
Dr. Abdallah Mohamed

Acknowledgement: Original slides provided courtesy of Dr. Lawrence.

Limits of Computation

COSC 122 - Page 2

Key Points

1) Computers can demonstrate “artificial intelligence” but
cannot yet mimic human creativity.

2) Game trees and search strategies are used to create the
intelligence in games.

3) Scientists use big-Oh notation to analyze and compare the
performance of algorithms.

4) There exists some problems where there is no efficient
solution or no solution at all.

COSC 122 - Page 3

Do Computers have Limits?

We have seen that the computer gets it power by being able to
perform simple operations very fast.

By combining these simple operations into larger software
programs, a computer can perform complex tasks.

Two interesting questions:

1) Can computers do anything (everything)?

2) Can computers behave like humans?

COSC 122 - Page 4

Can Computers Think?

The Turing Test

If the judge cannot identify the computer, the computer can be said to be intelligent.

Source:
www.alanturing.net

COSC 122 - Page 5

Can Computers Think?

Alan Turing posed the Turing Test to evaluate if a computer
can mimic a human. The Turing Test:

Two identical rooms connected electronically to a judge who
can type questions directed to the occupant of either room. A
human being occupies one room, and the other contains a
computer. The judge's goal is to decide, based on the
questions asked and the answers received, which room
contains the computer. If after a reasonable period of time the
judge cannot decide for certain, the computer can be said to be
intelligent.

The computer is intelligent if it acts enough like a human to
deceive the judge.

The test does not define thinking, intelligence, awareness or
focus on any specific ability.

COSC 122 - Page 6

Can Computers Think? (2)

Computers have come closer to passing the test but not quite.

Computer advances:

Better understanding and parsing of natural language (ELIZA)

Recognize semantics in language and communication

Translate to and from natural language realistically

Improved computational power

Work to do:

Computational power will go beyond that of the human brain in
50 years.

Outstanding challenge is modeling complexity and intelligence
in software.

COSC 122 - Page 7

Acting Intelligently?

Eliza is a system developed by MIT researcher Joseph
Weizenbaum to carry on a conversation as though she were a
psychotherapist.

The software used word clues for answers but did not
understand the meaning so it was not intelligent.

Example:

COSC 122 - Page 8

Survey
Computer Intelligence

Question: I believe a computer will behave like a human …

A) never

B) in my lifetime

C) within 50 years

D) within 20 years

E) within 10 years

COSC 122 - Page 9

Survey
Computers and Humanity

Question: It is a good thing if computers/robots become as
intelligent as humans and develop/display emotions.

A) Strongly Agree

B) Agree

C) Neutral

D) Disagree

E) Strongly Disagree

COSC 122 - Page 10

Artificial Intelligence

Artificial intelligence (AI) refers to the ability of a computer to
mimic human intelligence in certain situations.

To exhibit intelligence, the computer has to "understand" a
complex situation and reason well enough to act on its
understanding.

One example of AI is computer intelligence in playing games
such as chess and checkers.

COSC 122 - Page 11

Game Intelligence

For a computer to play a game against a human opponent, it
must make intelligent decisions on its moves.

Strategy games such as checkers and chess have been
targeted games for computing "artificial intelligence".

Even video games require the computer to determine
strategies, even though the decision making is less complex.

This includes games such as role-playing games and
strategy/conquest games.

COSC 122 - Page 12

Checkers

The world champion is a program called Chinook created by
researchers at the University of Alberta, Canada.

http://www.cs.ualberta.ca/~chinook

Get crushed by Chinook if you choose

They also have a research group called
GAMES (Game- playing, Analytical

methods, Minimax search, and
Empirical Studies)

http://www.cs.ualberta.ca/~games

Checkers was solved in 2005. Perfect play by both sides leads
to a draw. There are 500 billion billion (5 x 1020) positions.

Group is working on poker players as well.

http://www.cs.ualberta.ca/~games

COSC 122 - Page 13

Chess

A computer program does not have world champion status, but
defeated world champion Gary Kasparov in a regulation match
in 1997.

Deep Blue

Developed by IBM at a cost of millions of dollars.

Powered by a RS/6000 massively parallel mainframe.

Can evaluate 200 million board positions a second.

http://www.research.ibm.com/deepblue/home/html/b.html

COSC 122 - Page 14

Jeopardy

IBM's Watson AI program competed on Jeopardy! in February
2011 against champions Ken Jennings and Brad Rutter.

Watson: $77,147 Jennings: $24,000 Rutter: $21,000

Watson is a specialized program with a huge, self-contained
database that parses English, formulates queries to
database, and filters and selects correct answer.

Database has 200 million unstructured pages.

Watson consisted of 2,800 computers and terabytes of
memory.

Applied to medicine, banking, and research.

"Final Jeopardy!" question it got wrong in category U.S. Cities:
Its largest airport is named for a World War II hero, its second
largest for a World War II battle.

COSC 122 - Page 15

A Simple Game
Tic-Tac-Toe

A good way to look at structures and algorithms that are
capable of playing games of pure skill is by examining a simple
game like Tic-Tac-Toe (also called x’s and o’s).

Tic-Tac-Toe

A game of pure skill

No element of chance

Can program Tic-Tac-Toe by “looking” for forced moves, traps,
and patterns.

Careful case by case analysis

 Can be done because of the relatively few cases possible

COSC 122 - Page 16

Game Playing
Mini-max Strategy

The majority of game playing systems employ something called
a mini-max strategy.

The basic idea in a mini-max strategy is that you determine a
move which maximizes your potential to win the game and
minimizes your opponent’s potential to win the game.

The mini-max strategy consists of three components:

Move generator - determine your possible moves

Board evaluator - evaluate the desirability of each move

Mini-max procedure - determine an efficient way to search
through all the possible moves that you can perform

All of these components use or work upon a game tree.

A game tree stores, and allows the mini-max procedure to
manipulate the possible moves that can be made.

COSC 122 - Page 17

Move Generator Example

x

xxx
xxx

xx

ooo
ox x x x x x x xo

o o o

Note: Many branches are omitted.

The second level would actually contain 9 x 8 = 72 nodes.

COSC 122 - Page 18

Move Generator
Tic-Tac-Toe

Creating a complete game tree starting from the empty state
board for Tic-Tac-Toe turns out to be more complex than you
might first expect:

The game tree contains approximately 550,000 nodes.

Easy for a computer to handle, but not insignificant.

For more complex games, the complete game tree is effectively
unmanageable because the number of possible nodes in the
game tree is unbelievably large.

Therefore, we will not want to construct the entire game tree
when making a decision, but rather only construct and search
the most "promising" parts of the game tree.

Heuristics and pruning are used to only evaluate the most
likely beneficial moves.

COSC 122 - Page 19

Board Evaluator

The second component of a game system is the board
evaluator which is responsible for determining if a given board
position or state is advantageous for the player.

The board evaluator determines the good and bad moves.

The move generator builds a game tree to get some insight as
to what might happen in future moves:

Future board scenarios are thus known by playing out moves,
counter-moves, counter-counter-moves, etc.

Future board scenarios are of no use if you have no
mechanism to evaluate them.

The board evaluator determines when a sequence of moves (a
path in the game tree) is advantageous for the player.

COSC 122 - Page 20

Board Evaluator
Tic-Tac-Toe Example

x
xo

o
o
x

x

o

x
xo

o
o
x o x

x

x
xo

o
o
x

x

o

x
xo

o
o
x

x

x
xo

o
o
x

o

xx

x
xo

o
o
x x

o

x
xo

o
o

x
xo

o
o
x

x
xo

o
o
x

x
xo

o
o
x

x
xo

o
o
x

x
xo

o
o
x

x
xo

o
o
x

x
xo

o
o
x

x

o

x

x x

o

xo

o

o x

x

x x

+1

-1 -1

+1 +1 +1

COSC 122 - Page 21

Why did Deep Blue Win?

Deep Blue ended up winning due to increasing computation
power.

This extra power allowed the computer to examine more
possible moves in the game tree.

The use of parallel computers that have multiple processors
and memory allow for complex problems to be solved.

The top 500 most powerful computers in the world have
thousands of processors and are used for simulations of
weather, military tests, and earthquakes.

Is Deep Blue intelligent?

The search algorithm was “intelligent”, but does it qualify as
what we consider intelligence?

COSC 122 - Page 22

Survey
Computer Games

Question: I have noticed an improvement in the
intelligence/interactivity of the computer or computer characters
in the games I play.

A) Yes

B) No

COSC 122 - Page 23

Survey
Computer Games and Your Time

Question: I have spent more time this semester playing games
than working on this course.

A) Yes

B) No

COSC 122 - Page 24

Survey
Social Computer Games

Question: I confess to playing social games Zynga (Farmville,
MafiaWars, etc.) or other Facebook or online games:

A) Never – What a waste of time!

B) Never – I love games but those are NOT games!

C) Once a month or less

D) Once a week

E) Daily or many times per day.

Help me! I am addicted. I play all the time (even during class)!

COSC 122 - Page 25

Computer Creativity

Computers can run programs that automatically generate
music, art, and pictures.

The intelligence is still with the software - not the computer.

The software is encoding human intelligence.

The underlying question is: Is creativity algorithmic?

If it is, computers may one day be creative.

Many things that are creative are algorithmic.

Mathematics was once considered creative or inspired.

Creativity is sometimes inspiration but is also a lot of revision.

Inspiration to create something totally new.

Revision is modifying existing to produce something new.
Algorithmic?

Many "new" advertising, research, etc. are based on revisions.

COSC 122 - Page 26

Computer Generated Art

These pictures are generated from algorithms.

Source: Ken Musgrave - http://www.kenmusgrave.com

COSC 122 - Page 27

The Universality Principle

In theory, all computers have the same ability to compute as
they use the same basic functions.

This is called the Universality Principle.

In practice, differences in computer hardware, software, and
operating systems make it impossible to run all software on
all computers and to run it efficiently.

Examples:

programs require processing speed that hardware cannot
achieve

operating systems support different features

processors encode instructions differently in hardware

Six basic instructions: Add, Subtract, Set_to_One, Load, Store,
and Branch_On_Zero.

COSC 122 - Page 28

Why are some programs faster than
others?

Recall that an algorithm is a sequence of steps to solve a
problem.

The performance of an algorithm when implemented on a
computer depends on the approach used to solve the
problem and the actual steps taken.

Example: algorithms for data sorting have different efficiencies.

http://www.sorting-algorithms.com/

http://bl.ocks.org/andrewringler/raw/3809399/

Although faster hardware makes all algorithms faster,
algorithms that solve the same problem can be compared in a
hardware-independent way using big-Oh notation.

http://bl.ocks.org/andrewringler/raw/3809399/
http://bl.ocks.org/andrewringler/raw/3809399/

COSC 122 - Page 29

Algorithms
Best and Worst Case

Very few algorithms have the exact same performance every
time because the performance of an algorithm typically
depends on the size of the inputs it processes.

The best case performance of the algorithm is the most
efficient execution of the algorithm on the "best" data inputs.

The worst case performance of the algorithm is the least
efficient execution of the algorithm on the "worst" data inputs.

The average case performance of the algorithm is the average
efficiency of the algorithm on the set of all data inputs.

Best, worst, and average-case analysis typically express
efficiency in terms of the input size of the data.

The input size is often a function of n.

COSC 122 - Page 30

Algorithms
Big-Oh Notation

Big-Oh notation is a mechanism for quickly communicating
the efficiency of an algorithm.

Big-Oh notation measures the worst case performance of the
algorithm by bounding the formula expressing the efficiency.

In big-Oh notation:

The performance is specified as a function of n which is the
size of the problem.

e.g. n may be the size of an array, or the number of values to compute

Only the most significant expression of n is chosen:

e.g. If the method performs n3 + n2 + n steps, it is O(n3).

Significance ordering: 2n , n5 , n4 , n3 , n2 , n*log(n) , n , log(n)

Constants are ignored for big-Oh:

e.g. If the method performs 5*n3 + 4*n2 steps, it is O(n3).

COSC 122 - Page 31

Algorithms
Common Big-Oh Notation Values

There are certain classes of functions with common names:

 constant = O(1)

 logarithmic = O(log n)

 linear = O(n)

 quadratic = O(n2)

 exponential = O(2n)

These functions are listed in order of fastest to slowest.

For example, for large values of n, an algorithm that is
considered O(n) is faster than an algorithm that is O(2n).

Big-Oh notation is useful for specifying the growth rate of the
algorithm execution time.

How much longer does it take the algorithm to run if the input size is
doubled?

COSC 122 - Page 32

Big Oh Growth Rates

Big Oh Growth Rates

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

O(1)

O(logN)

O(N)

O(N)

O(2)

2

N

COSC 122 - Page 33

Big-Oh Exercise

1) What is the Big-Oh for the following formulas?

a) 4*n3 + 3*n2 + 6*n

b) n + n*log(n)

COSC 122 - Page 34

Big Oh Notation

Question: What is the big Oh for the following formula:

4*n2 + 3*n4 + 6*n

A) O(n2)

B) O(3n4)

C) O(n4)

D) O(n)

COSC 122 - Page 35

Big-Oh Notation

Question: What is the big Oh notation for the formula:

4*n2 + 3*n4 + 6*n + 5*n*log(n)

A) O(4*n2)

B) O(n4)

C) O(6*n4)

D) O(5*n*log(n))

E) O(n*log(n))

COSC 122 - Page 36

Best/Worst/Average Case

Question: Assuming your mark is given between 0 and 100.
How many of the three values (best case, worst case, average
case) do you know for sure regardless who is in the class?

A) 0

B) 1

C) 2

D) 3

COSC 122 - Page 37

Best/Worst Case
Finding a Song

Question: You have 1000 songs on your music player and
want a particular song. You "search" for your song by pressing
the random button (pick a random song) until your song comes
up. How many times do you have to press the random button
until you find your song? Assume that the randomize feature
can return the same song more than once.

A) best case = 1, worst case = 1000

B) best case = 1, worst case = 500

C) best case = 1, worst case = forever

COSC 122 - Page 38

How Hard Can a Problem Be?

There exists problems that no computer can solve efficiently.

These problems are called NP-complete problems and are
considered intractable.

The only way to solve the problem is to try all possible solutions
to find the best.

Even the most powerful computers cannot solve large
examples of these problems.

Example problem: Travelling salesman problem - find best
route between n cities.

COSC 122 - Page 39

How Hard Can a Problem Be? (2)

Even worse, there exist problems that have been proven to be
unsolvable regardless of the computer speed.

There exist no algorithms at all for such unsolvable problems.

An example is the Halting Problem that has the simple task of
asking if a given program will always stop (halt) or will it run
forever.

COSC 122 - Page 40

Computers in the Future

The future of IT is bright. There are many technologies being
developed that are migrating from the research labs into use.

Software agents – Can software be your personal butler?

Robots – When we build robots, what would you want it to do?

Self-healing and adapting – Can our systems fix themselves?

Wearable computers – Can we embed computers in clothing
and glasses? In our eyes and brains?

Language translation – Can we have the universal translator?

Personal Life Databases – Can we record all of our life
information and moments (text, images, sound, video)?

What would that look like? Would you want that?

Automatic driving cars – Our cars will do the driving (probably
better than us). They already know where they are going…

COSC 122 - Page 41

Computers in the Future (2)

Some challenges:

Information overload
If we can get data from everywhere at any time, do we get too much?

Can we trust the data we get?

How about our privacy and security?

Always-on society
Our technology has trained us to be always available for communication.

Is that good? Are we actually more productive that way? More human?

Pace of innovation
Technology has sped up society and business. Everything changes

rapidly. Innovation may not always be good.

Essence of Humanity
If everything is automated and computerized around us, do we lose the

essence of being human?

Are we ready for the ability to alter human DNA and lifestyles?

COSC 122 - Page 42

Conclusion

Computers do not yet mimic human creativity although they
demonstrate “artificial intelligence” in many domains.

One of these domains is game playing where intelligence is
provided by game trees and search strategies.

Computer scientists compare algorithms independently of
hardware using big-Oh notation.

NP-complete problems are problems where no efficient
solution exists. Unsolvable problems are problems where it is
proven no solution at all exists.

COSC 122 - Page 43

Objectives

Explain the Turing Test in your own words.

Define: artificial intelligence

List and briefly explain the three components of game playing
using game trees and the mini-max strategy.

Define: Universality Principle

Be able to convert a formula in n into big-Oh notation.

Compare and contrast: best case, worst case, average case

Compare and contrast: NP-complete problem, unsolvable
problem

