebra shows that ∇h∗(s) = (σt2(s) + µ)(s2 + 4µσ)−1/2, which yields the desired pλ(x)
via (17).

(ii) “Hellinger-Like function”. Let h(x) = −
√

1−‖x‖2; domh = {x ∈ Rd : ‖x‖ ≤ 1}. Note that
this yields a nonseparable Bregman distance which is relevant for ball constraints. We then obtain,
h∗(y) =

√
1 + ‖y‖2, domh∗ =Rn, and hence pλ(x) = (1 + v2(x))−1/2v(x).
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(iii) Composition with a norm. Let φ : R→ (−∞,∞] be Legendre and monotone increasing.
Suppose that φ is even, i.e., φ(x) = φ(−x) for all x ∈R. Note that φ even implies that domφ 3 0,
and by convexity, that 0 is a minimizer of φ on R. Define h(x) := φ(‖x‖). Then,

h∗(y) = sup
x
{〈x, y〉−φ(‖x‖)}= sup{t‖y‖−φ(t) : t≥ 0}= φ∗(‖y‖),

from which pλ can be evaluated for a given φ. The above example (ii) corresponds to the choice
φ(t) =−

√
1− t2, withdomφ= [−1,1]. Another example is with the choice φ(t) =− log(1− t2) on

(−1,1), which we leave to the reader.
(iv) Semidefinite constraints. Bregman distances can be defined on the space of d×d symmetric

matrices Sd, and are useful to handle semidefinite constraints. Denote by Sd++ the cone of positive
definite matrices of Sd. Let h : Sd++→ R defined by h(x) = − log det(x). Then, ∇h(x) = x−1 the
inverse of x, and we obtain pλ(x) = v(x)−1, v(x), x ∈ Sd++. For more examples on handling conic
constraints with other Bregman distances on matrices, and evaluating pλ, see e.g., [1, Examples B,
C, p.718].

Proximal calculus with Bregman kernels: computing Proxhλf (·). The classical Moreau proximal map
of f is in general explicitly computable when f is norm-like, or when f is the indicator of sets whose
geometry is favorable to Euclidean projections. Although quite frequent in applications (orthant,
second-order cone, `1 norm), these prox-friendly functions are very rare, see e.g., [17, Section 2.6].
Concerning NoLips the situation is exactly the same: for a given kernel h, sets and functions which
are prox-friendly are scarce and are modeled on h. However a major advantage in our approach is
that one can choose the kernel h to adapt to the geometry of the given function/set. This situation
will be illustrated in Section 5, for a broad class of inverse problems involving Poisson noise.

Below, we give examples for which Proxhλf (y) = arg min{λf(u) +Dh(u, y) : u∈X} , y ∈ intdomh
is easy to compute in closed form, whereas the standard Moreau proximal map is not explicitly
known (and would thus require a numerical procedure, implying a nested scheme if used in an
algorithm).

Example 3. (i) (Entropic thresholding) Let f(u) = |u − a| where a > 0 and take h(x) =
x logx, domh= [0,∞). Then,

Proxhλf (y) =

 exp (λ)y if y < exp(−λ)a,
a if y ∈ [exp(−λ)a, exp(λ)a],
exp (−λ)y if y > exp(λ)a.

(ii) (Log thresholding) Let f(u) = |u− a| where a > 0 and take h(x) =− logx, domh= (0,∞).
Assume λa< 1. Then,

Proxhλf (y) =


y

1+λy
if y < a

1−λa ,

a if y ∈
[

a
1−λa ,

a
1+λa

]
,

y
1−λy if y > a

1+λa
.

Similar formulas may be derived when λa> 1.
(iii) Let f(u) = ceu, c > 0, and take h(x) = ex, domh=R. Then Proxhλf (y) = y− log(1 +λc).
(iv) (Squared norms and Burg entropy) Let f(u) = c

2
u2, c > 0 and take h(x) =− logx, domh=

(0,∞). Then Proxhλf (y) = (2cλy)−1
(√

1 + 4cλy2− 1
)
.

Step-size choices. Back to the algorithm, it remains to determine the choice of the step-size in
terms of the problem’s data. Here the symmetry coefficient α(h) and the relative convexity constant
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L play central roles. In the rest of the paper, and when no confusion occurs, we use the simpler
notation α instead of α(h). We let (λk)k∈N to be a sequence in R++ with

0<λk ≤
(
1 +α

)
− δ

L
for some δ ∈ (0,1 +α), (18)

where α ∈ [0,1] is the symmetry coefficient of h as defined in (8). Observe that, when h is the
energy function, then α(h) = 1 and the above boils down to λk ≤ 2−δ

L
, the usual step size of the

Euclidean proximal gradient method, see e.g., [22].
The next section addresses the two fundamental issues regarding NoLips
– What is the complexity of the method?
– Can we assert that the sequence converges to a single minimizer?
These issues are strongly related to the geometric features of h, but also to their adequation

with the couple (f + g,domh).

4. Analysis of the NoLips algorithm: complexity and convergence In this section,
we establish the main convergence properties of the proposed algorithm. In particular, we prove
its global rate of convergence, showing that it shares the claimed sublinear rate O(1/k) of basic
first-order methods such as the classical PG. We also derive a global convergence of the sequence
generated by NoLips to a minimizer of (P) under an additional mild assumption on h which holds
for most practical choices. Our analysis builds on [24] initially developed for the classical quadratic
proximal minimization method, and follows its extensions in [15] and [1].

Throughout this section, we remind the reader that, we work under the blanket assumption, the
(LC) condition and that we assume the algorithm to be well defined.

We start with some elementary preliminaries. As usual with the analysis of Bregman based
schemes, the following very simple three points identity for Dh is very useful.

Lemma 3 (Three points identity). [15] Let h : Rd→ (−∞,∞] be a proper lsc convex func-
tion. For any x∈ domh, and y, z ∈ intdomh the following identity holds:

Dh(x, z)−Dh(x, y)−Dh(y, z) = 〈∇h(y)−∇h(z), x− y〉 . (19)

It is also useful to record the following inequality which is a consequence of the new extended
descent Lemma 1.

Lemma 4 (Three points extended descent Lemma). Assume that (LC) holds for the pair
of convex functions (h, g). Then, for any (x, y, z)∈ intdom h×domh× intdom h, we have

g (x)≤ g (y) + 〈∇g (z) , x− y〉+LDh(x, z).

Proof. Take x, y, z as specified. By Lemma 1 and since x, z ∈ intdomh we have

g (x)≤ g (z) + 〈∇g (z) , x− z〉+LDh(x, z).

Since g is convex, differentiable and domg⊃ domh, the gradient inequality yields

0≤ g (y)− g (z)−〈∇g (z) , y− z〉 .

Adding these two inequalities gives the desired result. �
The next lemma provides a key estimation inequality for the forthcoming analysis.
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Lemma 5 (Descent inequality for NoLips). Let λ > 0. For all x in intdomh, let x+ :=
Tλ(x). Then,

λ
(
Φ(x+)−Φ(u)

)
≤Dh(u,x)−Dh(u,x+)− (1−λL)Dh(x+, x), ∀u∈ domh. (20)

Proof. Fix any x ∈ intdomh. By assumption, x+ = Tλ(x) ∈ intdomh is unique and characterized
by the optimality condition:

0∈ λ
(
∂f(x+) +∇g(x)

)
+∇h(x+)−∇h(x).

Substituting the latter in the subgradient inequality for the convex function f , we then obtain for
any u∈ domh (with λ> 0),

λ(f(x+)− f(u)) ≤ λ〈∇g(x), u−x+〉+ 〈∇h(x+)−∇h(x), u−x+〉
= λ〈∇g(x), u−x+〉+Dh(u,x)−Dh(u,x+)−Dh(x+, x), (21)

where the equality follows from the three points identity (cf. Lemma 3). On the other hand, since
(x+, u,x)∈ intdom h×domh× intdom h, Lemma 4 applies:

λ(g(x+)− g(u))≤ λ〈∇g(x), x+−u〉+λLDh(x+, x). (22)

Adding the last inequality to (21), recalling that Φ(x) = f(x) + g(x), we thus obtain

λ
(
Φ(x+)−Φ(u)

)
≤Dh(u,x)−Dh(u,x+)− (1−λL)Dh(x+, x),

as announced. �

We are now ready for our main result. Recall that λk > 0, (k ∈N), must satisfy

0<λk ≤
(
1 +α

)
− δ

L
for some δ ∈ (0,1 +α). (23)

Theorem 1. Let {xk}k∈N be the sequence generated by NoLips and let σk =
∑k

l=1 λl. Then the
following hold:

(i) (Monotonicity) {Φ(xk)}k∈N is nonincreasing.
(ii) (Summability)

∑∞
k=1Dh(xk, xk−1)<∞.

(iii) (Convergence of the function values) If σk→∞, then limn→∞Φ(xk) = v(P).
(iv) (Global estimate in function values) Now, let λk := 1+α

2L
for all positive integer k. Then,

Φ(xk)−Φ(u)≤ 2L

(1 +α)k
Dh(u,x0), ∀u∈ domh.

Proof. Fix k≥ 1. Using Lemma 5 with xk = Tλk(xk−1), we obtain, for all u∈ domh,

λk
(
Φ(xk)−Φ(u)

)
≤Dh(u,xk−1)−Dh(u,xk)− (1−λkL)Dh(xk, xk−1). (24)

Basically, all the claims of the Theorem easily follow from this inequality.
Items (i) and (ii): By definition of λk, we have 1−λkL≥ δ−α, and hence (24) reduces to

λk
(
Φ(xk)−Φ(u)

)
≤Dh(u,xk−1)−Dh(u,xk) + (α− δ)Dh(xk, xk−1), ∀u∈ domh. (25)

Set u= xk−1 in (25), using Dh(xk−1, xk−1) = 0, and recalling that by definition of α, (recall (10))

−Dh(xk−1, xk) +αDh(xk, xk−1)≤ 0,
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we thus deduce from (25) that

λk
(
Φ(xk)−Φ(xk−1)

)
≤ −Dh(xk−1, xk) +αDh(xk, xk−1)− δDh(xk, xk−1)
≤ −δDh(xk, xk−1) (26)
≤ 0.

Therefore the sequence {Φ(xk)}k∈N is nonincreasing, and since by Assumption A, v(P )>−∞, we
get

lim
k→∞

Φ(xk)≥ v(P )>−∞. (27)

Now, again using the condition on λk given in (23), and summing (26) over k= 1, . . . , n, we obtain

δL

1 +α− δ

n∑
k=1

Dh(xk, xk−1)≤Φ(x0)−Φ(xn).

Hence with (27) this implies that
∑∞

k=1Dh(xk, xk−1)<∞ which is (ii).
(iii) Using σk = λk +σk−1 (with σ0 = 0), multiplying (26) by σk−1, we obtain

σkΦ(xk)−σk−1Φ(xk−1)−λkΦ(xk)≤−δσk−1
λk

Dh(xk, xk−1).

Summing over k= 1, . . . , n the above inequality, as well as inequality (25), we then get respectively

σnΦ(xn)−
n∑
k=1

λkΦ(xk) ≤ −δ
n∑
k=1

σk−1
λk

Dh(xk, xk−1),

n∑
k=1

λkΦ(xk)−σnΦ(u) ≤ Dh(u,x0)−Dh(u,xn) +α
n∑
k=1

Dh(xk, xk−1)− δ
n∑
k=1

Dh(xk, xk−1).

Adding these two inequalities, and recalling that δ > 0 and Dh(·, ·)≥ 0, it follows that

Φ(xn)−Φ(u)≤ Dh(u,x0)

σn
+
α

σn

n∑
k=1

Dh(xk, xk−1). (28)

Therefore, passing to the limit with σn →∞, and recalling that (Φ(xk))k∈N is decreasing, and
sum∞k=1Dh(xk, xk−1)<∞, we obtain limn→∞Φ(xn)≤Φ(u) for every u∈ domh, and hence together
with (27) it follows that limn→∞Φ(xn) = v(P).

(iv) Now, let λk = (1+α)

2L
for all k≥ 0. Clearly it satisfies (23) with δ= (1 +α)/2. Then, from (24)

it follows that for all u∈ domh,

Φ(xk)−Φ(u)≤ 2L

1 +α

{
Dh(u,xk−1)−Dh(u,xk)

}
− (1−α)

2
Dh(xk, xk−1).

Therefore, since α∈ [0,1], Dh(·, ·)≥ 0, this reduces to

Φ(xk)−Φ(u)≤ 2L

1 +α

{
Dh(u,xk−1)−Dh(u,xk)

}
, ∀k≥ 1. (29)

Define vk := Φ(xk)−Φ(u). Since the sequence {Φ(xk)}k∈N is decreasing, we have vk+1 ≤ vk, and
hence it follows that vn ≤ 1

n

∑n

k=1 vk. Therefore, for all u∈ domh

Φ(xn)−Φ(u) ≤ 1

n

n∑
k=1

[Φ(xk)−Φ(u)]

≤ 2L

n(1 +α)
Dh(u,x0),

where the last inequality follows from (29) and the nonnegativity of the Bregman distance. �
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Corollary 1 (Complexity for h with closed domain). We make the same assumption
as in (iv) above but we assume in addition that domh= domh and that (P) has at least a solution.
Then for any solution x̄ of (P),

Φ(xk)−min
C

Φ≤ 2LDh(x̄, x0)

(1 +α(h))k
.

Proof. It follows directly from (iv) above. �

When h(x) = 1
2
‖x‖2, the associated distance is symmetric (i.e. α= 1), the number L is a Lips-

chitz continuity constant of the gradient of g, and we thus recover the classical global rate of the
usual proximal gradient method [6]. In view of Corollary 1 above, note also that the entropies of
Boltzmann-Shannon, Fermi-Dirac and Hellinger are non trivial examples for which the finiteness
assumption (domh= domh) is obviously satisfied.

We now deduce from all the above results, the global convergence to an optimal solution under
the usual finiteness assumptions on h. For that purpose, what is needed are additional assumptions
on the Bregman proximal distance ensuring separation properties of this distance at the boundary,
so that we can use arguments “à la Opial” [28].

Recall that the blanket assumptions and in particular that h :X→ (−∞,∞] is a Legendre func-
tion hold.

Assumptions H:
(i) For every x∈ domh and β ∈R, the level set

{
y ∈ intdomh : Dh(x, y)≤ β} is bounded.

(ii) If {xk}k∈N converges to some x in domh then Dh(x,xk)→ 0.
(iii) Reciprocally, if x is in domh and if {xk}k∈N is such that Dh(x,xk)→ 0, then xk→ x.

Remark 4. (a) All examples given previously, Boltzmann-Shannon, Fermi-Dirac, Hellinger
Burg entropies satisfy the above set of assumptions.
(b) For much more general and accurate results on the interplay between Legendre functions and
Bregman separation properties on the boundary we refer the reader to [2].

Before giving our convergence result, we recall the following well known result on nonnegative
sequences which will be useful to us, see [31, Lemma 2, p.44].

Lemma 6. Let {vk}k∈N and {εk}k∈N be nonnegative sequences. Assume that
∑∞

k=1 εk <∞ and
that

(∀k ∈N), vk+1 ≤ vk + εk, ∀k≥ 0. (30)

Then {vk}k∈N converges.

Proof. We include a brief proof here to make the paper self-contained. Set βk = vk +
∑+∞

m=k εm
for all k, this makes {βk}k∈N a nonnegative sequence while (30) makes it nonincreasing. Hence it
converges to some l in R. Since

∑+∞
m=k εm tends to zero as k goes to infinity this proves that vk also

converges to l. �

Theorem 2 (NoLips: Point convergence). The assumptions are those of Theorem 1.
(i) (Subsequential convergence) Assume that the solution set of (P),

arg min
{

Φ(x) : x∈C = domh
}

is nonempty and compact. Then any limit point of {xk}k∈N is a solution to (P).
(ii) (Global convergence) Assume that domh= domh and that H is satisfied. We assume

in addition that (P) has at least a solution.
Then the sequence {xk}k∈N converges to some solution x∗ of (P).
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Proof. (i). Let x∗ be a limit point of {xk}k∈N (which exists by compactness), i.e., xkp→ x∗ as p→∞.
By using successively Theorem 1 (iii), the lower-semicontinuity of f and the continuity of g, we
obtain

min
C
f + g = lim

p→∞

(
f(xkp) + g(xkp)

)
= lim inf

p→∞

(
f(xkp) + g(xkp)

)
≥ lim inf

p→∞
f(xkp) + lim

p→∞
g(xkp)

≥ f(x∗) + g(x∗).

Since x∗ ∈C, the proof is complete.

(ii). From (25), we have for all x∈ domh= domh,

Dh(x,xk)≤Dh(x,xk−1) + (α− δ)Dh(xk, xk−1)−λk
(
Φ(xk)−Φ(x)

)
.

Take x̄ ∈ arg min{Φ(u) : u ∈ domh}. Since Φ(xk) ≥ Φ(x̄) for all nonnegative integer k, the above
inequality yields

Dh(x̄, xk)≤Dh(x̄, xk−1) + (α− δ)Dh(xk, xk−1). (31)

Using Lemma 6 and the fact that Dh(xk, xk−1) is summable (see Theorem 1-(ii)), we deduce that
Dh(x̄, xk)k∈N is convergent for all minimizer x̄. This ensures by H (i) that the sequence xk is
bounded. If one denotes by x∗ a cluster point of xk in domh= domh, one deduces from part (i) that
x∗ is a minimizer of Φ on domh. As a consequence of the previous result and H (ii), Dh(x∗, xk)k∈N
converges and its limit must be zero. The latter implies that xk converges to x∗ by H (iii). �

Remark 5 (Bregman proximal minimization). When g = 0, The algorithm NoLips
reduces to the well known Bregman proximal minimization scheme ([13]). In this case, Theorem 1
recovers and extends the complexity/convergence results of [15, Theorem 3.4].
Remark 6 (Interior Bregman projected gradient). When f = 0 our algorithm is the

interior method with Bregman distance studied in [1]. An important difference with that work is
the fact that we do not require ∇g to be L Lipschitz continuous in general. Instead, we identify in a
sharp manner the geometrical assumption needed to ensure the descent property of the algorithm
in a Bregman setting, i.e., Lh− g is convex.

As we shall see, this is not a simple formal improvement: in the next section we show that a highly
non-Lipschitz problem is amenable to the “interior proximal gradient methodology” through an
adequate choice of the underlying geometry, i.e., through a judicious choice of a Bregman function
h together with a constant L so that (LC) is satisfied.

5. Application to Linear Inverse Problems

5.1. Poisson Linear Inverse Problems: Some Background A large class of problems
in astronomy, nuclear medicine (e.g., Positron Emission Tomography), electronic microscopy, and
many other within the broad field of image sciences can be described as inverse problems where data
measurements are collected by counting discrete events (e.g., photons, electrons) contaminated by
noise and described by a Poisson process. One then needs to recover a nonnegative signal/image for
the given problem. There is a huge amount of literature on this class of problems in the statistical
and image sciences areas. For some classical works see e.g., [18, 16, 20] and [8] for a more recent
review which includes over 130 references.
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Formally, we are dealing with linear inverse problems that can be conveniently described as
follows. Given a matrix A ∈Rm×n+ modeling the experimental protocol, and b ∈Rm++ the vector of
measurements, the goal is to reconstruct the signal or image x∈Rn+ from the noisy measurements
b such that

Ax' b.
Moreover, since the dimension of x is often much larger than the number of observations, there is
a need to regularize the problem through an appropriate choice of a regularizer f reflecting desired
features of the solution. Thus, given some adequate convex proximity measure d(·, ·) that quantifies
the “error” between b and Ax, the task of recovering x can be formulated as the optimization
problem:

(E) minimize {d(b,Ax) +µf(x) : x∈Rn+}
where µ > 0 plays the role of a penalty/regularizing parameter controlling the tradeoff between
matching the data fidelity criteria and the weight given to its regularizer.

A natural and very well-known measure of proximity of two nonnegative vectors is based on the
so-called Kullback-Liebler divergence (relative entropy functional) see [16],

d(b,Ax) :=
m∑
i=1

{bi log
bi

(Ax)i
+ (Ax)i− bi}.

which (up to some constants) corresponds to noise of the Poisson type, more precisely to the
negative Poisson log-likelihood function. When µ= 0, i.e., when solving the inverse problem without
regularization, problem (E) is the standard (modulo change of sign due to minimization) Poisson
type maximum likelihood estimation problem. The latter is typically solved by the Expectation
Maximization EM algorithm [37].

Clearly, the function x→ d(b,Ax) is convex on Rn+, however it does not admit a globally Lip-
schitz continuous gradient, and hence the usual proximal gradient cannot be applied. This class
of problems is sufficiently broad to illustrate the theory and algorithm we have developed. Many
other related problems of this form can benefit from the same treatment via other choices of d
and other regularizers. Our purpose here is just to illustrate how the NoLips algorithm can be
applied to this class of problems, indicating its potential to the many related problems that can
be similarly studied, and are left for future research.

5.2. Two Simple Algorithms for Poisson Linear Inverse Problems Adopting the
above model, we begin with some useful notations that will facilitate the forthcoming development.

Let b ∈ Rm++, and let ai ∈ Rn+ denotes the rows of the matrix A. We assume that ai 6= 0 for all
i= 1, . . . ,m, and

∑m

i=1 aij := rj > 0 forall j (which is a standard assumption for this model, [37]),
so that for any x∈Rn++, we have 〈ai, x〉> 0 for all i= 1, . . . ,m.

Let Dφ be the Bregman distance in Rm corresponding to the Boltzmann-Shannon entropy φ(u) =
u logu,

Dφ(u, v) =
m∑
i=1

[φ(ui)−φ(vi)− (ui− vi)φ′(vi)] .

Then, the first component in the objective function of problem (E) reads as

g(x) :=Dφ(b,Ax)

and the problem of interest can be written (omitting constant terms)

(E) minimize

{
m∑
i=1

{〈ai, x〉− bi log〈ai, x〉}+µf(x) : x∈Rn+

}
.
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To apply the algorithm NoLips, we need to identify an adequate Legendre function h. We use
Burg’s entropy, let indeed

h(x) =−
n∑
j=1

logxj, domh=Rn++.

Now, we need to find L> 0 such that Lh− g is convex on Rn++.

Lemma 7. Let g(x) =Dφ(b,Ax) and h(x) as defined above. Then for any L satisfying

L≥ ‖b‖1 =
m∑
i=1

bi,

the function Lh− g is convex on Rn++.

Proof. Since g and h are C2 on Rn++, the convexity of Lh− g is warranted for any L> 0 such that

L〈∇2h(x)d, d〉 ≥ 〈∇2g(x)d, d〉, ∀x∈Rn++,∀d∈Rn. (32)

A simple computation shows that for any x∈Rn++ and any d∈Rn,

L〈∇2h(x)d, d〉=L
n∑
j=1

d2j
x2
j

. (33)

On the other hand, using the definition of g one computes,

∇g(x) =
m∑
i=1

(
1− bi
〈ai, x〉

)
ai (34)

〈∇2g(x)d, d〉 =
m∑
i=1

bi
〈ai, d〉2

〈ai, x〉2
. (35)

Now, by a simple application of Jensen’s inequality to the nonnegative convex function t2, it
follows that for any u∈Rn+ (not all zero):

〈u,d〉2

〈u,x〉2
≤
∑
j

ujxj
〈u,x〉

(dj/xj)
2 ≤

n∑
j=1

d2j
x2
j

, ∀d∈Rn, x∈Rn++.

Applying the later with u := ai 6= 0 for each i (by assumption), and recalling that b > 0, we obtain
from (35),

〈∇2g(x)d, d〉=
m∑
i=1

bi
〈ai, d〉2

〈ai, x〉2
≤

(
m∑
i=1

bi

)
n∑
j=1

d2j
x2
j

,

and hence with (33) the desired result (32) holds with L≥
∑m

i=1 bi. �
Equipped with Lemma 7, Theorem 1 is applicable and Theorem 2 (i) warrants subsequential

convergence to an optimal point. Since here α(h) = 0, (cf. §2.3) we can take for example

λ=
1

2L
=

1

2
∑m

i=1 bi
.

Applying NoLips, given x ∈ Rn++, the main algorithmic step, namely x+ = Tλ(x) consists of com-
puting the proximal gradient step with a Burg’s entropy:

x+ = arg min

{
µf(u) + 〈∇g(x), u〉+ 1

λ

n∑
j=1

(
uj
xj
− log

uj
xj
− 1

)
: u> 0

}
. (36)
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We now show that the above abstract iterative process yields closed form algorithms for Poisson
reconstruction problems with two typical regularizers used in applications.

Sparse regularization. We choose the `1 regularizer f(x) := ‖x‖1, which is known to promote
sparsity. In that case, since f is separable, the iterate in problem (36) reduces to solve a one
dimensional convex problem of the form: (γ below stands for one component of ∇g(x))

x+ = arg min

{
µu+ γu+

1

λ

(u
x
− log

u

x

)
: u> 0

}
.

Thus, elementary algebra yields (presuming that 1 +λγx> 0 to warrant x+ > 0)

x+ =
x

1 +λµx+λγx
.

Define,

cj(x) :=
m∑
i=1

bi
aij
〈ai, x〉

, and recall that rj :=
∑
i

aij > 0,

for every j = 1, . . . , n and x ∈ Rn++. The j-th component of the gradient of ∇g(x) defined in (34)
can then be written as

γj := (∇g(x))j = rj − cj(x), ∀j = 1, . . . , n, ∀x∈Rn++.

Thus, the algorithm to solve (E) yields the following explicit iteration

x+
j =

xj
1 +λ (µxj +xj(rj − cj(x)))

, j = 1, . . . n; where λ∈
(

0,
1

2L

)
.

For µ= 0 problem (E) reduces to solve min{Dφ(b,Ax) : x∈Rn+}, and in that particular case the
iterates of NoLips simply become

x+
j =

xj
1 +λxj(rj − cj(x))

, j = 1, . . . n.

In contrast to the standard EM multiplicative algorithm given by the iteration [37]

x+
j =

xj
rj
cj(x), j = 1, . . . , n.

Tikhonov regularization. We consider here a regularization à la Tikhonov, i.e., where the regu-
larizer is f(x) := 1

2
‖x‖2. We recall that this term is used as a penalty in order to promote solutions

of Ax= b with small Euclidean norms, see e.g., [20].
As before, we are lead to a simple one dimensional problem (recall that γ is a component of

∇g(x))

x+ = arg min

{
µ

2
u2 + γu+

1

λ

(u
x
− log

u

x

)
: u> 0

}
.

Presuming that we are in the case of existence in the above subproblem, one deduces that

x+ =

√
(1 + γλx)2 + 4µλx2− (1 + γλx)

2µλx
> 0.

Using the notation introduced above, we obtain a “log-Thikonov method”:

x+
j =

√
(1 +λxj (rj − cj(x)))

2
+ 4µλx2

j − (1 +λxj (rj − cj(x)))

2µλxj
,
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where j = 1, . . . , n and x∈Rn++.

As mentioned above, many other interesting methods can be considered by choosing different
kernels for φ or by reversing the order of the arguments in the proximity measure. This is illustrated
in the next example.

5.3. An algorithm for nonnegative linear systems on Rn+ An alternative approach to
what was developed in the previous section consists in minimizing

min{µf(x) +Dφ(Ax, b) : x∈Rn+}

instead of min{µf(x) +Dφ(b,Ax) : x ∈Rn+}. Since Dφ is not symmetric these problems differ and
the function g(x) :=Dφ(Ax, b) now reads:

g(x) =
m∑
i=1

{〈ai, x〉 log〈ai, x〉− (log bi + 1)〈ai, x〉+ bi} .

Note that in this case, the Poisson statistical interpretation of the objective g is not anymore
valid. Yet, for solving inconsistent linear systems with nonnegative data, we can naturally adopt
the distance Dφ(Ax, b) to measure the residuals between two nonnegative points, instead e.g., the
usual least-squares norm, see e.g., [16] and references therein. As we shall see, this leads to a simple
multiplicative gradient-like iterative scheme.

A judicious choice to implement NoLips in this case is to use the Legendre function h(x) =∑n

j=1 xj logxj. As before, we need to find L> 0 such that Lh− g is convex on Rn++.

Lemma 8. Let g(x) =Dφ(Ax, b) and h(x) as defined above. Then for any L satisfying

L≥ max
1≤j≤n

∑
i=1

aij

the function Lh− g is convex on Rn++.

Proof. Since g and h are C2 on Rn++, we proceed as in Lemma 7. We seek a positive constant L
such that

L〈∇2h(x)d, d〉 ≥ 〈∇2g(x)d, d〉, ∀x∈Rn++,∀d∈Rn.

A direct computation shows that for any x∈Rn++ and any d∈Rn,

L〈∇2h(x)d, d〉=L
n∑
j=1

d2j
xj

and 〈∇2g(x)d, d〉=
m∑
i=1

〈ai, d〉2

〈ai, x〉
. (37)

Consider the convex function ϕ :R× (0,∞) defined by ϕ(s, t) = s2/t, and take any u∈Rn+ \{0}, x∈
Rn++, and d∈Rn. Apply Jensen’s inequality with weights and points

λj :=
ujxj
〈u,x〉

> 0, (sj, tj) :=

(
〈u,x〉dj

xj
, 〈u,x〉

)
,

to obtain
〈u,d〉2

〈u,x〉
≤

n∑
j=1

uj
d2j
xj
, ∀d∈Rn, ∀x∈Rn++.
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Invoking the latter inequality with u := ai ∈Rn+ \ {0} for all i, we thus get:

〈∇2g(x)d, d〉 =
m∑
i=1

〈ai, d〉2

〈ai, x〉

≤
m∑
i=1

n∑
j=1

aij
d2j
xj

=
n∑
j=1

d2j
xj

(
m∑
i=1

aij

)

≤ max
1≤j≤n

(
m∑
i=1

aij

)
n∑
j=1

d2j
xj
,

and hence the desired result follows with L≥maxj (
∑m

i=1 aij). �

Remark 7. In some applications, such as positron emission tomography (PET),(see e.g., [37]),
it is common to have matrices with unit column sums. In that case rj =

∑m

i=1 aij = 1 for all
j = 1, . . . , n, so that L= 1.

Let us provide an explicit expression for NoLips in the case of the sparse minimization problem:

min{µ‖x‖1 + g(x) : x≥ 0}= min{µ‖x‖1 +Dh(Ax, b) : x≥ 0} .

In this case Theorem 2 (ii) and Corollary 1 are applicable and warrant global convergence to an
optimal solution and sublinear rate O

(
1
k

)
.

Given x∈Rn++, the iteration x+ = Tλ(x) amounts to solving the one dimensional problem:

x+ = arg min{λµu+λγu+u log
u

x
+x−u},

where γ is some component of ∇g(x). Observe that in this setting ∇g is given by

(∇g(x))j =
m∑
i=1

aij log

(
〈ai, x〉
bi

)
, ∀j = 1, . . . , n.

Assuming
∑m

i=1 aij = 1, we can take L = 1 (e.g., see Remark 7) so that λ = 1/2. After a few
computations, we obtain the following iterative process:

x+
j =

xje
−µ/2

pj(x)
with pj(x) :=

m∏
i=1

(
〈ai, x〉
bi

)aij/2
, ∀ j = 1, . . . , n; x∈Rn++.

6. Concluding Remarks This work outlines in simple and transparent ways the basic ingre-
dients to apply the proximal gradient methodology when the gradient of the smooth part in the
composite model (P) is not Lipschitz continuous. Thanks to a new and natural extension of the
descent Lemma and a sharp definition of the step-size through the notion of symmetry, we have
shown that NoLips shares convergence and complexity results akin to those of the usual proximal
gradient. The last section has illustrated the potential of the new proposed framework when applied
to the key research area of linear inverse problems with Poisson noise which arises in image sciences.
On the theoretical side, our approach lays the ground for many new and promising perspectives
for gradient-based methods that were not conceivable before. Thus, it would be interesting in the
future to revisit classical results for first-order methods without Lipschitz gradient continuity and
to investigate the impact and extension of our methodology, e.g., on primal-dual schemes, on the
derivation and analysis of new first order accelerated NoLips schemes, and on other applications.
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